ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА ИМЕНИ С. М. КИРОВА

Том 215

1974

ИЗОТОПНЫЕ ЭФФЕКТЫ ПРИ ЭЛЕКТРОМИГРАЦИИ ИОНОВ В РАСПЛАВЛЕННЫХ ГАЛОГЕНИДАХ ОЛОВА

И. А. ТИХОМИРОВ, С. И. ГОЛЫШЕВ

(Представлена научным семинаром физико-технического факультета)

Электромиграцией в расплавленных солях в настоящее время осуществлено обогащение изотопов большого числа элементов [1]. Экспериментальные данные показывают, что изотопный эффект при электромиграции в значительной степени зависит от различных факторов и, прежде всего, от температуры и химического состава соли. Изучение этих зависимостей позволяет полнее понять природу изотопных эффектов при электромиграции. Данная работа предпринята с целью исследования изотопных эффектов для олова в расплавленных галогенидах.

В работе использовались реактивы SnCl₂, SnBr₂ и SnI₂ марок «ч. д. а.». Каждую соль выдерживали в эксикаторе над P₂O₅ несколько суток, затем медленно нагревали в пробирке из пирекса до температуры плавления, эвакуировали расплав и выдерживали 2-3 часа при давлении 0,1 мм Hg, постепенно повышая температуру до 580—600° С, пока из расплава не прекращали выделяться пузырьки газа. При этом интенсивная возгонка солей наблюдалась только в случае нагревания порошков, еще не подвергавшихся плавлению, особенно SnBr₂. Переплавленные соли заметным образом не возгонялись и плавились при температурах, совпадающих с литературными данными [2].

Такой же предварительной обработке подвергались и другие неиспользованные в работе соли и эвтектические смеси LiCl+KCl и LiBr+KBr. Приготовленные соли хранили в эксикаторе над P₂O₅.

Общая схема установки дана на рис. 1. Она состоит из следующих основных элементов: ячейки 1, кварцевой печи 2, источника постоянного тока 3, кулометра 4, регулятора напряжения 5, терморегулятора 6 в комплекте с термопарой 7 и милливольтметром 8, приборов контроля напряжения и тока в цепи электролиза и цепи питания печи. На рис. 2 показана отдельно ячейка для обогащения легких изотопов олова. Ячейка представляет собой трубку 9 из стекла пирекс длиною 160 мм и диаметром 4 мм, заполненную порошком из стекла пирекс с диаметром зерен 0,2—0,3 мм. Эта насадка удерживалась в трубке двумя впаянными фильтрами из пирекса с диаметром 8 мм. Ячейка помещалась в трубчатую печь из прозрачного кварца, питание на которую подавалось от регулятора напряжения 5. Нужный температурный интервал поддерживался с точностью $\pm 5^{\circ}$ С и дополнительно контролировался милливольтметром, которым измерялась э. д. с. хромель-аллюмелиевой термопары, помещенной в печь.

Источник питания 3 использовался для осуществления процесса

7*

6

Рис. 1. Общая схема установки

электролиза. Ток электролиза поддерживался постоянным в течение всего опыта с точностью ±5 ма. Количество прошедшело электричества измерялось медным кулометром. В качестве катода служил карборундовый (силитовый) элемент — нагреватель для электропечей. Внутри силитового стержня просверлен канал, по которому в некоторых опытах подавался ток, газообразного Cl₂ или Br₂ для регенерации щелочных металлов, выделяющихся на катоде. Анодом служил силитовый либо прафитовый стержень. Делительная трубка ячейки перед началом опыта заполнялась расплавом соли. Например, в опытах с хлоридами ячейка в целом помещалась в печь и при температуре порядка 580° С в ее широкое колено вводился расплав соли SnCl₂, так что соль заполняла делительную трубку и на 1-2 мм поднималась выше верхнего фильтра. Затем, введением в катодное отделение эвтектического расплава LiCl+KCl уровень расплава SnCl₂ в делительной трубке опускался на 10-15 мм ниже фильтра. Ток электролиза включался после заполнения анодного отделения расплавом соли ZnCl₂.

