УДК 556.3(504.433; 626.811) DOI: 10.18799/24131830/2025/4/4684 Шифр специальности ВАК: 1.6.16, 1.6.21

Изотопный состав подземных вод территории бессточной области Обь-Иртышского междуречья

Т.С. Папина[⊠], А.Н. Эйрих, Е.С. Орлова, И.Д. Рыбкина

Институт водных и экологических проблем СО РАН, Россия, г. Барнаул

[™]papina@iwep.ru

Аннотация. Актуальность. Генезис и особенности формирования подземных вод территории бессточной области Обь-Иртышского междуречья вызывают большой интерес для разработки рекомендаций в целях устойчивого совместного использования почв и подземных вод. Исследования содержаний стабильных изотопов (²H и ¹⁸O) в подземных водах и атмосферных осадках теплого и холодного периодов года, выпадающих в пределах Обь-Иртышского междуречья, помогают в понимании механизмов формирования подземного стока на данной территории. Объекты. Подземные воды активного водообмена преимущественно Кулундинской аллювиальной равнины - колодцы и скважины, а также атмосферные осадки, выпадающие на территории Обь-Иртышского междуречья. Цель. Оценка вклада атмосферных осадков холодного и теплого периодов года в сток подземных вод на территории Обь-Иртышского междуречья с использованием данных о содержании в их составе стабильных изотопов кислорода и водорода (δ^{2} H, δ^{18} O). *Ме***тоды.** Анализ изотопного состава (б²H, б¹⁸O) подземных вод и атмосферных осадков выполнен в Химикоаналитическом центре Института водных и экологических проблем СО РАН методом лазерной абсорбционной ИКспектрометрии на приборе PICARRO L2130-i (WS-CRDS). Результаты и выводы. По результатам исследования содержания стабильных изотопов (δ^2 H и δ^{18} O) в подземных водах (2022–2023 гг.) и атмосферных осадках холодного и теплого периодов (2021-2023 гг.) проведена оценка сезонных вкладов атмосферных осадков в сток подземных вод на территории бессточной области Обь-Иртышского междуречья. Было показано, что, несмотря на превалирование в этом регионе дождевых осадков над снеговыми (почти до двух раз), в зависимости от глубины залегания водоносных горизонтов, вклад талых снеговых вод в формирование их стока может составлять от 47 до 97 %.

Ключевые слова: стабильные изотопы, подземная вода, атмосферные осадки, подземный сток, Кулундинская равнина

Благодарности: Работа выполнена в рамках научной тематики госбюджетных проектов Института водных и экологических проблем СО РАН № 0306-2021-0004 «Оценка сезонных особенностей атмосферного поступления и последующего распределения загрязняющих веществ на водосборной площади ключевых участков бассейна Оби в зависимости от природно-климатических условий» и № 0306-2021-0002 «Изучение механизмов природных и антропогенных изменений количества и качества водных ресурсов Сибири с использованием гидрологических моделей и информационных технологий».

Для цитирования: Изотопный состав подземных вод территории бессточной области Обь-Иртышского междуречья / Т.С. Папина, А.Н. Эйрих, Е.С. Орлова, И.Д. Рыбкина // Известия томского политехнического университета. Инжиниринг георесурсов. – 2025. – Т. 336. – № 4. – С. 212–224. DOI: 10.18799/24131830/2025/4/4684

UDC 556.3(504.433; 626.811) DOI: 10.18799/24131830/2025/4/4684

Isotopic composition of groundwater in the drainless area of the Ob-Irtysh interfluve

T.S. Papina[⊠], A.N. Eirikh, E.S. Orlova, I.D. Rybkina

Institute for Water and Environmental Problems SB RAS, Barnaul, Russian Federation

[⊠]papina@iwep.ru

Abstract. *Relevance.* Genesis and features of the groundwater formation in the drainage region of the Ob-Irtysh interfluve are of great interest for the development of recommendations for the sustainable joint use of soils and groundwater. Contents of the stable isotopes (²H and ¹⁸O) in groundwater and precipitation falling within the Ob-Irtysh interfluve during the warm and cold periods of the year help to understand the mechanisms of formation of underground runoff in this area. *Objects.* Ground and underground waters mainly of the Kulunda alluvial plain – wells and boreholes, atmospheric precipitation falling on the territory of the Ob-Irtysh interfluve. *Aim.* To assess the contribution of atmospheric precipitation of the cold and warm periods of the year to the runoff of groundwater in the territory of the Ob-Irtysh interfluve using the data of the water stable isotopes of oxygen and hydrogen (δ^{2} H, δ^{18} O). *Methods.* The analysis of the isotopic composition (δ D and δ^{18} O) of water and atmospheric precipitation was carried out at the Chemical Analytical Center of the Institute for Water and Environmental Problems SB RAS using laser absorption IR spectrometry at PICARRO L2130-i (WS-CRDS). *Results and conclusions.* The assessment of the seasonal contributions of atmospheric precipitation to groundwater and precipitation of the cold and warm periods. It was shown that, despite the prevalence of rainfalls over snowfalls in this region (almost up to 2 times), depending on the depth of the aquifers, the melted snow water contribution to the formation of their runoff can range from 47 to 97%.

Keywords: stable water isotopes, groundwater, precipitation, groundwater flow, Kulunda Plain

Acknowledgements: This research was carried out within the framework of the state task of the IWEP SB RAS No. 0306-2021-0004 "Assessment of seasonal features of atmospheric input and subsequent distribution of pollutants in the catchment area of key areas of the Ob basin depending on natural and climatic conditions" and No. 0306-2021-0002 "Study of the mechanisms of natural and anthropogenic changes in the quantity and quality of water resources in Siberia using hydrological models and information technologies".

For citation: Papina T.S., Eirikh A.N., Orlova E.S., Rybkina I.D. Isotopic composition of groundwater in the drainless area of the Ob-Irtysh interfluve. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2025, vol. 336, no. 4, pp. 212–224. DOI: 10.18799/24131830/2025/4/4684

Введение

Использование изотопных методов при наблюдении за движением воды на протяжении всего гидрологического цикла – испарения, выпадения в виде осадков, инфильтрации, стока, эвапотранспирации и возвращения в океан или атмосферу – который затем повторяется, помогает лучше понимать гидрологическое функционирование водосборных бассейнов. Широкое применение данных изотопного состава, а именно стабильных изотопов 2 H (D) и 18 O водяного пара и атмосферных осадков, связанных с гидрогеохимическими данными, помогает не только изучать гидрологическое функционирование водосборных бассейнов [1-7], но и планировать организацию на их территории безопасного водоснабжения, включая выявление потенциальных областей пополнения запасов подземных вод [1-3, 6, 8]. При этом по данным МАГАТЭ именно подземные воды являются наименее изученным компонентом глобального гидрологического цикла [9].

В последние десятилетия анализ изотопных соотношений ${}^{2}\text{H}/{}^{1}\text{H}$ ($\delta^{2}\text{H}$ или δD) и ${}^{18}\text{O}/{}^{16}\text{O}$ ($\delta^{18}\text{O}$) стал широко применяться в исследованиях генезиса и динамики подземных вод [10–15], а также процессов взаимодействия подземных вод с вмещающими горными породами [16–18].

Питание подземных вод активного водообмена преимущественно осуществляется инфильтрацией атмосферных осадков. По мнению авторов [19] осадки, попав в водоносный горизонт, значительно лучше сохраняют свой исходный изотопный состав относительно осадков, пополнивших поверхностные воды, а обновления подземной водоносной системы связано с подземной циркуляцией и контролируется геологическими структурами. Миграционные процессы и перемешивание подземных вод в водоносных горизонтах, где вода просачивается через трещины от верхних до нижних пластов бассейна, рассмотрены во многих исследованиях [15, 20-23]. Изучение генетической связи между подземными водами и атмосферными осадками, выпадающими на поверхность изучаемой территории, является важной составляющей при разработке рекомендаций устойчивого совместного использования почв и грунтовых (подземных) вод в регионах с постоянно растущими потребностями в землепользовании. К таким регионам относится территория Обь-Иртышского междуречья. В условиях изменения климата здесь усиливаются процессы опустынивания, уменьшается количество выпадающих осадков, увеличивается среднегодовая температура воздуха и, соответственно, уменьшается поверхностный сток и инфильтрация. В такой ситуации подземные воды выступают основным водоисточником, а понимание процессов, связанных с гидродинамическим режимом, является одним из ключевых.

В настоящей работе по содержанию стабильных изотопов кислорода и водорода (δ^2 H, δ^{18} O) в воде подземных источников и атмосферных осадков Обь-Иртышского междуречья выполнена оценка

раздельного вклада атмосферных осадков холодного и теплого периодов года в водный подземный сток изучаемой территории.

Объекты и методика исследования

Территория исследования расположена на юговосточной окраине Западно-Сибирского артезианского бассейна, являющегося одним из крупнейших бассейнов мира. По гидрогеологическому районированию бессточная область Обь-Иртышского междуречья приурочена к Иртыш-Обскому артезианскому бассейну II порядка и относится к провинции с устойчивым сезонным промерзанием зоны аэрации, где основное питание грунтовых вод осуществляется в весенний период за счет снеготаяния [24, 25].

Климат изучаемой территории характеризуется умеренной континентальностью и формируется под воздействием преимущественно антициклонального типа циркуляции воздушных масс. Зима малооблачная, холодная, с сильными ветрами и метелями, лето жаркое и сухое. Ветреная погода наблюдается более 200 дней в году преимущественно весной и осенью, преобладают ветра юго-западного направления – их среднегодовая скорость составляет 3,0-3,5 м/с. Средние за год температуры положительные: 0,3-0,5 °С. Средняя температура июля +19 °С, января -18 °С. Снежный покров устанавливается чаще всего к моменту понижения средней суточной температуры воздуха до -5 °С и имеет зависимость от местных погодных условий. Высота снежного покрова в среднем составляет 20 см [26, 27]. Среднегодовая сумма осадков изменяется в диапазоне от 250 до 400 мм. Наименьшее количество осадков наблюдается по западной части бессточной области [28].

В строении бассейна выделяются два структурных яруса. Нижний приурочен к складчатому палеозойскому фундаменту, воды которого залегают на больших глубинах и практического интереса не представляют. Верхний ярус – эпипалеозойский чехол, содержащий преимущественно напорные и безнапорные пластово-поровые воды в рыхлых слабоуплотнённых осадках кайнозоя и мезозоя. Мощность чехла может достигать 800-1000 м. В разрезе верхнего яруса выделяется до 20 водоносных горизонтов, часть из которых объединены в шесть основных перспективных комплексов. Вертикальный разрез Иртыш-Обского бассейна представляет собой переслаивание обводнённых песчано-гравийных слоёв с водоупорными отложениями. Отдельные участки рассматриваемой территории существенно различаются глубинами залегания подземных вод, степенью их минерализации, водообильностью горизонтов, естественными и эксплуатационными ресурсами. Водовмещающими отложениями являются пески, супеси, суглинки. Глубина залегания уровня грунтовых вод (первого от поверхности водоносного горизонта) обычно находится в пределах 5–10 м, на некоторых участках может достигать 80–100 м и более [29].

