

Рис. 3. Область локализации доминирующего полюса

Расположение полученных областей локализации полюсов интервальной системы при найденных значениях варьируемых параметрах регулятора полностью удовлетворяют предъявленным требованиям.

СПИСОК ЛИТЕРАТУРЫ

- 1. Райцын Т.М. Синтез систем автоматического управления методом направленных графов. Л.: Энергия, 1970. 96 с.
- 2. Скворцов Л.М. Интерполяционный метод решения задачи назначения доминирующих полюсов при синтезе одномерных регуляторов // Известия РАН. Теория и системы управления. 1996. № 4. С. 10—13.
- Вадутов О.С., Гайворонский С.А. Решение задачи размещения полюсов системы методом *D*-разбиения // Известия РАН. Теория и системы управления. – 2004. – № 5. – С. 23–27.
- Гусев Ю.М., Ефанов В.Н. Крымский В.Г., Рутковский В.Ю. Анализ и синтез линейных интервальных динамических си-

Заключение

Предложенный подход дает достаточно простую процедуру размещения областей локализации доминирующих полюсов интервальной системы с гарантированной максимальной колебательностью. Разработанная методика позволяет размещать ее свободные полюса в соответствии с принципом доминирования с учетом выполнения фазовых соотношений метода корневого годографа. Возможность выделения из семейства только одного полинома, гарантирующего желаемую динамику интервальной системы, позволяет применять к таким системам различные методы, разработанные для стационарных систем.

- стем (состояние проблемы) // Техническая кибернетика. 1991. № 1. C. 3-23.
- Хлебалин Н.А. Синтез интервальных регуляторов в задаче модального управления // Аналитические методы синтеза регуляторов. – Саратов: Саратовский политехн. ин-т, 1988. – C. 26–30.
- Захаров А.В. Шокин Ю.И. Синтез систем управления при интервальной неопределенности параметров их математических моделей // Доклады АН СССР. 1988. Т. 299. № 2. С. 292—295.
- 7. Удерман Э.Г. Метод корневого годографа в теории автоматического управления. М.: Наука, 1972. 448 с.

УДК 553.411.071.242.4+550.4

МИНЕРАЛОГО-ПЕТРОХИМИЧЕСКИЕ И ГЕОХИМИЧЕСКИЕ ЧЕРТЫ ОКОЛОРУДНОГО МЕТАСОМАТИЗМА В ВЕРХНЕ-САКУКАНСКОМ ЗОЛОТОРУДНОМ МЕСТОРОЖДЕНИИ (СЕВЕРНОЕ ЗАБАЙКАЛЬЕ). Ч. 2. Околожильные метасоматические и геохимические ореолы

И.В. Кучеренко

Томский политехнический университет E-mail: lev@tpu.ru

Приведены результаты изучения минералого-петрохимической зональности околожильных метасоматических ореолов Верхне-Сакуканского месторождения, показаны относительно малообъемные масштабы ореолов в обрамлении слабозолотоносных кварцевых жил и принадлежность их к березитовой метасоматической формации, а месторождения — к золотой субформации золото-уран-полиметаллической березитовой рудной формации. Распределение золота, серебра и некоторых сопровождающих металлов в междужильном пространстве подчиняется структуре околожильных метасоматических ореолов и по этому показателю месторождение демонстрирует приверженность к выявленной ранее закономерности, согласно которой структура и масштабы околожильных геохимических ореолов прямо зависят от интенсивности околожильных гидротермальных изменений вмещающих пород, а контрастность геохимических аномалий, кроме того, — от степени золотоносности кварцевых жил. Полученные результаты обсуждаются в сравнении с ситуацией в других мезотермальных золотых месторождениях.

Введение

В первой части статьи [1] в плане решения важнейшей в теории рудообразования и в практике прогнозирования и поисков месторождений проблемы источников рудного вещества обращено внимание на целесообразность дальнейшего накопления эмпирических данных, способных обеспечить реконструкцию геологической истории химических, в

том числе рудогенных элементов в междужильном пространстве мезотермальных золотых месторождений, сложенных разным по составу и происхождению субстратом, включая черные сланцы, в тесной связи с геологической историей рудовмещающих горных пород и в зависимости от степени металлоносности кварцевых жил и/или минерализованных зон. Обоснование реализуемого подхода дано в [2].

Верхне-Сакуканское месторождение представляет возможность оценить ситуацию в дополнение к ранее опубликованным материалам такого рода для случая слабозолотоносных на доступных уровнях дневной поверхности кварцевых жил, образованных в древних, раннепротерозойского возраста, плутонических породах. «Пестрый» набор преобладающе кислых горных пород Кодарского плутона одноименного комплекса с участием гранитов рапакиви [3] включает также кварцевые диориты и кварцевые монцониты, диагностированные по минералого-петрохимическим показателям в блоке локализации Главной и ряда соседних жил и квалифицированные здесь как рудовмещающие.

