И З В Е С Т И Я томского ордена октябрьской революции и ордена трудового красного знамени политехнического института имени С. М. КИРОВА

Том 243

1972

ЭЛЕКТРОМАГНИТНЫЙ ПЕРЕХОДНЫЙ ПРОЦЕСС В РЕЛЕЙНОЙ САР ТОКА ТЯГОВОГО ДВИГАТЕЛЯ ПРИ СКАЧКЕ НАПРЯЖЕНИЯ СЕТИ

Л. В. ВОЛЫНЕЦ, А. П. ЗАЙЦЕВ.

(Представлена научно-техническим семинаром НИИ АЭМ при ТПИ)

Рассмотрим случай внезапного исчезновения напряжения питающей сети с его последующим восстановлением при регулировании пускового тока тягового двигателя шунтированием тиристорным ключом ступени пускового сопротивления. Предположим, что такое нарушение возникает в начале регулирования на очередной ступени. Уравнения, характеризующие этот процесс, должны быть представлены в полных координатах, которые изменяются в значительных пределах.

Характеристика намагничивания двигателя последовательного возбуждения нелинейна; это обусловливает нелинейную зависимость индуктивности L_{μ} , а следовательно, и постоянной времени T_{μ} намагничивающего контура от тока i_{μ} . Метод фазовой плоскости позволяет исследовать характер изменения регулируемой величины и в том случае, если нелинейности Φ_{μ} (i_{μ}) и T_{μ} (i_{μ}) заданы графически. Построение фазовой траектории в координатах $\begin{pmatrix} i, \frac{di}{dt} \end{pmatrix}$ затруднительно, так как для учета вышеуказанных нелинейностей необходимо знать значения намагничивающего тока i_{μ} , соответствующие мгновенным значениям тока якоря *i*. Целесообразно применить своеобразную фазовую плоскость с координатами (i_{μ} , i_{μ}), для чего представим системы уравнений, опи-

сывающих этот режим в виде:

$$T_{s} \frac{di}{dt} + i + k_{s} (i - i_{\mu}) + c_{e} \omega_{\partial} \Phi_{\mu} (i_{\mu}) = U_{c}$$

$$T_{\mu} (i_{\mu}) \frac{di_{\mu}}{dt} = k_{s} (i i_{\mu}),$$
(1)

где

 $k_{\rm S} \equiv \frac{r_{\rm K}}{r_{\rm i}};$

*r*_к — сопротивление эквивалентного контура вихревых токов;

 $r_{\rm i} = r - c_{\rm e} \omega_{\partial} k_{\rm pg};$

k_{ря} — коэффициент реакции якоря;
 T_s — постоянная времени цепи якоря,
 Система уравнений (1) приводится к виду:

$$\frac{di}{dt} = \frac{1}{T_{s}} \left[U_{c} - c_{e} \omega_{\partial} \Phi_{\mu} (i_{\mu}) - (1 + k_{s}) i + k_{s} i_{\mu} \right]
\frac{di_{\mu}}{dt} = \frac{k_{3}}{T_{\mu} (i_{\mu})} (i - i_{\mu}) .$$
(2)

Воспользуемся фазовой плоскостью с прямоугольной системой координат. Нас интересует единственная фазовая траектория, начинающаяся в точке $(i_0, i_{\mu 0})$, в которой находится САР в момент восстановления напряжения сети. Поэтому применим метод канонических полигонов. Этот метод обладает довольно высокой точностью и позволяет построить узкий «коридор», ограниченный полигонами, между которыми расположена искомая фазовая траектория. Предположим, что движение изображающей точки начинается из начала координат $(i=0, i_{\mu} = 0)$. До тех пор, пока перестанет выполняться неравенство:

где

I_{y} — ток установки,

 i_r — половина ширины петли гистерезиса релейного элемента САР, схема сравнения САР выдает команду на шунтирование тиристорным ключом регулируемой ступени r_p , и в выражении для r_i следует подставлять значение r без учета r_p .

 $i < I_{\rm v} + i_{\rm r},$

Наличие суммарного запаздывания то регулятора приводит к тому, что движение с выведенной ступенью продолжается и после того, как перестает выполняться условие (3), и это обстоятельство обусловливает значительный «выброс» тока якоря по отношению к току установки.

Обозначим:

$$\frac{di_{\mu}}{dt} = P\left(i, i_{\mu}\right); \frac{di}{dt} = Q\left(i, i_{\mu}\right).$$
(4)

Тогда координаты *i* и *i*_µ можно представить в виде некоторого векторного поля мгновенных фазовых скоростей

P

$$P(i, i_{\mu}) a + Q(i, i_{\mu}) b$$
, (5)

а и *b* — единичные векторы по осям *i* и *i* соответственно. Точка установившегося состояния на фазовой плоскости находится путем совместного решения уравнений:

$$P(i, i_{\mu}) = 0 Q(i, i_{\mu}) = 0$$
 (6)

Это решение определяется построением так называемых «нулевой» и

6*

83

«бесконечной» изоклин и нахождением их точек пересечения. Для нулевой изоклины имеем:

$$\operatorname{tg}\varphi_{0} = \frac{Q(i, i_{\mu})}{P(i, i_{\mu})} = 0.$$

Уравнение нулевой изоклины:

$$Q(i, i_{\mu}) = \frac{1}{T_{s}} \left[U_{c} - c_{e} \omega_{\partial} \Phi_{\mu}(i_{\mu}) - (1 + k_{s}) i + k_{s} i_{\mu} \right].$$
(7)