В зависимости от состава соли были проведены эксперименты со следующими электролитическими цепями:

- 1. +C ZnCl₂ SnCl₂ Sn -
- 2. +C ZnCl₂ SnI₂ Sn -
- 3. $+C |ZnCl_2| SnCl_2 |LiCl+KCl| PbCl_2 |Pb| -$
- 4. + силит $|ZnBr_2|SnBr_2|LiBr+KBr|(силит+Br_2)|$ —
- 5. +силит $ZnCl_2$ SnCl_2 LiCl+KCl (силит+Cl_2) —

Цепи 1, 2 использовались для обогащения тяжелых изотопов олова, а цепи 3, 4, 5 для обогащения легких изотопов олова.

Во всех опытах праницы раздела солей в делительной трубке формировались через 1,0—1,5 часов после включения тока электролиза и со-

Таблица 1

ј№ ОПЫТа	1			4						
Обогащаемые изотопы	легкие	легкие	тяжелые	тяжелые						
Продолжительность электролиза, час	66	53	64	56						
Температура, °С	540	450	590	340						
Ток электролиза, ма	188	202	194	210						
Напряжение, в	110	105	80	90						
Количество электричества через ячей-	45000	38500	45100	42600						
Масс-эффект, µ	0,063	0,066	0,065	0,069						

		Таблица 2
Соль олова	SnBr ₂	SnI2
Продолжительность электролиза, час	76	32
Температура, °С	470	470
Средний ток электролиза, ма	154	179
Напряжение, в	110	94
Количество электричества через ячейку, к	42400	20600
Масс-эффект, µ	0,072	0,080

Рис. 2. Электролитическая ячейка для обогащения легких изотопов олова хранялись в течение всего опыта. Условия проведения опытов сведены в табл. 1 и 2.

Табл. 1 характеризует основные параметры экспериментов по разделению изотопов олова при электромиграции ионов в соли SnCl₂, а табл. 2 в солях SnBr₂ и SnI₂.

После выключения тока электролиза остывшая делительная трубка разрезалась на кусочки длиной 15— 20 мм, начиная от границы солей. Каждый такой образец подвергался химическому и масс-спектрометрическому анализу. Соль растворялась в небольшом количестве воды, подкисленной HC1. Общее количество соли в образце определялось по разности: вес образца минус вес насадки и кусочка стеклянной трубки. Затем. содержание олова в образце находили йодометрическим титрованием.

В некоторых образцах, примыкавших к границе с соседними солями, дополнительно определялось общее содержание хлора аргентометрически. Изотопный анализ производился на масс-спектрометре МИ-1305 с печным источником ионов и автоматической

записью масс-спектров с помощью электронного потенциометра ЭПП-09. После обработки данных масс-спектрометрического анализа результаты сведены в табл. 3 и 4.

В табл. 3 приведены результаты анализов для SnCl₂, а в табл. 4 SnBr₂ и SnI₂.

Содержание изотопов олова в атомных % в образцах SnCl₂ с измененным изотопным составом. Нумерация образцов ведется от границы SnCl₂|Li+KCl в опытах 1 и 2 и от границы SnCl₂|ZnCl₂ в опытах 3 и 4. Каждый результат — среднее из 8—10 измерений, средне-квадратичная ошибка отдельного измерения составляет ±2%