Ниже приведены минералого-петрохимические черты околожильных метасоматических преобразований этих пород и статистические параметры распределения рудогенных элементов в междужильном пространстве. Обсуждаются связи околожильных геохимических ореолов, фиксируемых на околокларковых уровнях, с околожильными метасоматическими.

Минералого-петрохимическая зональность околожильных метасоматических ореолов

Околорудные изменения пород изучены в междужильном пространстве на участке залегания Главной, Параллельной и Горелой жил в штольне № 1 и в скальных обнажениях ущелья руч. Каберовский и соседних безымянных ручьев в интервале высот 1200...1400 м. Метасоматические ореолы мощностью до нескольких десятков м в обрамлении каждой жилы зональны и включают внешнюю, эпидот-хлоритовую, альбитовую, тыловую и осевую зоны. Большую часть объема ореолов занимает внешняя зона, внутренняя граница которой фиксируется в 0,50...0,25 м от рудовмещающих структур. Мощность каждой из более тыловых эпидот-хлоритовой и альбитовой зон не превышает 0,10...0,15 м, тыловой зоны -0,03 м; в интервалах рудовмещающих структур, не содержащих кварцевого выполнения, последняя или две последних отсутствуют. Осевая зона сложена кварцевыми линзами. Через неровный резкий (нитевидный) контакт внешняя зона сменяется эпидот-хлоритовой, которая постепенно, на интервале в несколько мм переходит в альбитовую, а последняя – в тыловую.

Минеральный состав зон в изверженных породах обеих разновидностей изменяется по следующей схеме (подчеркнуты минералы, исчезающие в более тыловой зоне).

Внешняя:

серицит+кварц+лейкоксен+рутил+магнетит+пирит+кальцит+альбит+хлорит+цоизит± эпидот; исходные: авгит+амфибол+биотит;

Эпидот-хлоритовая: серицит+кварц+лейкоксен+рутил+магнетит+пирит+кальцит+альбит+хлорит± цоизит+эпидот; Альбитовая: серицит+кварц+лейкоксен+ру-

тил+магнетит+пирит+кальцит±

доломит+<u>альбит</u>;

Тыловая: серицит+кварц+лейкоксен+ру-

тил+магнетит+пирит±кальцит+

доломит-анкерит;

Осевая: кварц+карбонаты+сульфиды+зо-

лото.

Межореольное пространство сложено свежими, несмотря на раннепротерозойский возраст, породами, в которых эпизодически встречаются редкие чешуйки серицита в ядрах кристаллов плагиоклазов.

В большей части объема внешней зоны степень преобразований пород отвечает подзоне слабого изменения (до 10 % новообразованных минералов), внутренняя граница которой проходит в 0,6...1,0 м от рудовмещающих структур. В направлении к последним степень изменений постепенно нарастает и достигает максимума (до 30 % минеральных новообразований) на внутренней границе, где исчезают последние реликты исходных цветных минералов, замещенных мелкозернистыми агрегатами антигорита — дафнита (N_m =1,643, удлинение –), кальцита, кварца, лейкоксена, рутила, магнетита в разных наборах и количественных соотношениях. В подзоне слабого изменения амфибол и биотит едва замещены хлоритом, в основном вдоль поверхностей спайности. Ассоциация замещающих плагиоклазы минералов включает серицит, альбит (каемки), цоизит в форме мельчайших «оспенных» выделений, кальцит, - от незначительных обычно разобщенных включений на периферии ореолов до тонкозернистых агрегатов, заполняющих кристаллы плагиоклазов не менее чем наполовину в тыловой части внешней зоны. Щелочные полевые шпаты слабо пелитизированы.

В эпидот-хлоритовой зоне породы приобретают зеленый цвет, преобладающе лепидогранобластовую структуру на фоне разнозернистой гипидиоморфной. Ведущую роль играют новообразованные минералы при почти полной замене цоизита на эпидот. Хлорит в разной, вблизи внутренней границы — в большей степени замещен серицитом в смеси с лейкоксеном, рутилом, магнетитом, кальцитом, пиритом или псевдоморфным мусковитом с включениями лейкоксена, рутила, магнетита. В первом случае ассоциация упомянутых минералов наследует былые кристаллы амфибола, во втором — биотита. Сохраняются в виде реликтов исходные полевые шпаты.

