И З В Е С Т И Я ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 225

1972

1.1.1

2011

here as firstern

With alter they

A MARLEY A MARLEY AND AND A

Children of the state of the state of the state of the

an and a submitted at a submitted at

ОПРЕДЕЛЕНИЕ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ СТУПИЦЫ ТУРБИННОГО ДИСКА

GENERAL DESCRIPTION

Г. Д. ДЕЛЬ, Б. П. ЧЕБАЕВСКИЙ, В. Д. ДЕЛЬ, А. Ф. ПРОНКИН

(Представлена научным семинаром лаборатории пластических деформаций)

Развиваемый в последнее время метод определения напряженнодеформированного состояния в пластической области измерением твердости [1—3] может быть применен для определения напряжений и нагрузок в момент разрушения по твердости разрушенной детали. Это может оказаться полезным при выяснении причин аварий, а в ряде случаев позволяет избежать дорогостоящих натурных испытаний, так как информация, являющаяся результатом таких испытаний, может быть получена исследованием разрушившихся ранее деталей. Если же натурные испытания проводятся, то измерением твердости разрушенной детали можно значительно расширить получаемую при этом информацию. В настоящей статье приводятся результаты исследования напряженнодеформированного состояния в ступице турбинного диска из стали ЭИ437Б, разрушившегося при испытании трубинной установки. Размеры ступицы: наружный диаметр — 130 мм, диаметр отверстия — 33 мм, высота — 60 мм.

Из недеформированной стали ЭИ437Б, имеющей ту же термообработку, что и материал диска, изготавливались призматические образцы с размерами $20 \times 20 \times 15$ мм. Образцы сжимались со смазкой до различных степеней деформации. После деформирования на боковой поверхности призм измерялась твердость НВ шариком 10 мм под нагрузкой в 3000 кг. Интенсивность напряжений σ_i определялась по деформирующему усилию P и площади F поперечного сечения образца

$$\sigma_i = \frac{P}{F}$$
.

Интенсивность деформации ег определялась по формуле

$$e_i=\frac{h_0-h}{h_0},$$

где h_0 , h — высота образца до и после деформации. По результатам испытаний на сжатие строился тарировочный график, связывающий твердость НВ с интенсивностью напряжений и деформаций. Затем в 41 точке торца ступицы диска замерялась твердость. По твердости из та² рировочного графика « σ_i — НВ — e_i » определяли величины σ_i , e_i в различных точках радиуса. Изменение НВ, σ_i , e_i , вдоль радиуса диска показано на рис. 1.

53

При осесимметричном деформировании несжимаемого материала радиальная деформация *e*, и окружная *e*_{\varphi} связаны с *e*_i следующим соотношением:

$$e_{\varphi}^2 + e_r^2 + e_{\varphi} \cdot e_r = \frac{3}{4} e_i^2. \tag{1}$$

Решая систему из уравнения (1) и уравнения совместности деформаций

$$\frac{de_{\varphi}}{dr} = \frac{e_r - e_{\varphi}}{r}, \qquad (2)$$

определяли е, и е, Полученные эпюры приведены на рис. 2.

Совместное решение уравнений (1), (2) осуществлялось методом конечных разностей. Деформации на контуре отверстия в ступице ($e_i = e_{\varphi_0} e_{r_0} = e_{\varphi_0} = -\frac{e_{\varphi_0}}{2}$) использовались в качестве граничных усло-

вий.

Деформации *е*, *е*, *е*, найденные по твердости, были сопоставлены с деформациями, вычисленными по изменению диаметра отверстия. Их расхождение составило 8%. Такое близкое совпадение указывает на то, что нагрев ступицы при ее работе не повлиял существенно на связь между твердостью, напряжениями и деформациями.

В точке 1, расположенной на расстояния Δr от контура отверстия, согласно (2)

$$e_{\varphi_{1}} = e_{\varphi_{0}} + \frac{1}{2} \left(\frac{e_{r_{0}} - e_{\varphi_{0}}}{r_{0}} + \frac{e_{r_{1}} - e_{\varphi_{1}}}{r_{1}} \right) \Delta r.$$
 (3)

Цифра в индексе указывает номер точки, к которой относится данная величина. Из (3) находим

где

$$e_{\varphi_{1}} = B_{1} + C_{1}e_{r_{1}}, \qquad (4)$$

$$B_{1} = \frac{r_{1} \left[2r_{0}e_{\varphi_{0}} + \Delta r \left(e_{r_{0}} - e_{\varphi_{0}} \right) \right]}{r_{0} \left(2r_{1} + \Delta r \right)}, \qquad (4)$$

$$C_{1} = \frac{\Delta r}{2r_{1} + \Delta r}.$$

Решив совместно уравнения (1), (4), получаем

$$e_{r_1} = \frac{-B_1 (2C_1 + 1) \pm 1,73 \sqrt{(e_1)^2 (1 + C_1 + C_1^2) - B_1^2}}{2 (1 + C_1 + C_1^2)}$$

Поперечная деформация е, определялась из условия несжимаемости

$$e_z = -e_r - e_{\varphi}.$$

Окружное σ_{φ} и радиальное σ_{r} напряжения определялись из соотношений [3]:

$$\sigma_{\varphi} = \sigma_{l} \left[-\frac{e_{z}}{e_{l}} + \frac{1}{\sqrt{3}} \sqrt{1 - \left(\frac{e_{z}}{e_{l}}\right)^{2}} \right],$$

$$\sigma_{r} = \sigma_{l} \left[-\frac{e_{z}}{e_{l}} - \frac{1}{\sqrt{3}} \sqrt{1 - \left(\frac{e_{z}}{e_{l}}\right)^{2}} \right].$$

Расчет деформаций, как уже указывалось, начинается от отверстия. Однако у отверстия диска велик градиент деформаций (рис. 2), этим объясняется зависимость точности расчета от величины шага. Аппроксимация исходных данных позволяет выполнить ряд расчетов при изменяющемся шаге. За достоверное принимаются деформации и напряжения, полученные в случае, когда дальнейшее уменьшение Δr не приводит к.заметному изменению напряжений и деформаций.

54

Рис. 1. Изменение HB, σ_i , e_i вдоль радиуса ступицы диска

Рис. 2. Деформации и напряжения вдоль радиуса ступицы диска

На рис. 2 приведены эпюры деформаций и напряжений, полученных при шаге $\Delta r = 0,5$ мм. Наибольшее напряжение составило 113 кг/мм² на расстоянии 1 мм от края отверстия. В дальнейшем напряжения монотонно убывают, при этом отношение о, /о, примерно постоянно и равно 0,8.

ЛИТЕРАТУРА

1. Г. А. Смирнов-Аляев. Сопротивление материалов пластическому дефор-мированию. Машгиз, М.—Л., 1962. 2. Г. Д. Дель. Твердость деформируемого металла. Изв. АН СССР, «Металлы», № 4, 1967. 3. Г. Д. Дель. Определение напряженного состояния материала в пластической области измерением твердости. Труды метрологических институтов СССР, вып. 91 (151), М.—Л., 1967.

A - PAV - Charles of the set

A THE REAL PROPERTY AND A STREET

S-war

and the advected of a presentation of the second states of the