ХИМИЧЕСКИЙ СПОСОБ ВЫДЕЛЕНИЯ ТРИМЕТИЛАМИНА ИЗ СМЕСИ МЕТИЛОВЫХ АМИНОВ

М. Ю. МОГИЛЕВСКИИ

(Представлено профессором доктором химических наук Б. В. Троновым)

Методом простой ректификации смеси метиловых аминов можно только отделить друг от друга три двойных азеотропа, в каждом из которых будет содержаться то или иное количество триметиламина. Дальнейшее разделение возможно при использовании других физических и химических методов.

В схеме, которая разработана нами и осуществлена в заводском масштабе, для выделения триметиламина используются его двойные смеси с моно-и диметиламином. Азеотроп, состоящий из аммиака и небольшого количества триметиламина, возвращается в цикл для составления исходных рабочих смесей.

Разделение смеси аминов с помощью хлористого аммония достигается в результате обменной реакции. Метиламин и диметиламин в водных растворах быстро вытесняют аммиак из хлористого аммония. Триметиламин в реакцию обменного разложения с хлористым аммонием практически не вступает (в подобранных условиях).

Теоретически основанием этих процессов является разница в основных свойствах, связанная с различием констант электролитической диссоциации. Амины имеют более резко выраженные основные свойства, чем аммиак.

В водной системе, состоящей из трех метиламинов и аммиака, сильнейшим основанием является диметиламин, следующий за ним по силе основности — монометиламин.

По способности солей поддаваться гидролизу амины располагаются в обратном порядке. В системе, состоящей из водных растворов хлористых солей метиламинов и аммиака, легче всего гидролизуется хлористый аммоний. Хлористый триметиламмоний подвержен гидролизу значительно меньше, и еще меньше хлористые соли моно- и диметиламина. При недостатке анионов в системе в первую очередь химически связанными будут наиболее сильные основания, т. е. ди- и моно-метиламин. Все сказанное, конечно, относится к водным растворам.

Если вместо хлористых солей взять сернокислые или азотнокислые (или еще какие-либо другие), сущность механизма взаимодействия не меняется, так как она обусловливается свойствами самих органических оснований, а не анионов.

На способ выделения триметиламина из смеси его с метиламином с помощью хлористого аммония М. Ю. Могилевским и Н. Ф. Алексеевым получено авторское свидетельство (№ 108685 с приоритетом от 19 ноября 1956 г.).

Все узловые вопросы технологической схемы получения и выделения триметиламина предварительно прорабатывались в лабораторных условиях. Эта работа подготовила первоначальный материал для укрупненных опытов и для налаживания промышленного производства.

Экспериментальная часть Методика работы

Сухая соль смешивалась с водным раствором чистых метиловых аминов или с их смесями (эквимолекулярными или производственными). Полученная реакционная смесь выпаривалась досуха на водяной бане, и остаток анализировался.

Содержание отдельных компонентов в солевом остатке определялось

следующим способом:

- а) аммиак отделялся в виде осадка хлористого аммония при промывании солевого остатка бутанолом, в котором растворились хлоргидраты аминов:
- б) монометиламин определялся путем разрушения его азотистой кислотой с последующим замером выделившегося количества азота (в отсутствии аммиака в солевом остатке). При наличии аммиака в солевом остатке анализируемая смесь сначала освобождалась от него путем растворения хлористых солей аминов в бутаноле. Затем бутанол выпаривалея, соли ди- и триметиламина растворялись в хлороформе, а хлоргидрид монометиламина выделялся в виде осадка;
- в) диметиламин отделялся от других компонентов в виде нитрозодиметиламина при взаимодействии раствора анализируемой смеси с азотистой кислотой;
- г) триметиламин отделялся из анализируемого раствора после разрушения аммиака и монометиламина и связывания диметиламина в нитрозоамин азотистой кислотой.

Анализ исходных продуктов и остатка показал, в каких случаях и

насколько полно происходит реакция вытеснения.