В составе серых массивных метасоматитов альбитовой зоны преобладают перечисленные минеральные новообразования при отсутствии цоизита, эпидота, но дополнительном эпизодическом участии доломита в форме ромбоэдров. Кварц исходных пород не содержит признаков растворения.

Светло-зеленовато-серая массивная разнозернистая порода с лепидогранобластовой структурой в тыловой зоне лишена альбита, а из минералов исходных пород в ней сохранились только кварц и

Таблица 1. Коэффициенты распределения (привноса >1, выноса <1) петрогенных элементов в минеральных зонах околожильных метасоматических ореолов, образованных в кварцевых диоритах и кварцевых монцонитах Верхне-Сакуканского золоторудного месторождения

	Химические элементы															
Минеральные зоны (число проб)	Si	Al	K	Na	S суль- фид.	Скб	Ca	Mg	Fe ²⁺	Fe³+	Ti	Mn	Р	H (H ₂ O ⁺)	0	Δ
Внешняя, подзона умеренного изменения (5)	1,0	0,9	1,0	0,8	1,4	6,1	0,8	1,1	1,1	1,2	1,1	1,1	1,0	1,4	1,0	3,7
Эпидот-хлоритовая (1)	1,0	0,9	0,8	0,8	3,2	19,0	0,9	1,0	0,9	0,6	1,0	1,0	0,9	1,7	1,0	6,0
Альбитовая (4)	0,9	1,0	1,4	0,6	1,7	32,0	1,2	1,3	0,8	0,9	1,1	1,3	1,0	1,6	1,0	9,6
Тыловая (1)	0,8	0,9	1,1	0,1	3,4	79,0	2,0	5,2	1,2	0,7	0,8	2,7	0,9	2,2	1,1	26,6

Примечание: 1) Коэффициенты распределения элементов в метасоматитах относительно не измененных кварцевых диоритов и кварцевых монцонитов (6 проб) получены с использованием результатов петрохимических пересчетов по объемно-атомному методу химических силикатных анализов проб. 2) Δ – удельная масса перемещенного (привнесенного и вынесенного) вещества в процентах к массе вещества исходной породы в стандартном геометрическом объеме 10000 $\rm \AA^3$

магнетит. Разнозернистость обусловлена крупными (до нескольких мм) ксеноморфными зернами и сростками зерен реликтового, сохранившегося от исходных пород, кварца, заключенными в мелкозернистую массу новообразованных минералов, совокупность которых дополнена здесь доломитом-анкеритом; ромбоэдры последнего достигают размеров 1 мм.

Усиление степени изменений пород от внешней зоны к тыловой выражается в последовательном, от зоны к зоне, увеличении удельной массы перемещенного вещества с максимумом (26,6 %) в тыловой зоне (табл. 1). Устойчиво поступают главным образом в тыловые зоны восстановленная сера, углекислота, кальций, магний, марганец, водород в составе воды. Возрастание массы калия в тыловых зонах по обобщенным данным (табл. 1) вследствие значительных колебаний его содержания в исходных породах [1, табл.] фиксируется менее определенно сравнительно с аподиоритовыми индивидуальными колонками, где его привнос достигает 100 %. Из тыловой зоны удаляется часть кремния (до 23 %) и почти полностью натрий.

Металлы в околорудном пространстве

Ограниченные возможности отбора геохимических проб вследствие сложного рельефа и особенно — малой мощности минеральных зон околожильных метасоматических ореолов позволяют получить первые пока предварительные представления о распределении рудогенных элементов в рудовмещающих магматических и метасоматических породах.

Распределение металлов не противоречит логнормальному закону, поэтому за основу взяты отвечающие ему параметры в сравнении с параметрами нормального закона.

В межореольном пространстве свойственные свежим магматическим породам содержания Au и Ag сохраняются во всем объеме внешней зоны ореолов сравнительно слабого изменения, о чем можно судить по низким значениям t(s) в выборке, представляющей внешнюю зону, но включающей для выполнения статистических расчетов 5 проб кварцевого диорита и кварцевого монцонита с едва

Таблица 2. Оценка параметров распределения рудогенных элементов и корреляционных связей золота с рудогенными элементами в минеральных зонах околожильных метасоматических ореолов, образованных в кварцевых диоритах и кварцевых монцонитах Верхне-Сакуканского золоторудного месторождения