В 2022 и 2023 гг. в ходе экспедиционных работ на территории бессточной области Обь-Иртышского междуречья проведен отбор проб подземной воды в колодцах и скважинах, локация которых представлена на рис. 1, краткая характеристика типа водоисточника и глубины его залегания приведена в табл. 1. Отобранные пробы воды помещали в плотно закрывающиеся емкости объемом 50 мл и в кратчайшие сроки в охлажденном виде доставляли в лабораторию для анализа.

Пробы вод 5, 12 и 16 (табл. 1) приурочены к верхнечетвертичным (аллювиальным) отложениям касмалинской свиты, формирующимся в поймах рек и долинах озер. Водообильность отложений очень низкая, горизонт тесно связан с поверхностными водами рек, озер и болот, являющихся одним из источников их питания в весеннее время и тем самым влияющих на формирование минерализации и химического состава грунтовых вод. Глубина залегания кровли водоносного комплекса зависит от гипсометрического положения водозабора [30].

Пробы вод 1, 3, 6, 14, 15 приурочены к нижнесредне-четвертичным отложениям краснодубровской свиты. Подземные воды безнапорные, имеют спорадическое распространение и приурочены обычно к линзам и горизонтам песков и супесей в толще лессовидных суглинков. Общая мощность отложений свиты может достигать 120 м, максимальные глубины залегания характерны для наиболее высоких гипсометрических отметок поверхности. Мощности водоносных песков изменяются от 1,5 до 30 м, преобладающими являются 4-9 м. Водопроницаемость пород невысокая. Общее направление стока подземных вод западное, в сторону Кулундинской впадины. Питание подземных вод местное, за счет инфильтрации атмосферных осадков. возможно полпитывание волами нижележащих водоносных горизонтов. Местная разгрузка подземных вод происходит в долинах рек и оврагов [30].

Проба воды 8 относится к верхнеплиоценовым отложениям кочковской свиты. Горизонт имеет повсеместное распространение в пределах степного Алтая, исключая площадь Кулундинской аллювиальной равнины, но на поверхность выходит только в виде небольших контуров, вытянутых по границе равнины. Максимальные глубины залегания приурочены к водораздельным пространствам Приобского плато, минимальные – к долинам рек. Преобладают глубины установившихся уровней 5–25 м. Водообильность отложений пестрая, зависит от местных условий залегания. Водопроницаемость пород высокая. Питание водоносного горизонта происходит за счет притока вод со стороны горного обрамления, взаимосвязи с водами выше и нижележащих горизонтов и инфильтрации атмосферных осадков [30].

Проба воды 13 приурочена к среднечетвертичным отложениям кулундинской свиты, широко развитым в пределах Кулундинской аллювиальной равнины. Глубина залегания изменяется от 3 до 43 м, мощность водосодержащей толщи в основном колеблется в пределах 3–25 м. Водообильность отложений высокая. Общее направление стока подземных вод западное, разгрузка приурочена к впадинам озер. Питание осуществляется в основном инфильтрацией атмосферных осадков, вод поверхностных водотоков и, в меньшей степени, за счет подтока подземных вод из нижележащих напорных горизонтов [30, 31].

Пробы 2, 9, 10 приурочены к верхнемиоценнижнеплиоценовым отложениям павлодарской свиты неогенового водоносного комплекса. Глубина залегания колеблется в широком диапазоне от 12 до 270 м: наименьшие характерны для Кулундинской равнины (проба 9), наибольшие – для Приобского плато (проба 10). Водовмещающие породы представлены серыми песками. В кровле водоносный горизонт перекрыт одновозрастными серыми глинами с прослоями песков общей мощностью 7 м. Нижним водоупором горизонта также служат одновозрастные глины павлодарской свиты, вскрытой мощностью 5 м. Подземные воды напорные, водообильность высокая [30, 32, 33].

Проба 7 отобрана из водоносного горизонта средне-верхнемиоценовых отложений таволжанской свиты неогенового водоносного комплекса. Вскрывается в интервале 140–158 м. Воды напорные [34]. Характерной чертой режима подземных вод неогеновых отложений является его относительное постоянство во времени. Прямой связи с метеорологическими условиями не отмечается. Но взаимосвязь вод неогена с водами выше- и нижележащих комплексов наблюдается на многих участках [30, 35].

Таблица 1. Нумерация и характеристика подземных водоисточников на территории Обь-Иртышского междуречья**Table 1.** Numbering and characteristics of the underground water sources in the Ob-Irtysh interfluve