Было поставлено 8 серий опытов

1. Взаимодействие хлористого аммония с триметиламином. Аммиак вытесняется из соли триметиламином примерно на 60%.

2. Взаимодействие хлористого аммония с монометиламином. Аммиак

полностью вытесняется монометиламином.

3. Взаимодействие хлор гидрата триметиламина с монометиламином. Триметиламин вытесняется монометиламином примерно на 75%.

4. Взаимодействие хлористого аммония с диметиламином. Аммиак

полностью вытесняется диметиламином.

- 5. Взаимодействие между хлоргидратом монометиламина и диметиламином, взятым с избытком 10% против стехиометрического. Монометиламин вытесняется из соли диметиламином лишь на 6%.
- 6. Взаимодействие между хлористым аммонием и смесью моно-, ди- и триметиламина

Все реагенты взятые в эквимолекулярных количествах. Аммиак вытесняется полностью, триметиламин в хлоргидрат не соединяется, получаемый солевой остаток состоит из равных количеств хлоргидратов моно- и диметиламина.

7. Взаимодействие между нитратом аммония и производственной смесью метиловых аминов состава: MMA 12 весовых частей, ДМА-9, ТМА-10.

Смесь аминов взята с большим избытком против стехиометрического. Аммиак вытесняется полностью, получаемый солевой остаток состоит из нитратов: монометиламмония (72%), диметиламмония (25%) и триметиламмония (3%).

8. Взаимодействие между сульфатом аммония и азеотропной смесью,

состоящей из 85% монометиламина и 15% триметиламина.

Азеотроп брали с избытком. Аммиак вытесняется полностью, получаемый солевой остаток состоит из сульфатов: монометиламмония (99%) и триметиламмония (1%).

Производственный опыт по получению триметиламина за 1 год

Промышленная обработка химического способа получения триметиламина осуществлялась на основе переработки в качестве исходной смеси,

азеотропа—«монометиламин+триметиламин».

Синтез аминов осуществляется из смеси метанола со взятым в большом избытке аммиаков на алюмогелевом катализаторе при температуре 410+5°С и давлении 50 атм. Образующаяся реакционная смесь подвергалась следующим операциям:

1) отделение аммиака в виде азеотропа с частью триметиламина путем ректификации (аммиачный азеотроп направляется на приготовление

новых порций исходной смеси);

2) отделение реакционной воды от смеси метиламинов путем ректификации (вода выдается в канализацию);

3) отделение монометиламина в виде азеотропа с частью триметил-

амина путем ректификации;

4) получение хлоргидрата метиламина путем взаимодействия азеотропа «монометиламин—триметиламин» с нашатырем в водном растворе;

5) выделение чистого триметиламина путем ректификации сконденсированной реакционной смеси, полученной от взаимодействия азеотрола

«ММА+ТМА» с нашатырем.

Только за счет производства товарного хлоргидрата метиламина на основе фракции «ММА+ТМА» вместо чистого монометиламина (как было до внедрения нового способа) получен экономический эффект свыше 900 тысяч рублей в год.

Выводы

По способности к вытеснению основания располагаются в следующем

порядке: монометиламин, диметиламин, триметиламин, аммиак.

По способности к вытеснению монометиламин близок к диметиламину, а триметиламин—к аммиаку. Первые два основания (моно — и диметиламин) по способности к вытеснению очень сильно отличаются от второй пары оснований.

Свободные метиламины способны вытеснять аммиак не только из хлористого аммония, но и из других солей (в частности сульфата и нитрата аммония). Общие принципы наблюдаемого явления такие же, как и в слу-

чае с хлористым аммонием.

Разработан и внедрен в производство практически приемлемый способ промышленного получения триметиламина. В данном способе наряду с триметиламином (свободное основание) получаются соли моно- и диметиламина (хлориды или сульфаты) или соль только одного из них (при ограничении спроса).

Синтез смеси метиламинов производится в обычных условиях со значительным избытком аммиака на промотированном алюминиевом катализаторе (ГИПХ-101)