Эле-	Параметры ра-	Минеральные зоны (число проб)					
менты	спределения	Внешняя (12)	Альбитовая (10)				
Au	$\overline{x}g(\overline{x})$	0,8(0,8)	3,1(8,2)				
	t(s)	1,3(0,2)	3,8(15,1)				
Ag -	$\overline{x}g(\overline{x})$	57,8(61,3)	52,8(105,0)				
	t(s)	1,4(22,5)	4,0(104,6)				
	r(sr)	0,44(0,23)	0,81(0,11)				
	Au/Ag	0,014	0,058				
Hg	$\overline{x}g(\overline{x})$	47,2(67,1)	37,3(46,2)				
	t(s)	2,2(77,5)	2,0(30,6)				
	r(sr)	-0,17(0,28)	-0,18(0,31)				
Ni	$\overline{x}g(\overline{x})$	20(20)	30(60)				
	t(s)	1,4(5)	2,9(80)				
	r(sr)	-0,65(0,17)	-0,29(0,29)				
Со	$\overline{x}g(\overline{x})$	5(5)	10(20)				
	t(s)	1,5(2,0)	2,8(40)				
	r(sr)	-0,11(0,28)	0,09(0,31)				
Cu	$\overline{x}g(\overline{x})$	40(40)	40(50)				
	t(s)	1,3(10)	1,8(30)				
	r(sr)	0,01(0,29)	0,71(0,16)				
Pb	$\overline{x}g(\overline{x})$	50(50)	50(60)				
	t(s)	1,4(20)	2,0(40)				
	r(sr)	-0,32(0,26)	0,82(0,10)				
Zn	$\overline{x}g(\overline{x})$	200(200)	80(100)				
	t(s)	1,7(90)	2,8(100)				
	r(sr)	-0,52(0,21)	0,41(0,26)				

Примечание. 1) $\overline{x}g(\overline{x})$ — среднее соответственно геометрическое и арифметическое содержание, мг/т (Аи, Ад, Нд), г/т (остальные элементы); t — стандартный множитель, s — стандартное отклонение содержаний, мг/т (Аи, Ад, Нд), г/т (остальные элементы); r — коэффициент парной линейной корреляции элементов с золотом, выше уровня значимости обозначен жирным шрифтом; sr — стандартное отклонение коэффициента корреляции. 2) Расчеты выполнены Н.П. Ореховым

заметными признаками околожильных изменений (табл. 2). В обрамляющей на значительных расстояниях рудовмещающие структуры альбитовой зоне среднее геометрическое содержание Au увеличивается сравнительно с внешней зоной вчетверо (среднее арифметическое — на порядок), среднее геоме-

трическое содержание Ад близко в обеих зонах при возрастании вдвое среднего арифметического. В альбитовой зоне резко возросла степень неравномерности распределения обоих металлов и возникла сильная положительная корреляционная связь золота с серебром. В одной пробе, представляющей в месте отбора тыловую зону мощностью 0,01 м в обрамлении локального слабозолотоносного (первые г/т) рудного гнезда содержание (мг/т) Аи составляет 11,3, серебра 88,6, ртути 52,6. Распределение ртути в ореоле сравнительно равномерное. Au/Agотношение в породах в направлении к тыловой зоне возрастает, достигая в последней 0,12.

Подобная распределению Au тенденция слабого увеличения среднего содержания и/или степени его неравномерности синхронно с усилением интенсивности метасоматических преобразований пород свойственна Ni, Co, Cu, Pb, Zn и сопровождается возрастанием силы положительной корреляционной связи Au c Cu, Pb.

Обсуждение результатов и выводы

Верхне-Сакуканское месторождение принадлежит к числу мало известных объектов Северного Забайкалья. Должная оценка его сдерживается в силу ряда причин: слабой золотоносности рудных жил на уровнях современного эрозионного среза при неразработанности критериев прогноза оруденения на более глубоких горизонтах, трудностей работы на поверхности чрезвычайно сложного, со скалами - «отстойниками» и ущельями, крутосклонного рельефа, невозможной без использования специального альпинистского снаряжения, неразвитой инфраструктуры района. Хотя последнее препятствие устраняется благодаря вводу в эксплуатацию Байкало-Амурской железной дороги (20 км к югу), строительству Чинейского ГОКа (130 км к юго-востоку), предстоящему освоению уникального Удоканского серебро-медного месторождения (60 км к юго-востоку), требуются крупные, помимо других, затраты только на строительство автомобильной дороги по Чарской долине сильно заболоченной пос. (ст.) Чара (40 км к востоку).

Вместе с тем, разведанные полвека назад на верхних горизонтах некоторых жил промышленные запасы золота ориентируют на целесообразность дальнейшей оценки месторождения, естественно, при условии разработки комплекса прогнозно-поисковых критериев. Ограниченные возможности выполнения первоочередных крупномасштабных площадных геофизических и геохимических исследований на поверхности сокращают номенклатуру критериев, в числе которых в этих условиях остаются те, которые следуют, скажем, из детального термобарогеохимического изучения минералов руд, выяснения условий формирования и структуры геохимического поля в занятом месторождением блоке земной коры и др. Однако неизбежные при существующем положении вещей повышенные или высокие риски, обусловленные ограниченной номенклатурой предварительно разработанных прогнозно-поисковых критериев, могут быть уменьшены возможной в горно-технических условиях района штольни № 1 отработкой руд в уже разведанных участках одновременно с дальнейшей оценкой рудных тел.