1. 1. 1.	1	Bec	Содержание изотопа олова в образце										
№ опыта	№ 06- разца	соли в образце, мг	112	114	115		116	117	118	119	120	122	124
1		413 441 357	1,16 1,02 1,01	0,75 0,68 0,67	0,38 0,36 0,35		15,49 14,96 14,71	7,98 7,68 7,64	24,64 24,36 24,26	8,49 8,54 8,57	31,73 32,25 32,47	5,26 4,54 4,52	5,11 5,61 5,80
2	1 2 3	389 432 352	1,19 1,04 1,01	0,73 0,71 0,69	0,37 0,35 0,36		15,00 14,70 14,61	8,07 7,64 7,63	24,73 24,23 24,19	9,02 8,50 8,61	32,00 31,82 32,34	4,18 4,53 4,51	4,71 5,38 5,73
3	1 2 3	311 401 377	0,72 0,77 0,98	0,52 0,56 0,62	0,29 0,31 0,32		13,21 13,28 13,74	7,13 7,23 7,69	23,29 23,01 23,67	8,60 9,45 8,81	34,15 34,03 33,20	5,07 4,98 4,85	6,91 6,38 6,21
4	1 2 3	421 361	0,70 0,84 0,90	0,61 0,63	0,28 0,33 0,34		13,46 13,79 14,07	7,14 7,42 7,53	23,27 23,81 23,90	9,23 8,58 8,55	33,37 33,34 33,25	4,87 4,93 4,72	6,31 6,11
Наши измерения													
Олово	o ect	се- Лите	аратур-	0,96	0,63	0,34	14,61	7,57	24,15	8,64	33,06	4,61	5,89
изот соста	опної ва	го ные	[2]	0,90	0,61	0,35	14,07	7,54	23,98	8 8,62	33,03	4,78	6,11

Таблица 4

Содержание изотопов олова в атомных % в образцах SnBr₂ и SnI₂ после электролиза. Нумерация образцов ведется соответственно от границы SnBr₂|LiBr+KBr и SnI₂|ZnI₂. Среднеквадратичная ошибка отдельного измерения на масс-спектрометре составляет 2%, каждый результат —

среднее из 8-10 измерений

Соль олова			Содержание изотопов олова в образце									
	,№ образ- ца	Вес соли в образце, <i>мг</i>	112	114	115	116	117	118	119	120	122	124
SnBr ₂	1 2 3 4 5	291 323 350 347 419	1,34 1,20 1,10 0,99 0,95	0,81 0,77 0,72 0,67 0,66	0,40 0,38 0,37 0,35 0,34	1/6,50 15,70 1/5,20 14,51 14,24	8,18 8,02 7,89 7,73 7,57	24,70 24,80 24,40 24,20 23,96	8,47 8,50 8,72 8,57 8,53	31,10 31,70 32,10 35,50 33,02	3,86 4,20 4,35 4,61 4,73	4,66 4,83 5,35 5,77 5,99
SnI ₂	$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \end{array} $	301 462 554 478	0,60 0,82 0,91 0,95	$0,55 \\ 0,58 \\ 0,63 \\ 0,66$	0,30 0,31 0,33 0,35	12,90 13,40 13,95 14,25	6,98 7,28 7,51 7,64	23,07 23,34 23,95 23,92	8,67 8,62 8,59 8,59	34,65 33,80 33,14 33,01	5,08 5,14 4,85 4,68	7,21 6,73 6,24 6,01
Олово изотоп наши	естестного о	твенного состава,	0,96	0,65	0,34	14,26	7,59	23,92	8,57	32,98	4,71	6,00

Относительная разность подвижностей изотопических ионов олова вычислялась по формуле [3]

$$\frac{\Delta U}{U} = \left(\frac{i_N}{i_{N_0}} - \frac{\kappa_N}{\kappa_{N_0}}\right) \cdot \frac{FN_{\rm CI}}{Q} \,.$$

Здесь^{*i*} N и ^{*к*} N суммарное количество *i*-го и *к*-го изотопов в *г* для образцов, изотопный состав которых изменился после электролиза по сравнению с исходной солью. ^{*i*} N_0 и _{*к*} N_0 суммарное количество *i*-го и *к*-го изотопов в г в образце до электролиза. $N_{\rm Cl}$ — количество г-экв хлора в образце. Q — количество прошедшего электричества. F — константа Фарадея.