NP пробы на карте Населенный пункт Район Водонсточник Глубина до водной поверхности, м 1 Мамонтово Новичихинский Колодец 3.4 2 Токарево Новичихинский колодец 3.4 3 Токарево Новичихинский инд. скважина 18 3 Токарево Новичихинский колодец 3.8 4 Новоеорьевское Егорьевский скважина 202 5 Новоеорьевское Егорьевский колодец 0.3 6 Новосорьевское Егорьевский колодец 0.3 7 Ярославцев-Лог Родинский колодец 1.8 7 Ярославцев-Лог Родинский колодец 0.3 6 Новосормиха Волчихинский колодец 1.8 7 Ярославцев-Лог Родинский колодец 5.2 8 Новогормиха Волчихийский колодец 5.2 9 Самбор Табунский скважина 40 </th <th></th> <th>3</th> <th>, ,</th> <th>-</th> <th></th>		3	, ,	-			
Samples on the mapLocationAreaWater sourceDepth to water surface, m1МамотовоНовичихинскийколодец3,42ТокаревоНовичихинскийинд. скважина183ТокаревоНовичихинскийколодец3,84НовосторьевскоеЕгорьевскийскважина2025НовосветскийЕгорьевскийколодец0,36НовосоветскийЕгорьевскийколодец0,36НовосоветскийЕгорьевскийколодец1.87Ярославцев-ЛогРодинскийколодец0,36НовосоветскийСкважина1587Ярославцев-ЛогРодинскийколодец5,29СамборТабунскийскважина1588НовотовкаБурлинскийколодец4010АсямовкаБурлинскийколодец1211МихайловкаБурлинскийколодец5,213ВогчикикаБурлинскийколодец5,213ВогчикикаБурлинскийколодец5,214ВерланскийКолодец5,215ГришинскоеМамонтовскийколодец14ВерлинскийКолодец5,915ГришинскоеМамонтовскийколодец6,116Бор-ФорпостВачкуwell2,317БурлБурлинскийколодец2,317БурлБурликскийколодец2,31	№ пробы на карте	Населенный пункт	Район	Водоисточник	Глубина до водной поверхности, м		
1 Мамонтово Матоного Новичихниский колодец well 3.4 2 Токарево Токарево Новичихниский инд.скважина individual borchole 18 3 Токарево Новичихниский колодец 3.8 4 Новегорьевское Novichikhinsky колодец 3.8 4 Новосорьевское Novegoryceske Едогускук borchole 202 5 Новосоветский Егорьевский колодец 0.3 6 Новокормиха Novosoertsky Волчихинский колодец 1.8 7 Ярославцев-Лог Уагозачтее-Лог Родинский скважина Volchikhinsky 158 8 Новокормиха Novotoritsk Soltonsky well 5.2 9 Самбор Затвог Табунский скважина колодец 12 10 Асямовка Азатовка Бурлинский колодец 5.2 11 Михайловка Вигіпsky Бурлинский колодец 5.2 11 Михайловка Вурлинский Колодец 5.2 13 12 Уствянка Volchiv-Rakit	Samples on the map	Location	Area	Water source	Depth to water surface, m		
1 Матонсого Novichikhinsky well 3,4 2 Токарево Новичихинский инд.скважина 18 3 Токарево Новичихинский колодец 3,8 4 Новоегорьевское Егорьевский колодец 3,8 4 Новоегорьевское Егорьевский скважина 202 5 Новосовский Егорьевский колодец 0,3 6 Новосовский Колодец 0,3 7 Ярославцев-Лог Родникий колодец 1,8 7 Ярославцев-Лог Родниский скважина 158 8 Новогорицк Солгонский колодец 5,2 9 Самбор Табунский скважина 40 10 Асямовка Бурлинский колодец 5,2 11 Михайловка Бурлинский колодец 5,2 11 Михайловка Бурлинский колодец 5,2 12 Устьянка Бурлинский	1	Мамонтово	Новичихинский	колодец	3.4		
2Токарево ТокаrevoНовичихинский Novichikhinskyинд. скважина individual borehole183Токарево ТокаrevoНовичихинский Новичихинскийколодец well3,84Новоегорьевское NovoegoryevskoeЕгорьевский Еgoryevskyскважина borehole2025Новосоветский NovoegoryevskoeЕгорьевский Колодец0,36Новосоветский Ивоокорияха NovokornikhaВолчихнский Volchikhinskyколодец well0,37Ярославцев-Лог Yaroslavtsev-Log SamborРодинский Rodinskyколодец borehole1,89Самбор SamborТабунский Табунский Колодец5,2129Самбор SamborТабунский Ворлинский Колодец1210Асямовка Аузатока Вурлинский UstyankaБурлинский Колодец71011Микайловка UstyankaБурлинский Вурлинский Колодец5,213Волчий-Райкт Volchiy-RakitБурлинский Вурлинский Колодец5,914Вер-Пайва Стванка BarlinskyБолодец Well5,915Гришинское Стванка BarlinskyКолодец Well5,916Бор-Форогост Ворлинский KoлодецКолодец Колодец Koлодец6,116Бор-Форогост Вог-FогрозtКолодец Volchikhinsky Volchikhinsky2,317Вурла Вурлинский KoлодецСкважина Колодец Koлодец791	1	Mamontovo	Novichikhinsky	well	5,4		
2 Токагеvo Novichikhinsky individual borehole 13 3 Токагеvo Новичихинский колодец 3,8 4 Новоегорьевское Егорьевский скважина 202 5 Новосортусчувое Едогусчуву borehole 0,3 6 Новокормиха Вогчихинский колодец 0,3 7 Ярославцев-Лог Родинский скважина 158 8 Новокортиха Вогчихинский колодец 1,8 7 Ярославцев-Лог Родинский скважина 158 8 Новокороицк Soltonsky well 5.2 9 Самбор Табунский скважина 40 10 Асямовка Бурлинский колодец 5.2 11 Михайловка Бурлинский колодец 5.2 11 Михайловка Бурлинский колодец 5.2 11 Михайловка Бурлинский колодец 5.2 11 Михайло	2	Токарево	Новичихинский	инд. скважина	10		
3Токарево ТокагечоНовичихинский Novichikhinskyколодец well3.84Новосторьевское NovogoryevskoeЕгорьевский ЕgoryevskyСкважина borehole2025Новосоветский NovosovetskyЕгорьевский Egoryevskyколодец well0.36Новокоричха NovosovetskyВогчихинский Egoryevskyколодец well1.87Ярославцев-Лог Yaroslavtsev-LogРодинский Rodinskyколодец well1.588Новотроицк Yaroslavtsev-LogСолтонский Rodinskyколодец well5.29Самбор SamborТабунский Tabunskyскважина well4010Асямовка AsyamovkaВурлинский Ronoдец1211Микайловка UstyankaБурлинский Ronoдец71012Устьянка UstyankaБурлинский Burlinskyколодец well5.213Волчий-Ракит Volchiy-RakitБурлинский Burlinskyколодец well3.214Верх-Пайва Gorponcr GorponcБаекский Manontovsky Well6.116Бор-Форпост Бор-Форпост Bor-ForpostБориликский Volchikhinsky Well791	L	Tokarevo	Novichikhinsky	individual borehole	10		
3ТокагеvoNovichikhinskywell5,84НовосоветскийЕгорьевскийСкважина2025НовосоветскийЕгорьевскийколодец0,36НовосорянхаВолчикинскийКолодец0,36НовосорянхаВолчикинскийКолодец1,87Ярославцев-ЛогРодинскийСкважина1588НовосорянхаВолчикийКолодец5,29СамборТабунскийКолодец5,29СамборТабунскийКолодец4010АсямовкаБурлинскийКолодец1211МихайловкаБурлинскийКолодец71012УстьянкаБурлинскийКолодец5,213Волчий-РакитБурлинскийКолодец5,214Верх-ПайваБаевскийКолодец3,215ГришинскоМамонтовскийКолодец5,915ГришинскоМамонтовскийКолодец5,916Бор-ФоргостВаечскуwell6,116Бор-ФоргостВорлинскийКолодец2,317БурлаБурлинскийКолодец2,317БурлаБурлинскийКолодец2,317БурлаБурлинскийКолодец2,3	2	Токарево	Новичихинский	колодец	2.0		
4 Новоегорьевское Novoegoryevskoe Егорьевский Едогуеvsky Скважина borehole 202 5 Новосормиха Novosovetsky Егорьевский Egoryevsky колодец well 0.3 6 Новокормиха Novokormikha Волчихинский Volchikhinsky колодец well 1.8 7 Ярославцев-Лог Yaroslavtsev-Log Родинский Rodinsky колодец 158 8 Новотронцк Novokormikha Солтонский Soltonsky колодец 5.2 9 Самбор Sambor Табунский Tabunsky скважина borehole 40 10 Асямовка Азатока Бурлинский Burlinsky колодец well 12 11 Михайловка Ustyanka Бурлинский Burlinsky колодец well 710 12 Устынка Ustyanka Бурлинский Burlinsky колодец well 3.2 13 Волчий-Ракит Verkh-Paiva Баеский Baeesky колодец well 5.9 14 Верх-Пайва Grishinskoe Баеский Mamontrosckiй Grishinskoe Колодец Mamontrosckiй Mamontrosckiй Mamontrosckiй Well 6.1 16 Бор-Форпост Bortanshinsky Well 2.3	5	Tokarevo	Novichikhinsky	well	3,8		
4 Novoegoryevskoe Egoryevsky borehole 202 5 Новосоветский Егорьевский колодец 0,3 6 Новокормиха Novosovetsky Волчихинский колодец 1,8 7 Ярославцев-Лог Yaroslavtsev-Log Rodinsky Родинский скважина borehole 158 8 Новотронцк Солтонский колодец 5,2 9 Самбор Sambor Таbunsky well 12 9 Самбор Sambor Таbunsky borehole 40 10 Асямовка Асуморка Бурлинский скважина well 12 11 Микайловка Wikhailovka Бурлинский сскважина well 710 12 Устьянка Ustyanka Бурлинский колодец well 5,2 13 Волчий-Ракит Volchiy-Rakit Бурлинский колодец well 5,2 13 Волчий-Ракит Volchiy-Rakit Бурлинский колодец well 5,9 14 Вер-Гайава Grishinskoe Баекский Mamorrosский колодец well 6,1 16	4	Новоегорьевское	Егорьевский	скважина	202		
5 Новосоветский Novosovetsky Егорьевский Едогусуку колодец well 0,3 6 Новокормиха Novokormikha Волчихинский Volchikhinsky колодец well 1,8 7 Ярославцев-Лог Yaroslavtsev-Log Родинский Rodinsky скважина borehole 158 8 Новогорочик Novotroitsk Солтонский Soltonsky колодец well 5,2 9 Самбор Sambor Табунский Табунский скважина колодец 40 10 Асямовка Азуаточка Бурлинский Burlinsky колодец well 12 11 Михайловка Mikhailovka Бурлинский Burlinsky колодец well 710 12 Устьянка Ustyanka Бурлинский Burlinsky колодец well 3,2 13 Волчий-Ракит Volchiy-Rakit Бигlinsky well 3,2 14 Верх-Пайва Grishinskoe Мамонтовский Мамонтовский Колодец 6,1 16 Бор-Форпост Волчихинский Burlinsky Колодец well 2,3 17 Бурла Burla Бурлинский Burlinsky колодец well 2,3	4	Novoegoryevskoe	Egoryevsky	borehole	202		
5NovosovetskyEgoryevskywell0,36Новокормиха NovokormikhaВолчихинский Volchikhinskyколодец well1,87Ярославцев-Лог Yaroslavtsev-Log Yaroslavtsev-LogРодинский Rodinskyскважина borehole1588Новотронцк NovotroitskСолтонский Soltonskyколодец well5,29Самбор SamborТабунский Tabunskyскважина borehole4010Асямовка АзуаточкаБурлинский Burlinskyколодец well1211Михайловка MikhailovkaБурлинский Burlinskyколодец well71012Устьянка UstyankaБурлинский Burlinskyколодец well5,213Волчий-Ракит Volchiy-RakitБурлинский Burlinskyколодец well3,214Верх-Пайва Bor-Чорост Bor-ЧоростБаевский Мамонтовский Mamotovskyколодец well6,116Бор-Форпост Bor-ГогрозtВолчикский Volchikhinskyколодец well2,317Бурла BurlaБурлинский Baruskyколодец well2,3		Новосоветский	Егорьевский	колодец	0.3		
6 Новокормиха Novokormikha Волчихинский Volchikhinsky колодец well 1,8 7 Ярославцев-Лог Yaroslavtsev-Log Rodinsky Родинский Rodinsky скважина borehole 158 8 Новотроицк Novotroitsk Солтонский Soltonsky колодец well 5,2 9 Самбор Sambor Табунский Tabunsky скважина borehole 40 10 Асямовка Азуаточка Бурлинский Burlinsky колодец well 12 11 Михайловка Микайловка Burlinsky Бурлинский колодец 710 12 Устьянка Ustyanka Бурлинский Burlinsky колодец 5,2 13 Волчий-Ракит Volchiy-Rakit Бурлинский Burlinsky колодец 3,2 14 Верх-Пайва Grishinskoe Баевский Mamontosky колодец 6,1 16 Бор-Форпост Вог-Гогроst Волчилнский Колодец скважина скважина 791 17 Бурла Бурлинский Вurlinsky колодец 2,3	5	Novosovetsky	Egoryevsky	well	0,3		
6NovokormikhaVolchikhinskywell1,87Ярославцев-Лог Yaroslavtsev-LogРодинскийСкважина borehole1588НовотроицкСолтонскийколодец5,29Самбор SamborТабунскийСкважина borehole4010Асямовка АзуаточкаБурлинскийколодец well1211Михайловка MikhailovkaБурлинскийскважина borehole71012Устьянка UsyankaБурлинскийколодец well5,213Волчий-Ракит Volchiy-RakitБурлинский Burlinskyколодец well5,214Верх-Пайва Volchiy-RakitБаехsky Baevsky Mamontovskyколодец well5,915Гришинское Grishinskoe Bor-ForpostМамонтовский Volchikhinskyколодец well6,116Бор-Форпост Bor-ForpostБурлинский Volchikhinskyколодец well2,317Бурла BurlinskyКолодец Well2,3	C	Новокормиха	Волчихинский	колодец	1.0		
7 Ярославцев-Лог Yaroslavtsev-Log Novotroitsk Родинский Rodinsky Скважина borehole 158 8 Новотроицк Novotroitsk Солтонский колодец well 5,2 9 Самбор Sambor Табунский скважина скважина borehole 40 10 Асямовка Асямовка Бурлинский колодец колодец 12 11 Михайловка Мikhailovka Бурлинский скважина колодец 710 12 Устьянка Ustyanka Бурлинский колодец well 5,2 13 Волчий-Ракит Volchiy-Rakit Бурлинский колодец well 3,2 14 Верх-Пайва Verkh-Paiva Баевский колодец well 5,9 15 Гришинское Grishinskoe Матопtovsky well 6,1 16 Бор-Форпост Вогчоку Волчихинский колодец well 2,3 17 Бурла Вигla Бурлинский колодец woll 2,3	0	Novokormikha	Volchikhinsky	well	1,8		
1Yaroslavtsev-LogRodinskyborehole1588Новотроицк NovotroitskСолтонский Soltonskyколодец well5.29Самбор SamborТабунский Tabunskyскважина borehole4010Асямовка АзуаточкаБурлинский Burlinskyколодец well1211Михайловка MikhailovkaБурлинский Burlinskyколодец well71012Устьянка UstyankaБурлинский Burlinskyколодец well5,213Волчий-Ракит Volchiy-RakitБурлинский Burlinskyколодец well3,214Верх-Пайва GrishinskoeБаевский Mamontovskyколодец well5,915Гришинское GrishinskoeМамонтовский Матонохскийколодец колодец well6,116Бор-Форпост Bor-ForpostВолчикнский Volchikhinskyколодец well2,317Бурла BurlaБурлинский Mamontovskyколодец well2,3	-	Ярославцев-Лог	Родинский	скважина	150		
8Новотроицк NovotroitskСолтонский Soltonskyколодец well5,29Самбор SamborТабунский Tabunskyскважина borehole4010Асямовка AsyamovkaБурлинский Burlinskyколодец well1211Михайловка MikhailovkaБурлинский Burlinskyскважина well71012Устьянка UstyankaБурлинский Burlinskyколодец well5,213Волчий-Ракит Volchiy-RakitБурлинский Burlinskyколодец well3,214Верх-Пайва Verkh-PaivaБаевский Baevskyколодец well5,915Гришинское GrishinskoeМамонтовский Мамонтовский Volchikhinskyколодец well6,116Бор-Форпост Bor-ForpostВолчихинский Volchikhinskyколодец well2,317Бурла BurlaБурлинский Mamotnoskyколодец well791	/	Yaroslavtsev-Log	Rodinsky	borehole	158		
8NovotroitskSoltonskywell5,29Самбор SamborТабунский ТаbunskyСкважина 4010Асямовка АзуаточкаБурлинский Burlinskyколодец 	0	Новотроицк	Солтонский	колодец	F 2		
9Самбор SamborТабунский Таbunskyскважина borehole4010Асямовка АзуаточкаБурлинский Burlinskyколодец well1211Михайловка MikhailovkaБурлинский Burlinskyскважина borehole71012Устьянка UstyankaБурлинский Burlinskyколодец well5,213Волчий-Ракит Volchiy-RakitБурлинский Burlinskyколодец well3,214Верх-Пайва GrishinskoeБаевский Мамонтовскийколодец well5,915Гришинское GrishinskoeМамонтовский Матонтоуskyколодец well6,116Бог-Рогрозt Bor-ForpostКорлац Volchikhinsky2,317Бурла BurliaБурлинский Burlinskyколодец well2,3	8	Novotroitsk	Soltonsky	well	5,2		
9 Sambor Таbunsky borehole 40 10 Асямовка Аsyamovka Бурлинский колодец well 12 11 Михайловка Мikhailovka Бурлинский скважина borehole 710 12 Устьянка Бурлинский колодец borehole 710 12 Устьянка Бурлинский колодец well 5,2 13 Волчий-Ракит Volchiy-Rakit Бурлинский колодец well 3,2 14 Верх-Пайва Verkh-Paiva Баевский колодец well 5,9 15 Гришинское Grishinskoe Мамонтовский колодец well 6,1 16 Бор-Форпост Bor-Forpost Волчихинский колодец well 2,3 17 Бурла Бурлинский скважина Burlinsky 791	0	Самбор	Табунский	скважина	40		
10Асямовка АзуаточкаБурлинский Вигlinskyколодец well1211Михайловка МikhailovkaБурлинский Вurlinskyскважина borehole71012Устьянка UstyankaБурлинский Burlinskyколодец well5,213Волчий-Ракит Volchiy-RakitБурлинский Burlinskyколодец well3,214Верх-Пайва Verkh-PaivaБаевский Baevskyколодец well5,915Гришинское GrishinskoeМамонтовский Mamontovskyколодец well6,116Бор-Форпост Bor-ForpostВолчикий Volchikhinskyколодец well2,317Бурла Bypла BurlaБурлинский Burlinskyколодец well791	9	Sambor	Tabunsky	borehole	40		
10AsyamovkaBurlinskywell1211Михайловка МikhailovkaБурлинский BurlinskyСкважина borehole71012Устьянка UstyankaБурлинский Burlinskyколодец well5,213Волчий-Ракит Volchiy-RakitБурлинский Burlinskyколодец well3,214Верх-Пайва Verkh-PaivaБаевский Baevskyколодец well5,915Гришинское GrishinskoeМамонтовский Mamontovskyколодец well6,116Бор-Форпост Bor-ForpostВолчикий Volchikhinskyколодец well2,317Бурла BurlaБурлинский Burlinskyколодец Well791	10	Асямовка	Бурлинский	колодец	10		
11Михайловка МікhailovkaБурлинский Виrlinskyскважина borehole71012Устьянка UstyankaБурлинский Burlinskyколодец well5,213Волчий-Ракит Volchiy-RakitБурлинский Burlinskyколодец well3,214Верх-Пайва Verkh-PaivaБаевский Baevskyколодец well5,915Гришинское GrishinskoeМамонтовский Mamontovskyколодец well6,116Бор-Форпост Bor-ForpostВолчикиский Volchikhinskyколодец well2,317Бурла BurlaБурлинский Burlinskyколодец well791	10	Asyamovka	Burlinsky	well	12		
11MikhailovkaBurlinskyborehole71012Устьянка UstyankaБурлинский Burlinskyколодец well5,213Волчий-Ракит Volchiy-RakitБурлинский Burlinskyколодец well3,214Верх-Пайва Verkh-PaivaБаевский Baevskyколодец well5,915Гришинское GrishinskoeМамонтовский Mamontovskyколодец well6,116Бор-Форпост Bor-ForpostВолчикинский Volchikhinskyколодец well2,317Бурла BurlaБурлинский Maminskyскважина borehole791	11	Михайловка	Бурлинский	скважина	710		
12 Устьянка Ustyanka Бурлинский Burlinsky колодец well 5,2 13 Волчий-Ракит Volchiy-Rakit Бурлинский Burlinsky колодец well 3,2 14 Верх-Пайва Verkh-Paiva Баевский Baevsky колодец well 5,9 15 Гришинское Grishinskoe Мамонтовский Матопtovsky колодец well 6,1 16 Бор-Форпост Bor-Forpost Волчихинский Volchikhinsky колодец well 2,3 17 Бурла Burla Бурлинский Burlinsky Скважина Burlinsky 791	11	Mikhailovka	Burlinsky	borehole	/10		
12 Ustyanka Burlinsky well 5,2 13 Волчий-Ракит Volchiy-Rakit Бурлинский колодец 3,2 14 Верх-Пайва Verkh-Paiva Баевский колодец 5,9 15 Гришинское Grishinskoe Мамонтовский колодец 6,1 16 Бор-Форпост Bor-Forpost Волчихинский колодец 2,3 17 Бурла Burla Бурлинский скважина 791	10	Устьянка	Бурлинский	колодец	F 2		
13 Волчий-Ракит Volchiy-Rakit Бурлинский колодец 3,2 14 Верх-Пайва Verkh-Paiva Баевский колодец 5,9 15 Гришинское Grishinskoe Мамонтовский колодец 6,1 16 Бор-Форпост Bor-Forpost Волчихинский колодец 2,3 17 Бурла Burla Бурлинский скважина 791	12	Ustyanka	Burlinsky	well	5,2		
13Volchiy-RakitBurlinskywell3,214Bepx-Пайва Verkh-PaivaБаевский Ваеvskyколодец well5,915Гришинское GrishinskoeМамонтовский Матопtovskyколодец well6,116Бор-Форпост Вог-ForpostВолчихинский Volchikhinskyколодец well2,317Бурла ВurlaБурлинский Burlinskyскважина borehole791	10	Волчий-Ракит	Бурлинский	колодец			
14Верх-Пайва Verkh-PaivaБаевский Ваеvskyколодец well5,915Гришинское GrishinskoeМамонтовский Mamontovskyколодец well6,116Бор-Форпост Bor-ForpostВолчихинский Volchikhinskyколодец well2,317Бурла BurlaБурлинский BurlinskyСкважина borehole791	13	Volchiy-Rakit	Burlinsky	well	3,2		
14Verkh-PaivaBaevskywell5,915Гришинское GrishinskoeМамонтовский Mamontovskyколодец well6,116Бор-Форпост Bor-ForpostВолчихинский Volchikhinskyколодец well2,317Бурла BurlaБурлинский Burlinskyскважина borehole791	14	Верх-Пайва	Баевский	колодец	50		
15Гришинское GrishinskoeМамонтовский Матопtovskyколодец well6,116Бор-Форпост Bor-ForpostВолчихинский Volchikhinskyколодец well2,317Бурла BurlaБурлинский Burlinskyскважина borehole791		Verkh-Paiva	Baevsky	well	5,9		
15GrishinskoeMamontovskywell6,116Бор-ФорпостВолчихинскийколодец2,316Bor-ForpostVolchikhinskywell2,317БурлаБурлинскийскважина79118BurlaBurlinskyborehole791	15	Гришинское	Мамонтовский	колодец			
16Бор-Форпост Bor-ForpostВолчихинский Volchikhinskyколодец well2,317БурлаБурлинскийскважина Burla791		Grishinskoe	Mamontovsky	well	6,1		
16Bor-ForpostVolchikhinskywell2,317БурлаБурлинскийскважина17BurlaBurlinskyborehole	16	Бор-Форпост	Волчихинский	колодец	2.2		
17 Бурла Бурлинский скважина 791 Burla Burlinsky borehole 791		Bor-Forpost	Volchikhinsky	well	2,3		
¹⁷ Burla Burlinsky borehole ⁷⁹¹	45	Бурла	Бурлинский	скважина	704		
	17	Burla	Burlinsky	borehole	791		