С учетом существующей ситуации следует рассматривать приведенные в статье материалы. Это первые результаты изучения околорудного пространства месторождения: минералого-химического состава исходного рудовмещающего субстрата с диагностикой видовой принадлежности изверженных пород, минералого-петрохимической зональности (структуры) околожильных метасоматических ореолов и их формационной принадлежности, структуры геохимического поля и причинноследственных связей его с метасоматическими ореолами и степенью золотоносности кварцевых жил. Ранее выполнены радиологические определения возраста месторождения [4], которое при значительном удалении (200 км) от месторождений Муйского золоторудного района одного с ним позднепалеозойского возраста (Кедровского, Каралонского, Ирокиндинского и др.) обнаруживает черты сходства с ними геологической позиции и вещественно-генетической однородности.

Месторождение, залегая в юго-западном раннепротерозойском обрамлении Чарского выступа архейского фундамента, вероятно, контролируется ограничивающими выступ глубинными разломными структурами подобно тому, как в Муйском районе многочисленные золоторудные месторождения и рудопроявления контролируются глубинными разломами, ограничивающими с запада и востока Муйский выступ фундамента.

В любой форме исключается связь месторождения с кодарским комплексом плутонических пород, образованных на 1,5 млрд л раньше.

Возраст гранитоидов и долеритов дайковой ассоциации месторождения остается пока неопределенным. Однако достоверно установлено, что все кислые породы и часть даек долеритов гидротермально изменены в обрамлении кварцевых жил с образованием зональных ореолов, структура и минералого-петрохимические черты которых аутентичны таковым околорудных ореолов, образованных в кварцевых монцонитах и кварцевых диоритах кодарского комплекса. Вместе с тем, часть даек долеритов подверглась гидротермальным преобразованиям по иной схеме. Среди едва измененных пород они, имея с последними спаянные (не тектонические) контакты, превращены в метасоматиты с объемом минеральных новообразований до 60...70 %, в составе которых помимо обычной для пропилитового профиля ассоциации (серицита, альбита, хлорита, эпидота и др.) участвует биотит – наиболее высокотемпературный из всего набора минерал, не свойственный березитам и характерный для внутрирудных внутридайковых аподолеритовых метасоматитов других мезотермальных золотых месторождений [5].

В этих месторождениях внутрирудный возраст таких даек доказывается структурными соотношениями их с золоторудными кварцевыми жилами и признаками термического воздействия поздних образований на более ранние, а флюидопроводящая функция — тем, что указанные преобразования не выходят за пределы даек, залегающих и среди свежих или менее измененных пород. Избирательный внутридайковый метасоматизм возможен в телах, еще сохраняющих среди более холодного вмещающего субстрата горячее состояние вследствие реализации в земной коре известного эффекта аккумуляции гидротермальных растворов горячими породами [6]. Подобные дайки, в том числе нескольких генераций, представляют продукты единого с рудами петро-рудно-генетического процесса, в рамках которого внедрение основных расплавов чередуется с поступлением металлоносных растворов, причем последние используют в своем движении вверх из очагов генерации не только проницаемые структуры – разломы, но и еще не успевшие потерять температуру магматические тела - тепловые флюидопроводники [5].

Из приведенных фактов следует предположение о том, что восходящие (фильтрующиеся) по горячим еще дайкам металлоносные растворы медленнее остывают сравнительно с растворами, заполнявшими рудовмещающие разломы. Поэтому в составе минеральных новообразований даек — флюидопроводников образованы такие относительно высокотемпературные минералы как биотит, иногда обыкновенная роговая обманка, отсутствующие в обрамляющих кварцевые жилы ореолах березитов.

Таким образом, предполагается, что в аспекте связей с магматизмом Верхне-Сакуканское месторождение не составляет исключения из совокупности мезотермальных месторождений золота, — позднепалеозойских в соседних Муйском, Ленском, среднепалеозойских в Окино-Китойском, раннепалеозойских в Мартайгинском, позднепротерозойских в Енисейском районах. Данный вывод подкрепляется еще и тем, что дайки долерита, в том числе подвергшиеся упомянутым специфическим преобразованиям, залегают в блоке локализации золотоносных кварцевых жил и за пределами месторождения не обнаружены.