Ее график для числовых данных

 $U_{\rm c} = 750 \ \text{B}, \ c_{\rm e}\omega_{\partial} = 7 \ ce\kappa^{-1}, \ r_{\rm i} = 0.5 \ \text{OM}, \ r_{\rm K} = 0.6 \ \text{OM}$

и зависимости $\Phi_{\mu}(i_{\mu})$, приведенной на рис. 1, представлен на рис. 2. Для бесконечной изоклины имеем:

$$\operatorname{tg}\varphi(\infty) = \frac{Q(i, i_{\mu})}{P(i, i_{\mu})} = \infty.$$
(8)

Рис. 2

Ее уравнение

$$P(i, i_{\mu}) = \frac{k_{\rm s}}{T_{\mu} i_{\mu}} (i - i_{\mu}) = 0, \qquad (9)$$

ИЛИ

$$i = i_{\mu} . \tag{10}$$

Прямая (10) также представлена на рис. 2. Точка покоя M имеет координаты в относительных единицах: $I *_{\infty} I *_{\infty \mu} = 0.31$

Построение полигонов ведется следующим образом. Для точки начала движения О определяются значения:

$$\left(\frac{di_{\mu}}{dt}\right)_{0} = P\left(i_{0}, i_{\mu 0}\right); \left(\frac{di}{dt}\right)_{0} = Q\left(i_{0}, i_{\mu 0}\right).$$
(11)

Направление вектора поля в точке О определяется по знакам производных (11), а тангенс угла наклона вектора поля φ_0 — по их отношению. В нашем конкретном случае $\varphi_0 = 90^\circ$. В направлении вектора поля делается произвольный шаг до точки A (тем меньший, чем выше желаемая точность построения). В точке A снова определяется наклон вектора поля согласно (11) и находится $tg\varphi_A$. В нашем случае $\varphi_A \approx 90^\circ$. Делаем второй шаг до точки B. Угол наклона вектора поля в точке B: $\varphi_B < 90^\circ$. Из точки A параллельно вектору поля в точке B, т. е. под углом φ_B к оси абсцисс проводится отрезок прямой произвольной длины. Строится участок изоклины 1, проходящей через точку B и пересекающей проведенный отрезок прямой в точке B. Это построение ведется по уравнению:

$$\mathrm{tg}\varphi_{\mathrm{B}} = \frac{Q\left(i, i_{\mu}\right)}{P\left(i, i_{\mu}\right)} , \qquad (12)$$

в которое подставляются произвольные значения переменной i_{μ} (или i) и находятся значения второй переменной i (или i_{μ}). Делается следующий шаг из точки B в точку C, и построением находится точка C. В результате получается левоканонический (OABC...) и правоканонический (OABC...) полигоны, между которыми симметрично расположена искомая фазовая траектория. На рис. 2 эта траектория построена для $T_{\rm s} = 0.02$ сек и зависимости T_{μ} (v) i_{μ} (v), приведенной на рис. 1.

Построение переходного процесса во времени $i' f_1(t')$ можно выполнить путем приближенного интегрирования одного из уравнений (2). Запишем первое из них в приращениях:

$$\frac{\Delta i}{\Delta t} = \frac{1}{T_{\rm s}} \left[U_{\rm c} - c_{\rm e} \omega_{\partial} \, \mathcal{P}_{\mu} \left(i_{\mu} \right) - \left(1 + k_{\rm s} \right) + k_{\rm s} i_{\mu} \right]. \tag{13}$$

Здесь значения *i* и i_{μ} связаны между собой найденной фазовой траекторией. Для нахождения приращений времени Δt_n нужно приращения тока якоря Δi_n и соответствующие ему средние значения токов i_{cp} и $i_{\mu cp}$ подставить в уравнение (13). Сумма приращений тока якоря дает значения i_n , соответствующие значе-

Рис. 3

ниям времени t_n , также полученным суммированием всех предыдущих приращений времени. На рис. З приведена кривая переходного процесса i=f(t), построенная по уравнению (13), причем отсчет времени начат с точки $t=t_1$. Эта кривая позволяет весьма просто построить зависимость $i_{\mu} = t_2(t)$, используя взаимосвязь *i* и i_{μ} через фазовую траекторию. Кривая $i_{\mu} = t_2(t)$ в определенном масштабе отражает характер изменения потока во время переходного процесса. В момент t_2 перестает выполняться неравенство (3) (гистерезисная зона на рис. З не показана), схема сравнения выдает команду на закрывание тиристорного ключа, и начинается отсчет времени запаздывания τ_0 . В момент его окончания t_3 тиристорный ключ закрывается, вводится регулируемая ступень r_p , и ток *i*, достигнув максимального значения $i_{макс}$, уменьшается.

Исследование кривых переходного процесса показывает, что при восстановлении питания на вращающемся двигателе последовательного возбуждения скорость нарастания тока якоря в десятки раз превышает скорость нарастания магнитного потока. Поэтому к быстродействию регулятора должны предъявляться исключительно высокие требования.