Puc. 1. Карта-схема расположения пунктов наблюдений в соответствии с Гидрогеологической картой [40] **Fig. 1.** Map-scheme of the location of observation points in accordance with the Hydrogeological map [40]

Проба 4 отобрана из водоносного горизонта верхнеолигоцен-нижнемиоценовых отложений знаменской свиты, залегающего в интервале 162–202 м. Свита широко распространена в степных районах Алтайского края. Пьезометрическая поверхность всего горизонта плавно снижается к долине р. Оби, а в общем плане – в сторону Кулундинской равнины. Питание подземных вод происходит за счет подтока со стороны горных сооружений и взаимосвязи с водами ниже- и вышележащих горизонтов. Режим относительно стабилен [30, 36].

Пробы 11, 17 были отобраны из скважин, вскрывающих верхнемеловые отложения ипатовской и покурской свит, соответственно. Свиты залегают в интервале 710–791 м. Подземные воды высоконапорные, самоизливающиеся, водообильность неравномерная. Питание происходит за счет перелива из вышележащих водоносных горизонтов и частичного подпитывания из зон разлома палеозойского фундамента [30, 37, 38].

Пробы атмосферных осадков (дождь, снег) отбирали непосредственно после их выпадения в пункте отбора осадков, расположенном в г. Барнауле на крыше здания Института водных и экологических проблем СО РАН (ИВЭП СО РАН), на высоте 25 м от поверхности земли. Снеговые пробы отбирали в съемный плотный полиэтиленовый мешок, закрепленный во входном отверстии бочки, оснащенной защитой от выдувания. В лабораторных условиях снеговые пробы таяли при комнатной температуре в плотно закрытых специально подготовленных контейнерах [39]. Дождевые осадки собирали через большую пластиковую воронку в полиэтиленовую емкость с узким горлом, чтобы снизить возможность нежелательного испарения во время выпадения осадков.

Пробы подземных вод после доставки в лабораторию, пробы дождя после отбора, а талой снеговой воды после таяния сразу фильтровали через мембранный фильтр с диаметром пор 0,45 мкм, из фильтрата отбирали 3–5 параллельных проб и помещали их в герметичные пробирки, которые до начала изотопного анализа хранили в холодильнике. Всего за период работы было отобрано 185 проб атмосферных осадков и 32 пробы подземных вод.

Методы исследования

Определение изотопного (δD и δ¹⁸O) состава подземных вод и атмосферных осадков проводили в Химико-аналитическом центре ИВЭП СО РАН методом лазерной абсорбционной ИКспектрометрии на приборе PICARRO L2130-i (WS- CRDS). Точность измерения δD и $\delta^{18}O$ (1 σ , n=5) составила ±0,4 и ± 0,1 ‰, соответственно. Для калибровки прибора использовали Международные стандарты GRESP, USGS-47.

Согласно теоретическим основам положения изотопной систематики дейтерия и кислорода-18, разработанным в работах [41, 42], проводится измерение отношения ${}^{2}\text{H}/{}^{1}\text{H}$ (δD) и ${}^{18}\text{O}/{}^{16}\text{O}$ ($\delta^{18}\text{O}$) в исследуемой пробе относительно стандарта VSMOW (Vienna Standard Mean Ocean Water).

$$\delta^{18}O(\delta D) = \left[\left(R_{\rm np} / R_{\rm crang} \right) - 1 \right] \times 1000\%_0 \,, \quad (1)$$

где $R_{\rm np}$ и $R_{\rm станд}$ – отношения ²H/¹H или ¹⁸O/¹⁶O в измеряемой пробе и в стандарте.

В гидрохимических исследованиях наряду с измеряемыми параметрами изотопного состава воды широко используют расчетный критерий – дейтериевый эксцесс (d_{exc}), предложенный в [42], который рассчитывается как:

$$d_{\rm exc} = \delta D - 8 \times \delta^{18} 0. \tag{2}$$

Параметр $d_{\rm exc}$ связан с кинетическими процессами изотопного фракционирования, которые характеризуют процессы испарения или замерзания исходного изотопного состава воды.

Для расчёта средневзвешенных сезонных значений δD , $\delta^{18}O$ и d_{exc} в атмосферных осадках использовали формулу:

$$X = \Sigma(XiAi / A), \tag{3}$$

где X – средневзвешенное значение δD , δ^{18} О или d_{exc} ; X_i – значение δD , δ^{18} О или d_{exc} в снеге (дожде) *i*-го снегопада (дождя); A_i – количество осадков в *i*-м снегопаде (дожде), мм в.э.; A – общее за сезон количество осадков, мм в.э.