Структура околожильных метасоматических ореолов, образованных в породах кодарского комплекса, минералого-химические изменения пород, их направленность отвечают средне-низкотемпературной березитовой метасоматической формации, для тыловых зон ореолов которой свойственно перераспределение щелочей с заменой сильным основанием (калием) более слабого (натрия), а для ореолов в целом — поступление углекислоты и восстановленной серы. Преобладающе кислотный режим метасоматизма подчеркивается полной сохранностью кристаллов (зерен) кварца исходных пород, в том числе в тыловой зоне, и фиксацией

высвобождающегося при метасоматизме кремнезема в новообразованных генерациях этого минерала. Принадлежность Верхне-Сакуканского месторождения к совокупности мезотермальных доказывается также минеральным составом руд, в частности, — отсутствием других, кроме кварца, модификаций кремнезема (опала, халцедона), столь характерных для эпитермальных руд, содержанием в кварцевых жилах золота и серебра в сопоставимых количествах и др. Как и позднепалеозойские золоторудные месторождения соседнего Муйского района, Верхне-Сакуканское месторождение представляет золотую субформацию золото-уран-полиметаллической рудной формации [7], и это полезно учитывать при металлогенических построениях.

Относительно малые объемы околожильных метасоматических ореолов месторождения при измеряемой миллиметрами мощности тыловой зоны в обрамлении кварцевых линз или ее отсутствии в лишенных кварцевого выполнения интервалах рудовмещающих структур – явление обычное для верхнерудных и особенно надрудных уровней мезотермальных месторождений. Снижение объемов и интенсивности околожильных гидротермальных изменений вверх по восстанию жил на индивидуальных для каждой из них гипсометрических уровнях в глубоко вскрытых рельефом, подземными горными выработками и скважинами рудных полях можно видеть на многих примерах. Один из них – жила № 30 Ирокиндинского месторождения Муйского района [8]. Она вскрыта четырьмя, через 60 м по падению, штольнями и вмещала мощный (до 9 м) рудный столб (около 3 т металла) в сопровождении крупнообъемного (до сотен м шириной) метасоматического ореола с глубоко проработанной, на мощность до 1 м, тыловой зоной. Столб над верхним горизонтом (штольней № 19) выклинился, а рудовмещающий разлом вверх по восстанию «расшепился» на несколько сходящихся и расходящихся швов в сопровождении метасоматического ореола, сложенного на поверхности лишь породами внешней, отчасти промежуточной эпидот-хлоритовой зон пропилитоподобных изменений при отсутствии тыловых зон. Рудный столб также постепенно выклинился несколько глубже нижнего горизонта (штольни № 20), а глубокой скважиной в месте предполагаемого продолжения его вскрыт ореол гидротермально измененных пород с участием березитов, содержащих лишь прожилкововкрапленную карбонатно-сульфидно-кварцевую минерализацию.

В силу известных причин наблюдений над «поведением» околорудных ореолов и особенно их тыловых зон на глубоких горизонтах в отличие от верхних несопоставимо мало. Поэтому, рассматривать сокращение объемов ореолов по восстанию рудовмещающих структур как показатель незначительной глубины эрозионного среза золоторудных жил следует лишь в качестве осторожного предположения. Не исключается подобное «поведение»

околожильных метасоматических ореолов и в прикорневых частях рудных тел. Требуются дополнительные независимые критерии оценки золотоносности кварцевых жил на глубоких горизонтах. Недостаточен для этого и объем выполненных геохимических исследований, результаты которых однако подтверждают некоторые ранее сделанные выволы.

Благодаря высокой чувствительности и точности анализов, тщательной подготовке проб видно закономерное распределение золота и серебра в междужильном пространстве на околокларковых уровнях их содержаний даже по ограниченному числу геологических проб, которые удалось отобрать по нескольким ориентированным вкрест простирания слабо золотоносных кварцевых жил разрезам в условиях малых объемов тыловых зон околожильных метасоматических ореолов и ограниченной их доступности.

В свежих и едва измененных роговообманковобиотитовых кварцевых диоритах и кварцевых монцонитах за пределами и во внешней зоне околожильных метасоматических ореолов минимальные для рудовмещающего субстрата содержания металлов при сравнительно равномерном их распределении отвечают региональным кларкам для данных разновидностей пород Кодарского плутона, а содержание золота близко к таковому и в более молодых гранитоидах Забайкалья, не сопровождаемых золотыми месторождениями [9]. Вывод следует из того факта, что следы растворения здесь минералов вероятных и обычных носителей металлов отсутствуют или незначительны. Последнее означает длительное, не менее 1,5 млрд л, состояние химического равновесия трещинно-поровых растворов с породами, не свойственное метасоматическому процессу, который хотя и создал околожильные метасоматические ореолы, но не охватил междужильное пространство в полном объеме.