Величина масс-эффекта вычислялась по формуле:

$$\mu = \frac{\Delta U}{U} \left| \frac{\Delta m}{m} \right|,$$

где $\frac{\Delta m}{m}$ — относительная разность масс, а $\frac{\Delta U}{U}$ — относительная разность масс, а $\frac{\Delta U}{U}$ — относительная разность подвижностей *i*-го и к-го изотопов. Для одного и того же опыта находились величины $\frac{\Delta U}{U}$ и µ для пар изотопов 1/12—1/19, 1/16—1/19, 1/17—1/19, 1/18—1/19, 1/20—1/19, 1/22—1/19, 1/24—1/19. В табл. 1 и 2 приведены средние арифметические значения µ для этих пар изотопов. Сопоставляя значения µ для SnCl₂, SnBr₂ и SnI₂ при температуре 470°С, лепко видеть, что упоминавшаяся выше закономерность — увеличение значений µ — хорошо выполняется для изотопов олова. Таким образом, «правило для галогенидов» [4] подтверждается и в случае солей олова. Наиболее точно данная зависимость укладывается на одну кривую при сопоставлении значений µ и $\frac{r_{\kappa}}{r_a}$, где r_{κ} и r_a — радиус катиона и радиус аниона. Возрастание µ с уменьшение и с возрас- r_a

Рис. 3. Масс-эффект для 2-валентных катионов в расплавленных галогенидах

танием отношения $\frac{m_{\rm k}}{m_{\rm a}}$, где $m_{\rm k}$ — масса катиона, $m_{\rm a}$ — масса аниона. Однако подобная зависимость соблюдается не для любого ряда катионов. По-видимому, определяющую роль для масс-эффекта играет в этом случае структура расплавов солей или даже структура данной соли в кристаллическом состоянии. При соизмеримости атомных весов металлы, образующие соли со слоистой решеткой, имеют большие значения и по сравнению с металлами, образующими соли с координационной решеткой. Клемм [5] предложил способ «выравнивания» изотопного состава разделяемого элемента в каждом обогащенном образце, считая, что обогащение данного изотопа. пропорционально разности между его массой іт и средним массовым числом элемента. Следуя данной методике, можно показать, что в рассматриваемом случае величина

$$\ln \frac{i_{\Gamma_n}}{i_{\Gamma_0}}$$

линейная функция

$$\frac{^{i}m}{m_{0}}-1,$$

где

$$m_{
m o}=\sum^{i}\Gamma_{
m o}{}^{i}m_{
m o}$$
 ,

 ${}^{i}\Gamma_{n}$ и ${}^{i}\Gamma_{0}$ — содержание изотопа i в атомных процентах, соответственно обогащенном образце и в естественной изотопной смеси. На рис. 4 для каждого из обогащенных образцов приведены усредненные прямые, рассчитанные по формуле:

$$\ln \frac{i_{\Gamma_n}}{i_{\Gamma_0}} = \frac{\frac{\sum_{i}^{i} \Gamma_0 \left(\frac{i_m}{m_0} - 1\right) \ln \frac{i_{\Gamma_n}}{i_{\Gamma_n}}}{\sum_{i} \left(\frac{i_m}{m_0} - 1\right)^2} \cdot \left(\frac{i_m}{m_0} - 1\right).$$

Рис. 4. Сопоставление результатов масс-спектрометрического анализа с «выравненным» изотопным составом обогащенных образцов:

а — обогащение легких изотопов олова в SnBr₂,

б — обогащение тяжелых изотопов олова в SnI₂

Экспериментальные точки соответствуют образцам:

$$\bigcirc -N^{\underline{e}} I, \ \triangle = N^{\underline{e}} 2,$$
$$\boxdot -N^{\underline{e}} 3, \ (+) - N^{\underline{e}} 4$$

Видно, что экспериментальные точки, найденные по данным табл. 2, довольно хорошо соответствуют своим «выравненным» значениям. Это «выравнивание» может послужить критерием надежности результатов масс-опектрометрического анализа изотопного состава разделяемого элемента в обогащенных образцах.

ЛИТЕРАТУРА

1. M. Gathith, A. Poy, Electrochemical Tecnology, 2, 85-89 (1964).

2. Справочник химика, Изд. «Химия», Л.-М., т. 1, 2, стр. 227, 1964. 3. Klemm, Z. Naturforshung, 1a, 252—7 (1946). 4. A. Klemm, J. Chim. phys. et phys-chim biol 60, № 1, 2, 237—44 (1963). 5. A. Klemm, H. Hintenberger, W. Seelmann-Eggebert, Z. Naturfoschung 3a, 172-6 (1948).