Для оценки раздельного вклада зимних и летних атмосферных осадков в формирование подземных вод на разных глубинах Обь-Иртышского междуречья было использовано следующее уравнение [7]:

$$a \cdot X + b \cdot (1 - X) = c, \qquad (4)$$

где X – доля вклада зимних и (1-X) – доля вклада летних атмосферных осадков в подземный сток; *a*, *b* – средневзвешенное значение δ^{18} О в атмосферных осадках соответственно холодного и теплого периодов года, ‰; с – среднее значение за 2022–2023 гг. δ^{18} О в воде изучаемого водоносного горизонта, ‰.

Среднеквадратичную ошибку средневзвешенного значения рассчитывали согласно [43] по формуле:

$$\sigma_{\overline{\chi}} = \sqrt{\frac{\sum A_i(x_i - \overline{\chi})^2}{(A-1)\sum A_i}},$$
(5)

где A_i – количество осадков в *i*-м единичном атмосферном выпадении, мм в.э; x_i – изотопный состав (δD , $\delta^{18}O$ и d_{exc}) осадков в *i*-м единичном атмосферном выпадении, ‰; \overline{x} – средневзвешенное значение за изучаемый сезон (интервал времени), ‰; A – общее количество осадков за сезон (интервал времени), мм в.э.

Результаты исследования и их обсуждение

Для оценки вклада атмосферных осадков теплого и холодного сезона в формирование подземного стока Кулундинской равнины использовали значения средневзвешенного изотопного состава дождевых (с апреля по октябрь) и снеговых (с ноября по март) осадков (расчет выполнен с помощью уравнений (1), (3), отобранных на экспериментальной площадке ИВЭП СО РАН (г. Барнаул). Эта экспериментальная площадка находится в 180-420 км от мест отбора проб подземных вод (рис. 1) и является ближайшим для изучаемой территории пунктом отбора и анализа проб атмосферных осадков на содержание в них стабильных изотопов δ^{18} О и δ D. Размах варьирования изотопного состава проб атмосферных осадков, отобранных на экспериментальной площадке ИВЭП СО РАН, и их средневзвешенные значения приведены в табл. 2.

На наш взгляд, данные изотопного состава атмосферных осадков, отобранных на экспериментальной площадке ИВЭП СО РАН в 2021–2023 гг., можно использовать для оценки раздельного вклада атмосферных осадков теплого и холодного периодов в подземный сток Кулундинской равнины по следующим причинам:

- 1) Известно, что изотопный состав атмосферных осадков, выпадающих на подстилающую поверхность, зависит как от температуры испарения атмосферной влаги из источника ее эмиссии, так и от температуры приземного слоя атмосферы в момент формирования осадков из водяного пара. По данным ледникового керна г. Белуха [44], ледовые слои которого формировались преимущественно за счет летних атмосферных осадков, утяжеление изотопного состава слоев за период 1800-2000 гг. составляло около 1,5 ‰. Если предположить, что глобальное потепление на юге Западной Сибири за последние 200 лет происходит как в теплое, так и в холодное время года, а водообмен изучаемых подземных вод происходит в пределах двух сотен лет, то вполне оправдано при расчете вкладов атмосферных осадков теплого и холодного периодов в формуле (4) использовать изотопные данные осадков 2021-2023 гг.
- Рельеф местности от пунктов отбора проб подземных вод до г. Барнаула является типично равнинным и аэрографические барьеры на нем практически полностью отсутствуют, что определяет классическое изменение изотопного со-

става влагонесущих воздушных масс при их продвижении на этом участке пути.

3) Отмечаемый GNIP (Global Net of Isotopic Precipitation) широтный и долготный градиент изменения изотопного состава осадков [45] при преимущественном продвижении влагонесущих воздушных масс с запада на восток будет проявляться в близкой степени как для снеговых, так и для дождевых выпадений.

Средневзвешенные значения изотопного состава осадков в теплый период 2022 и 2023 гг. были близки между собой и варьировали по δ^{18} О в пределах 1,1 ‰, а в холодный период 2021–2022 и 2022–2023 гг. – в пределах 0,5 ‰ (табл. 3). В то же время средневзвешенные значения изотопного состава зимних и летних осадков значительно различались между собой до 7,6 ‰ по δ^{18} О и до 57,9 ‰ по δ D. Значения дейтериевого эксцесса, рассчитанные по уравнению (2) (табл. 2), показывают, что максимальное истощение

воды атомами дейтерия (δ D) относительно δ^{18} O приходится на летние атмосферные осадки (d_{exc} для средневзвешенных сезонных значений составлял 1,7–1,8 ‰), а минимальное истощение – для зимних осадков (d_{exc} =4,0–5,0 ‰).

Исследование подземной воды на территории бессточной области Обь-Иртышского междуречья показало, что в 2022–2023 гг. ее изотопный состав варьировал в небольших пределах от -18,5 до -14,1 ‰ по δ^{18} О и от -143,6 до -112,7 ‰ по δ D, в то время как изотопный состав проб атмосферных осадков в эти годы изменялся в широких пределах (табл. 3). Сравнение средних величин изотопного состава подземной воды и средневзвешенных годовых величин изотопного состава атмосферных осадков указывает на их близкие значения, как между собой, так между годами (табл. 3), что может свидетельствовать о метеорном генезисе подземных вод на территории Кулундинской равнины.

Таблица 2. Изотопный состав атмосферных осадков теплого периода (дождь) за апрель-октябрь 2022–2023 гг. и холодного (снег) с ноября 2021 г. по март 2023 г.

Table 2.Isotopic composition of atmospheric precipitation in the warm period (rain) for April-October 2022-2023 and cold
period (snow) from November 2021 to March 2023

_		δ180, %	, 00		δD, ‰				dexc, ‰				1	1
год year	среднее mean	max	min	6Х	среднее mean	max	min	6Х	среднее mean	max	min	6Х	n	Q
Теплый период/Warm period														
2022	-10,7	4,2	-25,1	0,6	-83,9	20,2	-191,3	4,4	1,8	12,1	-32,5	0,7	56	156
2023	-11,8	-1,8	-22,3	0.6	-92,9	-28,7	-176,0	4.4	1,7	11,2	-26,5	0.8	64	233
2022/23	-11,3	1,2	-23,7	0,6	-88,4	-4,3	-183,7	4,4	1,8	11,7	-15,9	0,8	120	389
					Холодні	ый перио	д/Cold per	iod						
2021/22	-18,3	-12	-30,8	0,7	-141,8	-89,1	-245,7	5,9	5,0	12,2	-8,6	0,7	37	88
2022/23	-18,8	-11,5	-31,0	0,9	-146,2	-82,1	-252,8	7,4	4,0	11,1	-12,9	1,1	28	63
2021/23	-18,6	-11,8	-30,9	0,8	-144,0	-85,6	-249,3	6,7	4,5	11,7	-10,8	0,9	65	152

Среднее – средневзвешенное по количеству осадков; 6Х – среднеквадратичная ошибка средневзвешенного значения; п – количество отобранных проб; Q – среднее значение количества осадков, мм, по данным 11 метеостанций Кулундинской равнины [28].

Mean – weighted average of precipitation; $_{6}X$ – root mean square error of the weighted average; n – number of samples; Q – average value of precipitation, mm, according to the data from 11 weather stations of the Kulunda Plain [28].

Таблица 3. Диапазон варьирования и средние значения изотопного состава подземной воды Кулундинской равнины в 2022–2023 гг. и атмосферных осадков с ноября 2021 г. по ноябрь 2023 г.

Table 3.Range and average values of the isotopic composition of groundwater in the Kulunda Plain in 2022–2023, and at-
mospheric precipitation from November 2021 to November 2023

20.7		δ180, %	0		δD, ‰				dexc, %0				
year	среднее mean	max	min	U	среднее mean	max	min	U*	среднее mean	max	min	U	n
					Подземная	вода/Grou	ndwater						
2022	-16,4	-14,1	-18,3	0,8	-128,8	-114,6	-143,6	5,5	2,4	8,3	-2,5	1,5	15
2023	-16,0	-14	-18,5	0,8	-126,8	-112,7	-143,6	5,6	1,0	4,9	-2,6	1,1	17
Атмосферные осадки/Atmospheric precipitation*													
2021/22	-16,1	4,2	-30,8	0,4	-125,5	20,2	-245,7	2,8	3,5	12,2	-32,5	0,3	93
2022/23	-15,9	-1,8	-31	0,3	-124,8	-28,7	-252,8	2,7	2,8	11,2	-26,5	0,3	92

U – ошибка среднего значения (для подземной воды указан доверительный интервал среднего значения; для атмосферных осадков – среднеквадратичная ошибка средневзвешенного значения); п – количество отобранных проб;
 * – для атмосферных осадков приведены средневзвешенные (по количеству осадков) значения за год.

U – error of the average value (confidence interval of the average – for groundwater; root mean square error of the weighted average – for precipitation); n – number of samples; * – annual weighted (based on precipitation) average values.

Рис. 2. Зависимость δ¹⁸0-δD в подземных водах Обы-Иртышского междуречья (ЛЛПВ) в 2022-2023 гг. (синий цвет) в сравнении с ГЛМВ (красный цвет)
Fig. 2. Local groundwater line for 2022-2023 (blue) and global meteoric water line (GMWL) (red)

Для оценки влияния процессов фракционирования на исходный состав атмосферной влаги, формирующей состав подземных вод Обь-Иртышского междуречья, проведено сопоставление соотношений изотопного состава кислорода (δ^{18} O) и водорода (δ D) подземных вод с эмпирической зависимостью, получившей название глобальная линия метеорных вод (ГЛМВ) [41, 46]. На рис. 2 представлена построенная по данным изотопного состава изучаемых водных проб локальная линия подземных вод (ЛЛПВ), которая описывается уравнением $\delta D=7,0^*\delta^{18}O-14,0$. Уменьшение наклона ЛЛПВ относительно ГЛМВ (рис. 2) и также низкие значения дейтериевого эксцесса (d_{exc}, табл. 3) указывают на изменение исходного изотопного состава поступающей влаги вследствие испарительного фракционирования.

В табл. 4 приведены значения изотопного состава подземных вод, систематизированные в соответствии с возрастом водовмещающих отложений. В таблице также представлены результаты расчета значений вкладов атмосферных осадков теплого и холодного периодов в формирование подземного стока. Расчеты были выполнены по формуле (4) при использовании данных изотопного состава подземных вод, приведенных в данной таблице, и средневзвешенных за два года значений δ^{18} O (или δ D) в атмосферных осадках соответственно холодного и теплого периодов года, приведенных в табл. 3.