Вместе с тем, наблюдаемая картина распределения металлов, т.е. низкая контрастность геохимических ореолов в обрамлении слабо золотоносных кварцевых жил, следовательно, прямая зависимость ее от степени металлоносности последних, возрастание в направлении к рудовмещающим структурам содержаний золота при усилении степени неравномерности его распределения, увеличении Au/Ag-отношения и силы связи золота с серебром согласуется с ситуацией в других рудовмещающих средах многих мезотермальных золотых месторождений [2, 10–12 и др.]. Уместно отметить, что выявленная повторяемость статистических параметров распределения металлов устойчива настолько, что подтверждается с использованием как крупнообъемных (многие десятки – сотни проб) выборок, представляющих исходные породы и метасоматиты минеральных зон околорудных метасоматических ореолов, так и относительно малообъемных, включающих десяток - первые десятки проб.

Закономерно распределение геохимического спутника золота ртути. Как было показано ранее [2, 10–12], она образует контрастные аномалии при сильных положительных корреляционных связях с золотом только в обрамлении промышленных участков рудных жил. В породах, вмещающих слабозолотоносные участки рудовмещающих структур, содержание ртути существенно не изменяется сравнительно с исходным субстратом и Верхне-Сакуканское месторождение служит дополнительным тому подтверждением.

Учитывая приведенные факты и то, что предрудный и сопровождающий образование руд метасоматизм всегда выражается в минералого-химических преобразованиях горных пород, рассматривать сложенное неизмененными исходными породами межореольное пространство как область выноса металлов нет оснований. Очевидно, гидротермальные, в том числе металлоносные растворы не фильтровались сквозь массив изверженных пород, а использовали в своем движении из области генерации проницаемые структуры – разломы, отчасти горячие дайки-флюидопроводники долеритов. В растворопроводящих элементах и их ближнем обрамлении происходили события, создавшие метасоматиты и руды. Все это согласуется с известными доказательствами реализации диффузионного механизма массопереноса при околоразломном метасоматизме [13, 14]. Если предположить обратное крупнообъемную фильтрацию растворов, возникают вопросы, один из которых касается, скажем, причин того, почему растворы не взаимодействовали с породами на дальних подступах к рудовмещающим разломам, но интенсивно изменяли их лишь в обрамлении последних.

Следующее из результатов эксперимента представление [15, 16] о «физической» возможности формирования промышленных месторождений по механизму электрохимического растворения металлов в естественных электрических полях, возникающих при фильтрации гидротермальных растворов, за счет породных источников металлов с выносом до 40 % от их массы и с изменением химического состава пород, но без существенных признаков разложения силикатов к обсуждаемому случаю и подобным ему не приложимо. В противном случае потребовалось бы доказать, что изменение химического состава пород не отражается на минеральном их составе, что крупноионные металлы способны мигрировать сквозь кристаллическую решетку каждого минерала – хозяина или обосновать концентрацию не менее половины массы содержащихся в породах металлов, в том числе золота, в межзерновом пространстве пород и т.д. Негативные ответы на эти вопросы очевидны и известны давно. Альтернативный вариант интерпретации эмпирических данных, предполагающий внешние по отношению к рудовмещающему объему земной коры источники металлов, предложен и обсуждался ранее [5].

СПИСОК ЛИТЕРАТУРЫ

- Кучеренко И.В. Минералого-петрохимические и геохимические черты околорудного метасоматизма в Верхне-Сакуканском золоторудном месторождении (Северное Забайкалье).
 Ч. 1. Геологическое строение месторождения и идентификация рудовмещающих изверженных пород // Известия Томского политехнического университета. 2006. Т. 309. № 4. С. 23—28.
- Кучеренко И.В. К методике формирования выборок для расчета статистических параметров распределения и баланса химических элементов в околорудном пространстве гидротермальных месторождений золота // Известия Томского политехнического университета. 2005. Т. 308. № 2. С. 23–30.
- 3. Ларин А.М., Немчин А.А., Крымский Р.Ш. и др. Sm-Nd-изотопные ограничения на генезис гранитов рапакиви кодарского комплекса (западная часть Алдано-Станового щита) // Доклады РАН. 1999. Т. 369. № 2. С. 251—253.
- Кучеренко И.В. Позднепалеозойская эпоха золотого оруденения в докембрийском обрамлении Сибирской платформы // Известия АН СССР. Сер. геологич. 1989. № 6. С. 90–102.
- Кучеренко И.В. Петрологические и металлогенические следствия изучения малых интрузий в мезотермальных золоторудных полях // Известия Томского политехнического университета. – 2004. – Т. 307. – № 1. – С. 49–57.
- 6. Рундквист Д.В. О влиянии распределения температур горных пород на процессы метасоматического гидротермального минералообразования // Записки Всесоюзн. минералог. об-ва. 1966. Ч. 95. Вып. 5. С. 509—525.
- Кучеренко И.В. Теория и практика формационного метода в рудной геологии. Ч. 3 // Известия Томского политехнического университета. – 2004. – Т. 307. – № 6. – С. 25–30.
- Кучеренко И.В., Миков А.Д., Геря Т.В. и др. Тектонические факторы рудообразования и элементы минеральной зональности в

