ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА им. С. М. КИРОВА

Том 228

БЕСКОНТАКТНАЯ СИНХРОННАЯ МАШИНА КОМБИНИРОВАННОГО ВОЗБУЖДЕНИЯ

Ю. Н. КРОНЕБЕРГ

(Представлена научно-техническим семинаром кафедры электрооборудования АЭМФ)

Для удовлетворения постоянно растущих требований к качеству выходных параметров машины с постоянными магнитами должны иметь эффективные методы регулирования. Основные перспективы здесь связаны с совершенствованием известных [1, 2, 3] и разработкой новых машин, где удачно сочетались бы достоинства электромагнитного и магнито-электрического возбуждения.

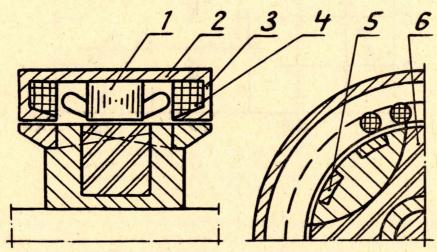


Рис. 1. Бесконтактная синхронная машина. 1— якорь, 2— ярмо, 3— боковой магнито-провод, 4— обмотка возбуждения, 5— когтеобразный полюс, 6— магнит

По нашему мнению, к ним относится и синхронная машина (рис. 1), часть полюсов которой возбуждается магнитом-звездочкой, а остальные — обмоткой, расположенной на внешнем магнитопроводе [4]. При этом порядок чередования северных и южных полюсов сохраняется не только в целом, но и для каждой системы — электромагнитной и магнитоэлектрической — в отдельности. Когда обмотка возбуждения выключена, э. д. с. наводится практически только в проводниках последовательной обмотки якоря, расположенных против магнитов (рис. 2). С увеличением тока возбуждения поток когтеобразных полюсов увеличи-

вается, и соответственно возрастает э. д. с. Как видно из осциллограмм, в поле содержатся низшие гармоники (в данном случае порядка 1/3), однако они не наводят э. д. с. благодаря последовательному соединению

катушечных групп.

В первом приближении можно считать, что потоки магнита и обмотки возбуждения независимы (фактически с ростом тока возбуждения поток магнита незначительно увеличивается). Это объясняется тем, что взаимная связь проявляется лишь благодаря падению н. с. в спинке якоря, которое весьма мало, и потокам рассеяния полюсов, которые также относительно невелики. Рассматриваемую машину удобно сравнивать с родственной ей конструктивно электромагнитной машиной с внешнезамкнутым магнитным потоком (по существу, это та же машина, у которой все полюса когтеобразные).

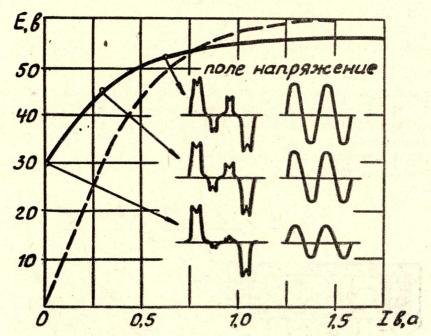


Рис. 2. Экспериментальные характеристики холостого хода: сплошная линия — комбинированное возбуждение, пунктир — электромагнитное

Допустим, что кривая намагничивания электромагнитной машины является типичной для синхронных машин и близка к нормализованной. Тогда при токах возбуждения, не превышающих в $2,5 \div 3$ раза номинальный, она аппроксимируется гиперболическим тангенсом

$$E = 1,43 \text{ th } 0,87 \sqrt{N},$$
 (1)

где

E и N — соответственно э. д. с. и мощность возбуждения (за единицу э. д. с. принято номинальное напряжение, а за единицу мощности — ее значение при этой э. д. с.).

Аналогично уравнение характеристики холостого хода машины комбинированного возбуждения при допущении о независимости потоков

$$e = \frac{m}{p} e_m + 1,43 \left(1 - \frac{m}{p} \right) \text{th } 0,87 \ \sqrt{n},$$
 (2)

e и n — э. д. с. и мощность возбуждения;

р и т — число пар полюсов и постоянных магнитов;

 e_m — условная э. д. с., равная в относительных единицах отношению потока магнита к среднему арифметическому потоку полюсов при номинальной э. д. с.