Таблица 4. Значения изотопного состава подземных вод, ранжированных по глубине и возрасту водоносного горизонта, а также вклад зимних (снег) и летних (дождь) атмосферных осадков в формирование подземного стока для изучаемых водоносных горизонтов Кулундинской равнины

Table 4.Values of the isotopic composition of groundwater, ranked by depth and age of the aquifer, as well as the contribu-
tion of winter (snow) and summer (rain) precipitation to the formation of groundwater flow for the studied aqui-
fers of the Kulunda Plain

Водоносный комплекс Aquifer complex [32]	Наименование водоносного горизонта (свиты) Aquifer name (suite)	*Шифр пробы Sample code	Глубина, м Depth, m	δ ¹⁸ 0, ‰	δD, ‰	dexc, ‰	Вклад Contribution, % дождь снег	
L- 1	1						rain	snow
	Касмалинская Kasmalinskaya	5, 12, 16	0,3-5,2	-14,7	-118,3	-0,8	53	47
Неоген-четвертичный	Краснодубровская Krasnodubrovskaya	1, 3, 6, 14, 15	1,8-6,1	-15,3	-121,2	1,1	44	56
Neogene-Quaternary	Кочковская Kochkovskaya	8	5,2	-15,3	-120,2	2,6	44	56
	Кулундинская Kulundinskaya	13	3,2	-17,8	-135,7	6,5	11	89
Неогеновый Neogene	Павлодарская Pavlodar	2, 9, 10	12-40	-17,5	-136,3	4,1	14	86
	Таволжанская Tavolzhanskaya	7	158	-17,8	-141,3	1,0	10	90
Верхнеолигоценовый– нижнемиоценовый Upper Oligocene– Lower Miocene	Знаменская Znamenskaya	4	202	-18,3	-143,6	2,8	3	97
Верхенемеловой	Ипатовская Ipatovskaya	11	710	-17,7	-140,2	1,1	12	88
Upper Cretaceous	Покурская Pokurskaya	17	791	-17,8	-139,9	2,5	10	90

*– шифр проб указан согласно табл. 1; для касмалинской, краснодубровской и павлодарской свит приведены средние значения приуроченных к ним проб, стандартные отклонения средних значений варьировали в интервале 0,1–0,6 ‰ для б¹⁸0 и 0,1–3,1 ‰ для бD.

*- sample code is indicated according to Table 1; for the Kasmalinskaya, Krasnodubrovskaya and Pavlodar formations, the average sample values are given; the standard deviations of the average values varied in the range of 0.1–0.6 % for δ^{18} O and 0.1–3.1 % for δ D.

Анализ данных табл. 4 показывает, что воды более молодых неглубоких водоносных горизонтов, относящихся к неоген-четвертичному комплексу, за исключением пробы № 13 (водоносный горизонт кулундинской свиты), имеют максимально утяжеленный изотопный состав, который изменяется в пределах от -14,7 до -15,3 ‰ по δ^{18} О и от -118,3 до -120,2 ‰ по δD. Рассчитанные по уравнению (4) вклады талых снеговых и дождевых вод в формирование подземного стока этих горизонтов являются практически равными (47-56 % - снеговой сток, 44-53 % - дождевой сток). Проба воды № 13 из неглубокого колодца водоносного горизонта кулундинской свиты выбивается из общей закономерности неоген-четвертичного комплекса и имеет необычно облегченный изотопный состав, по нашему мнению, вследствие природных особенностей местоположения колодца (в большей степени – положения в рельефе). Данная проба приурочена к участку с выровненной открытой местностью, имеющей блюдцеобразную вогнутую форму, в окружении озерных котловин со скудной растительностью. Это одна из самых крайних северо-западных точек отбора проб характеризуется тем, что в течение лета здесь наблюдаются высокие температуры воздуха и выпадает очень малое количество дождевых осадков, которые не задерживаются на поверхности, а зачастую и вовсе не достигают земной поверхности, а поэтому не достигают зеркала грунтовых вод. В связи с чем основным источником питания для водоносного горизонта пробы воды № 13 выступают талые снеговые воды.

Наиболее изотопически облеченный состав отмечается в подземных водах нижележащих горизонтов таволжанской, знаменской, ипатовской и покурской свит, относящихся к наиболее возрастным (неоген-палеогеновым и меловым) водоносным комплексам (табл. 4). Для данных водоносных горизонтов основным источником питания являются талые снеговые воды, вклад которых в формирование подземного стока составляет 86–97 %, а на дождевое питание приходится только от 3 до 14 %.

Рассчитанные значения дейтериевого эксцесса показывают, что максимальное истощение атомов дейтерия (δ D) относительно δ^{18} O наблюдается в грунтовых водах самого верхнего водоносного горизонта (-0,8 ‰). Остальные водоносные горизонты в сравнении с атмосферными осадками холодного периода (табл. 3) также обеднены атомами дейтерия (δ D) относительно δ^{18} O, что связано с дополнительным испарительным фракционированием талого снегового стока при его движении через почво-грунты верхних горизонтов.

Таким образом, несмотря на то, что количество осадков, выпадающих на изучаемую территорию в холодный период года, составляет не более 35 % от

их годового количества (табл. 3), поступление талых снеговых вод за короткий период активного снеготаяния (~2-х недель) обеспечивает их более глубокое проникновение и попадание во все водоносные горизонты. В теплый период года широкое распределение осадков во времени и существенное их испарение приводит к тому, что значительно меньший процент летних осадков поступает в водоносные слои, особенно в нижних горизонтах. При этом пополнение молодых неглубоких водоносных горизонтов, относящихся к неогенчетвертичному комплексу, происходит в равной степени как за счет снеготаяния, так и за счет дождевых выпадений, в то время как более глубокие водоносные горизонты неоген-палеогенового комплекса на 86-97 % формируются за счет талых снеговых вод.

Заключение

Сравнительный анализ данных изотопного состава (δD , $\delta^{18}O$) подземных вод активного водообмена Кулундинского района и средневзвешенных значений атмосферных осадков (2021-2023 гг.), выпадающих на территории Обь-Иртышского междуречья, показал, что подземные воды изучаемого региона имеют метеорный генезис. Сопоставление наклона локальной линии подземных вод относительно глобальной линии метеорных вод, а также уменьшение значения дейтериевого эксцесса (d_{exc.}) указывают на протекание процессов испарительного фракционирования исходной поступающей в составе осадков влаги, причем изотопный состав подземных вод занимает промежуточное положение между зимними и летними атмосферными осадками.

Показано, что воды более молодых неглубоких водоносных горизонтов Кулундинской равнины, относящихся к неоген-четвертичному комплексу, за исключением участков с особенностями положения в рельефе (например, водоносный горизонт кулундинской свиты), имеют максимально утяжеленный изотопный состав (от -14,7 до -15,3 ‰ по δ^{18} О и от -118,3 до -121,2 ‰ по δ D), а вклады талых снеговых и дождевых вод в формирование их подземного стока являются практически равными. В это же время подземные воды возрастных неоген-палеогеновых и меловых водоносных комплексов (нижележащие горизонты таволжанской, знаменской, ипатовской и покурской свит) имеют изотопически облеченный состав от -17,5 до -18,3 ‰ по б¹⁸О и от –136,3 до –143,6 ‰ по бD. Для данных водоносных горизонтов основным источником питания являются талые снеговые воды, вклад которых в формирование подземного стока достигает 86-97 %, а на дождевое питание приходится только от 3 до 14 %.

СПИСОК ЛИТЕРАТУРЫ

- 1. Isotope studies in large river basins: a new global research focus / J.J. Gibson. P. Aggarwal, J. Hogan et al. // Eos, Transactions American Geophysical Union. 2002. Vol. 83. № 52. P. 613–617.
- Spatio-temporal variability of piezometric response on two steep alpine hillslopes / D. Penna, N. Mantese, L. Hopp, G.D. Fontana, M. Borga // Hydrological Processes. – 2015. – Vol. 29. – № 2. – P. 198–211. DOI: https://doi.org/10.1002/hyp.10140.
- 3. Hydrological response of an Alpine catchment to rainfall and snowmelt events / D. Penna, H.J. Meerveld, G. Zuecco, G.D. Fontana, M. Borga // Journal of Hydrology. 2016. Vol. 537. P. 382–397.
- Расчленение гидрографа реки Джанкуат, Центральный Кавказ, с помощью изотопных методов / Ю.К. Васильчук, Е.П. Рец, Ю.Н. Чижова, И.В. Токарев, Н.Л. Фролова, Н.А. Буданцева, М.Б. Киреева, Н.А. Лошакова // Водные ресурсы. – 2016. – Т. 43. – № 6. – С. 579–594.
- 5. Два подхода к расчёту расчленения гидрографа стока реки с ледниковым питанием с помощью изотопных методов / Ю.Н. Чижова, Е.П. Рец, Ю.К. Васильчук, И.В. Токарев, Н.А. Буданцева, М.Б. Киреева // Лёд и снег. 2016. Т. 56. № 2. С. 161–168. DOI: https://doi.org/10.15356/2076-6734-2016-2-161-168.
- The role of snowmelt discharge to runoff of an alpine watershed: evidence from water stable isotopes / M. Feng, W. Zhang, S. Zhang, Z. Sun, Y. Li, Y. Huan, W. Wang, P. Qi, Y. Zou, M. Jiang // Journal of Hydrology. – 2022. – Vol. 604. – P. 127209. DOI: https://DOI.org/10.1016/j.jhydrol.2021.127209.
- Impact of snowmelt conditions on the isotopic composition of the surface waters of the Upper Ob River during the flood period / T. Papina, A. Eirikh, A. Kotovshchikov, T. Noskova // Water. - 2023. - Vol. 15 (11). - P. 2096. DOI: https:// doi.org/10.3390/w15112096.
- Лепокурова О.Е., Иванова И.С., Пыряев А.Н. Использование стабильных изотопов водорода, кислорода и углерода при интерпретации условий формирования поверхностных водных объектов Ямало-Ненецкого автономного округа // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2023. – Т. 334. – № 6. – С. 7–19. DOI: https://doi.org/10.18799/24131830/2023/6/4038.
- 9. Ortega L., Gil L. Isotope hydrology: rev. / Water Resources. 2019. URL: https://www.iaea.org/sites/default/files/publications/ magazines/bulletin/bull60-1/6010405_ru.pdf (дата обращения 03.08.2023).
- 10. Abbott M.D., Lini A., Bierman P.R. δ18O, δD and 3H measurements constrain groundwater recharge patterns in an upland fractured bedrock aquifer, Vermont, USA // Journal of Hydrology. 2000. Vol. 228 (1–2). P. 101–112.
- 11. Исследование подземных вод в отдельных районах Карелии изотопно-геохимическими методами / И.В. Токарев, Г.С. Бородулина, Е.П. Каюкова, В.А. Поляков, Ю.В. Варнакова, С.В. Жданов, Т.В. Маркова // Вестник Санкт-Петербургского университета. Науки о Земле. – 2008. – № 2. – С. 25–36.
- 12. Constraining groundwater discharge in a large watershed: Integrated isotopic, hydraulic, and thermal data from the Canadian shield / T. Gleeson, K. Novakowski, P.G. Cook, T.K. Kyser // Water resources research. 2009. Vol. 45. W08402. P. 1–16. DOI: 10.1029/2008WR007622.
- 13. Лаврушин В.Ю., Лисенков А.Б., Айдаркожина А.С. Генезис Ессентукского месторождения углекислых вод (Северный Кавказ) // Геохимия. 2020. Т. 65. № 1. С. 77–91.
- 14. Лепокурова О.Е., Дребот В.В. Изотопный состав (δ18О, δD, δ13С, δ34S) подземных вод территории Торейских озер (Восточное Забайкалье) // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2021. – Т. 332. – № 9. – С. 20–29.
- 18O, 2H, and ³H isotopic data for understanding groundwater recharge and circulation systems in crystalline rocks terrain of Southeastern Brazil / M.S.M. Oliveira, M.A. Neves, F.A. Caxito, R.M. Moreira // Journal of South American Earth Sciences. – 2022. – Vol. 116. – P. 103794. DOI: https://doi.org/10.1016/j.jsames.2022.103794.
- 16. Ферронский В.И., Поляков В.А. Изотопия гидросферы. М.: Научный мир, 2009. 632 с.
- Первые данные по изотопному составу пластовых вод разрабатываемых нефтяных месторождений Новосибирской области / Д.А. Новиков, А.Н. Пыряев, А.В. Черных, Ф.Ф. Дульцев, С.В. Рыжкова // Известия Томского политехнического университета. Инжиниринг георесурсов. 2021. Т. 332. № 2. С. 59–72.
- Первые результаты комплексных изотопно-гидрогеохимических исследований Новобибеевского проявления радоновых вод / Д.А. Новиков, Ф.Ф. Дульцев, А.А. Максимова, А.Н. Пыряев, А.Н. Фаге, А.А. Хващевская, А.С. Деркачев, А.В. Черных // Известия Томского политехнического университета. Инжиниринг георесурсов. – 2022. – Т. 333. – № 1. – С. 57–72.
- 19. Clark I.D., Fritz P. Environmental isotopes in hydrogeology. Boca Raton: CRC Press, 1997. 342 p.
- Using stable isotopes and hydraulic head data to investigate groundwater recharge and discharge in a fractured rock aquifer / T. Praamsma, K. Novakowski, K. Kyser, K. Hall // Journal of Hydrology. – 2009. – Vol. 366 (1–4). – P. 35–45.
- Groundwater sources and geochemical processes in a crystalline fault aquifer / C. Roques, L. Aquilina, O. Bour, J.C. Maréchal, B. Dewandel, H. Pauwels, R. Hochreutener // Journal of Hydrology. – 2014. – Vol. 519. – P. 3110–3128.
- Hydrogeochemical evolution and groundwater quality assessment in the Dake Lake Basin, Northwest China / M. Lyu, Z. Pang, T. Huang, L. Yin // Journal of Radioanalytical and Nuclear Chemistry. – 2019. – Vol. 320 (3). – P. 865–883. DOI: 10.1007/s10967-019-06515-8.
- Iron-oxidizer hotspots formed by intermittent oxic-anoxic fluid mixing in fractured rocks / O. Bochet, L. Bethencourt, A. Dufresne, J. Farasin, M. Pédrot, T. Labasque, T. Le Borgne // Nature Geoscience. – 2020. – Vol. 13 (2). – P. 149–155.
- 24. Состояние геологической среды (недр) территории Сибирского федерального округа в 2021 г. Информационный бюллетень выпуск 18 / под ред. В.А. Льготина. – Томск: Филиал «Сибирский региональный центр ГМСН», 2022. – 204 с.
- 25. Анализ изменений уровней подземных вод четвертичных отложений юго-восточной части Иртыш-Обского артезианского бассейна / А.А. Балобаненко, Д.И. Васильев, Е.М. Дутова, К.И. Кузеванов // Известия Томского политехнического университета. Инжиниринг георесурсов. 2023. Т. 334. № 7. С. 202–213.
- 26. География Сибири в начале XXI века / В.М. Плюснин, Ю.И. Винокуров, Б.А. Красноярова, И.В. Андреева, О.С. Андреева, И.Д. Ахмедова, Н.И Юкина. Новосибирск: Академическое изд-во «Гео», 2016. Т. 5. 447 с.