- одном из кварцево-жильных месторождений золота Восточной Сибири // Вопросы структурной геологии / Под ред. А.И. Родыгина. Томск: Изд-во Томского ун-та, 1987. С. 28—41.
- Спиридонов А.М., Козлов В.Д. Особенности распределения золота в гранитоидах оловянно-вольфрамового и золото-молибденового металлогенических поясов Забайкалья // Проблемы геологической и минерагенической корреляции в сопредельных территориях России, Китая и Монголии: Тр. VI Междунар. симп., г. Чита, 11–15 октября 2005 г. – Улан-Удэ: Изд-во БНЦ СО РАН, 2005. – С. 32–35.
- Кучеренко И.В. Золото, серебро, ртуть в золотоносных апогнейсовых и апосланцевых околорудных метасоматических ореолах березитовой формации // Известия Томского политехнического университета. – 2000. – Т. 303. – № 1. – С. 161–169.
- 11. Кучеренко И.В. Сингенез околорудных метасоматических и геохимических ореолов в мезотермальных месторождениях золота // Известия Томского политехнического университета. 2005. Т. 308. № 3. С. 22–28.
- 12. Кучеренко И.В. Геохимические аномалии благородных металлов как сингенетичная составная часть околорудных метасоматических ореолов в мезотермальных месторождениях золота // Известия Томского политехнического университета. 2005. Т. 308. № 4. С. 25—32.
- Коржинский Д.С. Теория процессов минералообразования // Избранные труды. – М.: Наука, 1994. – С. 6–19.
- Коржинский Д.С. Теория метасоматической зональности. М.: Наука, 1982. – 104 с.
- Гольдберг И.С. Рудообразование в геоэлектрохимических системах // Геология и охрана недр. – 2005. – № 2. – С. 28–40.
- Гольдберг И.С., Абрамсон Г.А., Лось В.Л. Геохимические системы крупных золоторудных месторождений Бендиго-Балларатской провинции (Австралия): поисковые и генетические аспекты // Геология и разведка недр. 2005. № 4. С. 22—31.

УДК 553.3/.4:550.4(571.15)

МЕТАЛЛЫ ВО ФЛЮИДНЫХ ВКЛЮЧЕНИЯХ ГРЕЙЗЕНОВЫХ МЕСТОРОЖДЕНИЙ (КАЛГУТИНСКОЕ МЕСТОРОЖДЕНИЕ)

А.А. Поцелуев, Д.И. Бабкин, О.А. Козьменко*

Томский политехнический университет *Институт геологии и минералогии CO PAH, г. Новосибирск E-mail: poan@ign.tpu.ru

Изучены металлы во флюидных включениях в кварце рудных тел Калгутинского редкометалльного месторождения (Горный Алтай). Преобладают элементы с содержанием $n \times (100...1000)$ мг/кг, определяющие промышленную ценность и геохимическую специализацию руд - Мо, W, Cu, Rb, Cs, Cr. Относительно высоким от $n \times 1$ до $n \times 10$ мг/кг является содержание Th, U, Σ P3Э, Ag, Hg. В значительно меньших концентрациях $n \times (0,1...0,01)$ мг/кг фиксируются Ru, Rh, Pd, Os, Au, Re. В пределах основной промышленной жилы 87 отмечается закономерное изменение содержания металлов в растворе флюидных включений, которое согласуется с данными по изменению состава газов, общей минерализации флюида, мощности жилы, флюидонасыщенности кварца и распределению графита. Полученные данные позволяют предположить, что в области транспортировки восстановленного флюида металлы находились в форме органометаллических комплексов.

Введение

Исследование условий формирования месторождений, выявление источников вещества и энергии, а так же причин рудоотложения являются важнейшими вопросами минерагении. Их реше-

ние лежит в основе генетических построений и является базой прогнозно-поисковых моделей.

Изучению металлоносности рудообразующих флюидов посвящено много работ теоретического характера и только немногие публикации, как пра-