Глубина регулирования (разность относительных значений номинальной и начальной э. д. с.) в этом случае

$$\gamma = 1 - \frac{m}{p} e_m, \tag{3}$$

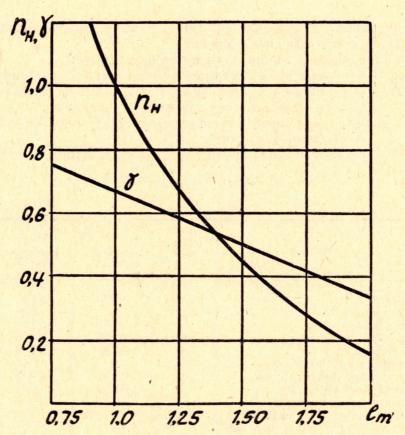


Рис. 3. Мощность возбуждения и глубина регулирования

Полагая в уравнении (2) $e=e_{\rm H}=1$, найдем номинальную мощность возбуждения:

$$n_{\rm H} = 1.32 \left(\text{Arth } 0.7 \frac{p - me_m}{p - m} \right)^2.$$
 (4)

Из уравнений (2)—(4) очевидно, что решающее влияние на показатели машины при выбранной структуре полюсной системы (p и m заданы) оказывает величина условной э.д.с. На рис. (3) в качестве примера представлены указанные зависимости для машины с 2p=12 и 2m=4, откуда следует, что с ростом e_m интенсивно снижается мощность возбуждения и при e_m >1 становится уже меньше, чем в электромагнитной машине. Иными словами, выигрыш по мощности возбуждения на холостом ходу обеспечивается тогда, когда поток полюсов магнита превыша-

ет средний поток полюса. Для этого есть реальные основания, поскольку магнит имеет относительно большой объем (длина силовой линии больше, чем в аналогичной магнитоэлектрической машине, в $2,5 \div 3$ раза).

Отличие в весе обусловлено двумя обстоятельствами: введением магнита и отсутствием части когтеобразных полюсов с соответствующим уменьшением сечения ярма.

С некоторым приближением можно принять, что выигрыш по весу обеспечивается, когда выполняется неравенство

$$\frac{l_j g_j k_{\sigma j}}{l_M g_M k_{\sigma M}} > \frac{B_j}{B_M},\tag{5}$$

 l_i — суммарная длина силовой линии в ярме, боковых магнитопроводах и когтеобразных полюсах;

 $l_{\scriptscriptstyle
m M}$ — длина силовой линии пары полюсов магнита;

 $g_j^{\rm m}$ и $g_{\rm m}$ — удельные веса материалов ярма (сталь) и магнита; B_j и $B_{\rm m}$ — номинальные индукции в ярме (для сравниваемых машин считаются одинаковыми) и магните;

 $k_{\sigma j}$ и $k_{\sigma M}$ — приведенные коэффициенты рассеяния когтеобразных полюсов и магнита.

В этом неравенстве, которое, как правило, выполняется, обычно

$$l_j > l_{\scriptscriptstyle \mathrm{M}}, \quad g_j > g_{\scriptscriptstyle \mathrm{M}}, \quad k_{\scriptscriptstyle \mathrm{G}\, j} > k_{\scriptscriptstyle \mathrm{GM}} \; \, \mathrm{H} \; B_j > B_{\scriptscriptstyle \mathrm{M}}.$$

Таблица

Параметры	Един. измер.	Тип возбуждения	
		электромаг- нитное	комбиниро- ванное
Мощность	ква	0,85	0,85
Тапряжение	В	40	40
Нисло фаз		3	3
Скорость вращения	об/мин	10000	10000
Настота	214	1000	1000
Соэффициент мощности	_	1	1
Внутренний диаметр статора	M	0,075	0,075
Ілина пакета статора	M	0,025	0,025
Толное число полюсов	The state of	12	12
число полюсов из магнитов	_		4
Соэффициент полюсного пе-			
рекрытия когтеобразных по-		0.00	0.50
пюсов		0,66	0,56
Соэффициент полюсного пе-			0.56
рекрытия магнитов	кг	0.00	0,56
Вес внешнего магнитопровода		0,99	0,60
Вес магнита	кг	0,44	0,3
Вес когтеобразных полюсов Общий вес активных частей	KZ KZ	2,84	0,25 2,56