- 27. Почвенно-климатические ресурсы Алтайского края: справочник / под ред. Н.С. Халина, И.В. Назаровой, В.А. Даммер. Барнаул: Параграф, 2020. 131 с.
- 28. Всероссийский научно-исследовательский институт гидрометеорологической информации. Мировой центр данных. URL: http://meteo.ru/ (дата обращения 08.02.2024).
- 29. Карабицина Л.П., Дым Л.С. Информационный отчет о работах, проведенных на объекте 3.3 «Региональное гидрогеологическое и геоэкологическое изучение территории Алтайского края и Республики Алтай за 2001–2002 гг.». Малоенисейское: АлтФ ФБУ «ТФГИ по СФО», 2002. Т. 1–2. 139 с.
- 30. Авдеева Ю.П., Соцкова Е.А. Гидрогеологическая карта СССР условий водоснабжения рассредоточенного населения в особый период масштаба 1:500000 Алтайского края. Каталог водопунктов (колодцы и родники). – Новокузнецк: Западно-Сибирское геологическое управление, 1972. – 156 с.
- 31. Кулундинский канал: ландшафтно-индикационная оценка природных условий в зоне влияния и прогноз их изменений / Ю.И. Винокуров, Ю.М. Цимбалей, В.И. Булатов, Т.А. Пудовкина и др. / под ред. В.В. Воробьева, Ю.И. Винокурова. Иркутск: Академия наук СССР, Сибирское отделение, Институт географии, 1985. 198 с.
- 32. Земскова И.М., Смоленцев Ю.К., Полканов М.П. Ресурсы пресных и маломинерализованных подземных вод южной части Западно-Сибирского артезианского бассейна / под ред. Е.В. Пиннекера. М.: Недра, 1991. 262 с.
- 33. Учетная карточка буровой скважины № 7349. URL: https://efgi.ru/object/14618400 (дата обращения 03.10.2023).
- 34. Учетная карточка буровой скважины № 6821. URL: https://efgi.ru/object/15993337 (дата обращения 03.10.2023).
- 35. Кузнецова М.А., Постникова О.В. Гидрогеология СССР. Т. XVII. Кемеровская область и Алтайский край. М.: Недра, 1972. 344 с.
- 36. Учетная карточка буровой скважины № 1014. URL: https://efgi.ru/object/20632273 (дата обращения 03.10.2023).
- 37. Учетная карточка буровой скважины № 4764. URL: https://efgi.ru/object/22192327 (дата обращения 08.02.2024).
- 38. Учетная карточка буровой скважины № 7904. URL: https://efgi.ru/object/38054870 (дата обращения 03.10.2023).
- 39. Микроэлементный и изотопный состав снежного покрова Катунского природного биосферного заповедника (Республика Алтай) / Т.С. Папина, А.Н. Эйрих, Н.С. Малыгина, С.С. Эйрих, О.В. Останин, Т.В. Яшина // Лёд и Снег. – 2018. – Т. 58. – № 1. – С. 41–55.
- 40. Государственный мониторинг состояния недр территории Сибирского федерального округа (Алтайский край) в 2014–2015 гг. Отчет по договору № 5/2013 от 01.10.13 г. Гос. контракт № 7Ф-13 от 10.09.13 / В.В. Девятаева, М.Ф. Гареев, К.А. Выставкин и др. Боровиха: ОАО Алтайская ГГЭ, 2015. 226 с.
- 41. Craig H. Isotopic variations in meteoric waters // Science. 1961. Vol. 133. P. 1702-1703.
- 42. Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. Vol. 16 (4). P. 436-468.
- 43. Энциклопедия
 по
 машиностроению
 XXL.
 URL:
 https://mash

 xxl.info/page/020002005146222220186085022149189162081227171243/ (дата обращения 03.10.2023).
 bttps://mash bttps://mash
- Temperature response in the Altai region lags solar forcing / A. Eichler, S. Olivier, K. Henderson, A. Laube, J. Beer, T. Papina, M. Schwikowski // Geophysical Research Letters. – 2009. – Vol. 36 (1). DOI: 10.1029/2008GL035930.
- 45. Gat J.R., Mook W.G., Meijer H.A. Environmental isotopes in the hydrological cycle, principles and applications // Atmospheric water / Ed. by W.G. Mook. Vienna, Austria: UNESCOIAEA Series, 2001. Vol. 2. P. 7–63.
- 46. Rozanski K., Araguás-Araguás L., Gonfiantini R. Isotopic patterns in modern global precipitation // Climate change in continental isotopic records. 1993. Vol. 78. P. 1–36.

Информация об авторах

Татьяна Савельевна Папина, доктор химических наук, начальник Химико-аналитического центра, Институт водных и экологических проблем Сибирского отделения Российской академии наук, Россия, 656038, г. Барнаул, ул. Молодежная, 1. papina@iwep.ru, https://orcid.org/0000-0002-8388-7289

Алла Николаевна Эйрих, кандидат технических наук, научный сотрудник Химико-аналитического центра, Институт водных и экологических проблем Сибирского отделения Российской академии наук, Россия, 656038, г. Барнаул, ул. Молодежная, 1. alnik@iwep.ru, https://orcid.org/0000-0003-3033-2172

Елена Сергеевна Орлова, младший научный сотрудник лаборатории водных ресурсов и водопользования, Институт водных и экологических проблем Сибирского отделения Российской академии наук, Россия, 656038, г. Барнаул, ул. Молодежная, 1. el.orlova11@yandex.ru, https://orcid.org/0009-0004-0650-4055

Ирина Дмитриевна Рыбкина, доктор географических наук, доцент, заведующая лабораторией водных ресурсов и водопользования, ведущий научный сотрудник, Институт водных и экологических проблем Сибирского отделения Российской академии наук, Россия, 656038, г. Барнаул, ул. Молодежная, 1. irina.rybkina@mail.ru, https://orcid.org/0000-0002-0081-9652

Поступила в редакцию: 06.05.2024 Поступила после рецензирования: 13.05.2024 Принята к публикации: 31.01.2025

REFERENCES

- 1. Gibson J.J., Aggarwal P., Hogan J. Isotope studies in large river basins: a new global research focus. *Eos, Transactions American Geophysical Union*, 2002, vol. 83, no. 52, pp. 613–617.
- Penna D., Mantese N., Hopp L., Dalla Fontana G., Borga M. Spatio-temporal variability of piezometric response on two steep alpine hillslopes. *Hydrological Processes*, 2015, vol. 29, no. 2, pp. 198–211. DOI: https://doi.org/10.1002/hyp.10140.

- 3. Penna D., Meerveld H.J., Zuecco G., Fontana G.D., Borga M. Hydrological response of an Alpine catchment to rainfall and snowmelt events. *Journal of Hydrology*, 2016, vol. 537, pp. 382–397.
- 4. Vasilchuk Y.K., Rets E.P., Chizhova J.N., Tokarev I.V., Frolova N.L., Budantseva N.A., Loshakova N.A. Hydrograph separation of the Dzhankuat River, North Caucasus, with the use of isotope methods. *Water Resources*, 2016, vol. 43, pp. 847–861. (In Russ.)
- Chizhova Yu.N., Rets Ye.P., Vasilchuk Yu.K., Tokarev I.V., Budantseva N.A., Kireyeva M.B. Two approaches to calculating the division of the hydrograph of a river flow with glacier feeding using isotope methods. *Ice and Snow*, 2016, vol. 56, no. 2, pp. 161–168. (In Russ.) DOI: https://doi.org/10.15356/2076-6734-2016-2-161-168.
- Feng M., Zhang W., Zhang S., Sun Z., Li Y., Huan Y., Wang W., Qi P., Zou Y., Jiang M. The role of snowmelt discharge to runoff of an alpine watershed: Evidence from water stable isotopes. *Journal of Hydrology*, 2022, vol. 604, pp. 127209. DOI: https://DOI.org/10.1016/j.jhydrol.2021.127209.
- Papina T., Eirikh A., Kotovshchikov A., Noskova T. Impact of snowmelt conditions on the isotopic composition of the surface waters of the Upper Ob River during the Flood Period. *Water*, 2023, vol. 15, no. 11, pp. 2096. DOI: https:// doi.org/10.3390/w15112096.
- Lepokurova O.E., Ivanova I.S., Pyryaev A.N. Stable isotopes of hydrogen, oxygen and carbon when interpreting formation conditions of surface water bodies of Yamalo-Nenets Autonomous Region. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2023, vol. 334, no. 6, pp. 7–19. (In Russ.) DOI: https://doi.org/10.18799/24131830/2023/6/4038.
- 9. Ortega L., Gil L. Isotope hydrology: rev. *Water Resources*, 2019. Available at: https://www.iaea.org/sites/default/files/publications/magazines/bulletin/bull60-1/6010405_ru.pdf (accessed 08 March 2023).
- Abbott M.D., Lini A., Bierman P.R. δ¹⁸O, δD and ³H measurements constrain groundwater recharge patterns in an upland fractured bedrock aquifer, Vermont, USA. *Journal of Hydrology*, 2000, vol. 228, no. 1–2, pp. 101–112.
- 11. Tokarev I.V., Borodulina G.S., Kayukova E.P., Polyakov V.A., Varnakova Yu.V., Zhdanov S.V., Markova T.V. Study of groundwater in certain areas of Karelia using isotope-geochemical methods. *Bulletin of St. Petersburg University. Geosciences*, 2008, no. 2, pp. 25–36. (In Russ.)
- 12. Gleeson T., Novakowski K., Cook P.G., Kyser T.K. Constraining groundwater discharge in a large watershed: Integrated isotopic, hydraulic, and thermal data from the Canadian shield. *Water resources research*, 2009, vol. 45, no. 8, W08402. DOI: 10.1029/2008WR007622.
- 13. Lavrushin V.Y., Lisenkov A.B., Aidarkozhina A.S. Genesis of the Yessentuki deposit of carbonated waters, North Caucasus. *Geochemistry International*, 2020, vol. 58, pp. 77–90. (In Russ.)
- 14. Lepokurova O.E., Drebot V.V. Isotopic composition (δ^{18} O, δ D, δ^{13} C, δ^{34} S) of groundwater in the area of the Torey Lakes (Eastern Transbaikal Region). Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2021, vol. 332, no. 9, pp. 20–29. (In Russ.)
- Oliveira M.S.M., Neves M.A., Caxito F.A., Moreira R.M. ¹⁸O, ²H, and ³H isotopic data for understanding groundwater recharge and circulation systems in crystalline rocks terrain of Southeastern Brazil. *Journal of South American Earth Sciences*, 2022, vol. 116, pp. 103794. DOI: https://doi.org/10.1016/j.jsames.2022.103794.
- 16. Ferronskii V.I., Polyakov V.A. Isotopy of the Earth's Hydrosphere. Moscow, Nauchny Mir Publ., 2009. 632 p. (In Russ.)
- Novikov D.A., Pyryaev A.N., Chernykh A.V., Dultsev F.F., Ryzhkova S.V. The first data on the isotopic composition of stratal waters of the developed oil fields in Novosibirsk region. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2021, vol. 332, no. 2, pp. 59–72. (In Russ.)
- Novikov D.A., Dultsev F.F., Maksimova A.A., Pyryaev A.N., Fage A.N., Khvashchevskaya A.A., Derkachev A.S., Chernykh A.V. First results of complex isotope-hydrogeochemical studies of the Novobibeevsky manifestation of radon waters. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering, 2022, vol. 333, no. 1, pp. 57–72. (In Russ.)
- 19. Clark I.D., Fritz P. Environmental isotopes in hydrogeology. Boca Raton, CRC Press, 1997. 342 p.
- 20. Praamsma T., Novakowski K., Kyser K., Hall K. Using stable isotopes and hydraulic head data to investigate groundwater recharge and discharge in a fractured rock aquifer. *Journal of Hydrology*, 2009, vol. 366, no. 1–4, pp. 35–45.
- Roques C., Aquilina L., Bour O., Maréchal J.C., Dewandel B., Pauwels H., Hochreutener R. Groundwater sources and geochemical processes in a crystalline fault aquifer. *Journal of Hydrology*, 2014, vol. 519, pp. 3110–3128.
- Lyu M., Pang Z., Huang T., Yin L. Hydrogeochemical evolution and groundwater quality assessment in the Dake Lake Basin, Northwest China. Journal of Radioanalytical and Nuclear Chemistry, 2019, vol. 320, no. 3, pp. 865–883. DOI: 10.1007/s10967-019-06515-8.
- 23. Bochet O., Bethencourt L., Dufresne A., Farasin J., Pédrot M., Labasque T., Le T. Borgne Iron-oxidizer hotspots formed by intermittent oxic-anoxic fluid mixing in fractured rocks. *Nature Geoscience*, 2020, vol. 13, no. 2, pp. 149–155.
- 24. Information bulletin on the state of the subsoil of the Siberian Federal District in 2021. Ed. by V.A. Lgotina. Tomsk, Branch of the Siberian Regional Center (SMSC) Publ., 2022. Vol. 18, 204 p. (In Russ.)
- 25. Balobanenko A.A., Vasiliev D.I., Dutova E.M., Kuzevanov K.I. Analysis of changes in groundwater levels in Quaternary deposits in the southeastern part of the Irtysh-Ob artesian basin. *Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering*, 2023, vol. 334, no. 7, pp. 202–213. (In Russ.)
- 26. Plyusnin V.M. Geography of Siberia at the beginning of the 21st century. Novosibirsk, GEO Publ., 2016. Vol. 5, 447 p. (In Russ.).
- 27. Soil and climatic resources of the Altai Territory: reference book. Eds. N.S. Khalina, I.V. Nazarova, V.A. Dammer. Barnaul, Paragraf Publ., 2020. 131 p. (In Russ.)
- 28. Russian Research Institute of Hydrometeorological Information. World Data Center. Available at: http://meteo.ru/ (accessed 8 February 2023).
- 29. Karabitsina L.P., Dym L.S. Information report on the work carried out at object 3.3 "Regional hydrogeological and geoecological study of the territory of the Altai Territory and the Altai Republic for 2001–2002." Maloenisejskoe, AltF FBU "TFGI in the Siberian Federal District" Publ., 2002. Vol. 1–2, 139 p. (In Russ.)

- 30. Hydrogeological map of the USSR of water supply conditions for a dispersed population during a special period on a scale of 1:500000 of the Altai Territory. Catalog of water points (wells and springs). Eds. Yu.P. Avdeeva, E.A. Sotskova. Novokuznetsk, West Siberian Geological Department, 1972. 156 p. (In Russ.)
- 31. Vinokurov Yu.I., Tsimbaley Yu.M., Bulatov V.I., Pudovkina T.A. *Kulunda Canal. Landscape-indicative assessment of natural conditions in the zone of influence and forecast of their changes.* Eds.V.V. Vorobyov, Yu.I. Vinokurov. Irkutsk, USSR Academy of Sciences, Siberian Branch, Institute of Geography Publ., 1985. 198 p. (In Russ.)
- 32. Zemskova I.M., Smolentsev Yu.K., Polkanov M.P. *Resources of fresh and low-mineralized groundwater in the southern part of the West Siberian artesian basin.* Ed. by E.V. Pinnecker. Moscow, Nedra Publ., 1991. 259 p. (In Russ.)
- 33. Borehole no. 7349 registration card. Available at: https://efgi.ru/object/14618400 (accessed 3 October 2023).
- 34. Borehole no. 6821registration card. Available at: https://efgi.ru/object/15993337 (accessed 3 October 2023).
- 35. Kuznetsova M.A., Postnikova O.V. *Hydrogeology of the USSR: Kemerovo Region and Altai Territory*. Moscow, Nedra Publ., 1972. Vol. 17, 344 p. (In Russ.)
- 36. Borehole no. 1014 registration card. Available at: https://efgi.ru/object/20632273 (accessed 3 October 2023).
- 37. Borehole no. 4764 registration card. Available at: https://efgi.ru/object/22192327 (accessed 8 February 2024).
- 38. Borehole no. 7904 registration card. Available at: https://efgi.ru/object/38054870 (accessed 3 October 2023).
- 39. Papina T.S., Eirikh A.N., Malygina N.S., Eirich S.S., Ostanin O.V., Yashina T.V. Trace element and isotopic composition of the snow cover of the Katunsky Natural Biosphere Reserve (Altai Republic). *Ice and Snow*, 2018, vol. 58, no. 1, pp. 41–55. (In Russ.)
- 40. Devyataeva V.V., Gareev M.F., Vystavkin K.A. State monitoring of the state of the subsoil of the territory of the Siberian Federal District (Altai Territory) in 2014–2015. Report on contract No. 5/2013 dated October 1. 2013. State contract no. 7F-13 dated September 10. 2013. Borovikha, JSC Altai HE Publ., 2015. 226 p. (In Russ.)
- 41. Craig H. Isotopic variations in meteoric waters. Science, 1961, vol. 133, no. 3465, pp. 1702–1703.
- 42. Dansgaard W. Stable isotopes in precipitation. *Tellus*, 1964, vol. 16, no. 4, pp. 436–468.
- 43. Encyclopedia of Mechanical Engineering XXL. Available at: https://mashxxl.info/page/020002005146222220186085022149189162081227171243/ (accessed 3 October 2023).
- 44. Eichler A., Olivier S., Henderson K., Laube A., Beer J., Papina T., Schwikowski M. Temperature response in the Altai region lags solar forcing. *Geophysical Research Letters*, 2009, vol. 36, no. 1. DOI: 10.1029/2008GL035930.
- 45. Gat J.R., Mook W.G., Meijer H.A. Environmental isotopes in the hydrological cycle, principles and applications. *Atmospheric water*. Ed. by W.G. Mook. Vienna, Austria, UNESCOIAEA, Series, 2001. Vol. 2, pp. 7–63.
- 46. Rozanski K., Araguás-Araguás L., Gonfiantini R. Isotopic patterns in modern global precipitation. *Climate change in continental isotopic records*, 1993, vol. 78, pp. 1–36.

Information about the authors

Tatyana S. Papina, Dr. Sc., Head of the Chemical Analytical Center, Institute for Water and Environmental Problems Siberian Branch of the Russian Academy of Sciences, 1, Molodezhnaya street, Barnaul, 656038, Russian Federation; papina@iwep.ru, https://orcid.org/0000-0002-8388-7289

Alla N. Eirikh, Cand. Sc., Researcher Institute for Water and Environmental Problems of the Siberian Branch of the RAS, 1, Molodezhnaya street, Barnaul, 656038, Russian Federation. alnik@iwep.ru, https://orcid.org/0000-0003-3033-2172

Elena S. Orlova, Junior Researcher, Institute for Water and Environmental Problems SB RAS, 1, Molodezhnaya street, Barnaul, 656038, Russian Federation, el.orlova11@yandex.ru, https://orcid.org/0009-0004-0650-4055

Irina D. Rybkina, Dr. Sc., Leading Researcher, Head of the Water Resources Management Laboratory, Institute for Water and Environmental Problems SB RAS, 1, Molodezhnaya street, Barnaul, 656038, Russian Federation; irina.rybkina@mail.ru, https://orcid.org/0000-0002-0081-9652

Received: 06.05.2024 Revised: 13.05.2024 Accepted: 31.01.2025