При работе под нагрузкой проявляется еще одно важное преимущество машины комбинированного возбуждения - повышенная жесткость внешней характеристики, что связано с уменьшением индуктивных сопротивлений. Действительно, 2 т полюсных участков последовательной обмотки якоря будут иметь продольные и поперечные индуктивные сопротивления $x_{ad^{\mathrm{M}}}$ и $x_{aq^{\mathrm{M}}}$, соответствующие магнитоэлектрической машине, и только оставшиеся 2~(p-m) участков — сопротивления $x_{ad^{\mathrm{M}}}$ и x_{aq} э, соответствующие электромагнитной машине. Тогда сопротивления машины комбинированного возбуждения:

$$x_{adk} = \frac{1}{p} [(p-m)x_{ads} + mx_{adm}], \tag{6}$$

$$x_{aqR} = \frac{1}{p} [(p-m)x_{aq9} + mx_{aqM}]. \tag{7}$$

Если различие поперечных индуктивных сопротивлений относительно невелико и не вносит существенных отличий, то разница между x_{ad^9} и x_{ad^m} всегда значительна. Например, если принять [1], что $x_{ad^m}/x_{ad^9}=0.5\div0.05$, то согласно уравнению (6) при 2p=12 и 2m=4 продольная индуктивность $x_{ad^m}=(0.68\div0.83)$ x_{ad^9} и $x_{ad^6}=(1.67\div13.7)$ x_{ad^m} .

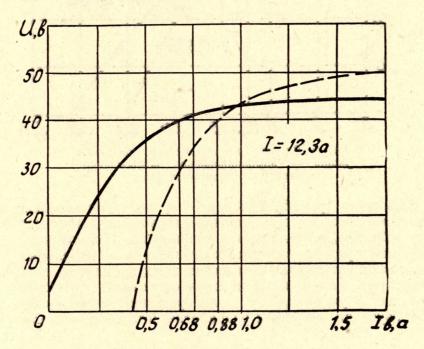


Рис. 4. Нагрузочные характеристики: сплошная линия — комбинированное возбуждение, линия — комбинированное возбуждение, пунктир — электромагнитное

Экспериментальные исследования проводились на двух лабораторных образцах, основные данные которых приведены в таблице. По ряду посторонних причин, связанных с условиями изготовления, полюса электромагнитной машины оказались шире, чем у машины комбинированного возбуждения, в 1,18 раза, что отрицательно сказывается на характеристиках последней. Однако и в этом случае при номинальном напряжении холостого хода (рис. 2) ток возбуждения снизился в 2,11 раза, а мощность возбуждения — в 4,47 раза. Столь большой выигрыш обусловлен тем, что в испытанном образце магниты развивали весьма значительный поток. Судя по осциллограммам поля (рис. 2), он превышает средний примерно в 1,9 раза, что согласно уравнению (3) должно вести к снижению мощности примерно в 5 раз. Расхождение порядка 12% в первую очередь, вероятно, объясняется различиями в ширине полюсов.

Под нагрузкой (рис. 4) выигрыш по току возбуждения составляет 1,29 раза, а по мощности — 1,67 раза. При номинальных токах возбуждения 0,88 и 0,68 a э. д. с. холостого хода машин электромагнитного и комбинированного возбуждения составляют 52,3 a и 55,2 a, а токи ко-

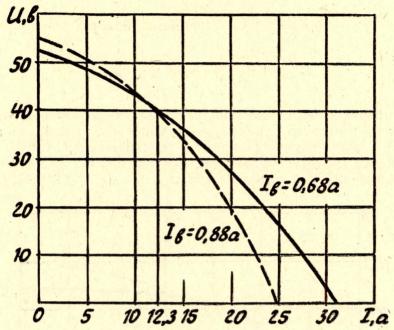


Рис. 5. Внешние характеристики: сплошная линия — комбинированное возбуждение, пунктир — электромагнитное.

роткого замыкания (рис. 5) 24,8 а и 31 а, т. е. действительно внешняя характеристика машины комбинированного возбуждения заметно жестче.

Таким образом, исследованная машина комбинированного возбуждения обладает рядом важных достоинств и в отдельных случаях может рассматриваться как один из основных вариантов при проектировании, например, маломощных источников питания с глубиной регулирования э. д. с. порядка 0,4÷0,7. Одновременно встает вопрос о более детальном изучении машины и разработке методов ее расчета.

ЛИТЕРАТУРА

- 1. А. И. Бертинов. Авиационные электрические генераторы. Оборонгиз, 1959.
- 2. Л. М. Паластин. Регулируемые электрические машины с возбуждением от постоянных магнитов. ЦИНТИ электротехнической промышленности и приборостроения, 1962.
- 3. В. А. Балагуров, Ф. Ф. Галтеев, А. Н. Ларионов. Электрические машины с постоянными магнитами. «Энергия», 1964.
- 4. Ю. Н. Кронеберг. Бесконтактная синхронная машина. Авт. свид. СССР кл. 21 d², 3 № 188563, 18/VII, 1962.