т. 245

К ВОПРОСУ ОБ ОСНОВНОМ ЗАКОНЕ АДИАБАТИЧЕСКОГО ФАЗООБРАЗОВАНИЯ

С. В. ПОЛОЖИЙ

(Представлена научным семинаром кафедры ТЭУ)

Как известно, под адиабатическим фазообразованием понимается изменение агрегатного состояния нагретой жидкости, насыщенного пара или двухфазной системы жидкость — пар без теплообмена с внешней средой путем сброса давления первоначальной системы.

Адиабатическое фазообразование является обобщенным процессом и может протекать по конечному фазообразующему эффекту в трех направлениях, в зависимости от начального состояния системы:

при изоэнтропическом сбросе давления нагретой жидкости или двухфазной системы с преобладанием жидкой фазы происходит в конце процесса образования паровой фазы — адиабатическое парообразование (АП);

при изоэнтропическом сбросе давления насыщенного пара или двухфазной системы с преобладанием паровой фазы образуется жидкая фаза — адиабатическая конденсация (АК);

при изоэнтропическом сбросе давления двухфазной системы равного весового отношения (X=Y=0.5) процесс протекает без видимого изменения агрегатного состояния как в промежуточных, так и в конечном состоянии— соотношение фаз не меняется при любой величине сброса давления $X=Y=0.5=\mathrm{const}$ — процесс равного фазообразования.

Основными свойствами адиабатического фазообразования во всех его модификациях являются: образование новой фазы, кинетической энергии и дисперсирование потока.

Образование новой результирующей фазы в конце процесса при изоэнтропическом сбросе давления— насыщенного пара или жидкости всегда происходит в направлении, противоположном исходной фазе при одноагрегатном начальном состоянии или преобладающей фазе при начальном двухфазном состоянии системы.

Кинетическая энергия потока при адиабатическом фазообразовании может иметь различную величину и зависит от соответствующей организации процесса, исходного состояния фазы перед фазообразующим элементом — насыщенный пар, насыщенная жидкость, двухфазное состояние и соотношение между фазами, а также от величины и интервала сброса давления, начального и конечного давления.

Дисперсность потока адиабатического фазообразования также зависит от многих факторов и возрастает с увеличением интервала давления, величины сброса давления, с повышением начального давления, а также зависит от начального состояния системы жидкость — пар, двухфазная система и ряда других факторов.

Все эти особенности и свойства адиабатического фазообразования являются следствием основного закона этого процесса природы.

При изоэнтропическом сбросе давления однофазной или двухфазной системы Н₂О одновременно протекают два противоположных процесса адиабатическая конденсация и адиабатическое парообразование с одинаковой степенью интенсивности и в равных количествах на весовую единицу жидкой или паровой фазы с образованием новой фазы, кинетиче-

ской энергии и с дисперсированием двухфазного потока.

Естественным источником адиабатического фазообразования являются широко распространенные в природе высокосжатые нагретые воды, пар или двухфазная система. В районах действующих вулканов и в сейсмических районах процесс адиабатического фазообразования протекает в естественных условиях в виде гейзеров или паровых «фонтанов» с проявлением основных свойств этого процесса — генерацией новой фазы, кинетической энергии потока и дисперсирования двухфазного потока. При сбросе давления нагретой высокосжатой воды протекает адиабатическое парообразование; при выходе через трещину или скважину двухфазной системы или насыщенного пара — процесс адиабатической конденсации. Количество новой фазы, кинетическая энергия потока и его дисперсность также зависят от величины и характера сброса давления, от начального состояния системы, гидравлических потерь, которые в той или иной степени могут отличаться от изоэнтропического сброса давления и влиять на соотношение фазообразующего и энергетического эффекта этого процесса.

Как показывают экспериментальные исследования адиабатического фазообразования, экспериментальные исследования и практика использования кинетической энергии во влажнопаровых турбинах, получается высокая степень завершения процесса адиабатического фазообразования, и кинетическая энергия процесса по своей величине оказывается близкой к теоретическому значению изоэнтропического процесса. Эти обстоятельства позволили использовать термодинамические зависимости и теоретическим путем обосновать основной закон адиабатического фазообразования [1, 2, 3]. При изоэнтропическом сбросе давления одного кг насыщенного пара количество жидкости в конце завершенного процесса определяется из соотношения $Y = \frac{S_0'' - S_1''}{r_1} T_{\rm H1}$. При изоэнтропическом сбросе давления κz насыщенной жидкости в конце завершенного

процесса образуется пар $X_1 = \frac{S_0' - S_1'}{r_1} T_{\text{H1}}$.

В промежуточных состояниях, как только возникла новая фаза или при сбросе давления двухфазной системы, в дальнейшем каждая фаза, по мере последующего сброса давления, ведет себя в соответствии с общей природой этого процесса. В какой-то момент сброса давления паровая фаза начинает конденсироваться, а жидкая фаза — испаряться. Дальнейшее падение давления вновь воздействует как на паровую, так и на жидкую фазу. Побудителем этого процесса является непрерывное падение давления системы и стремление паровой и жидкой фазы прийти в соответствие с их термодинамическим состоянием при новом, более низком давлении. Соотношение фаз в процессе элементарного сброса давления системы $(Y_0 - \Delta X) + (X_0 - \Delta Y) = 1$. Жидкая фаза будет ис паряться и убывать на величину $\Delta X = \frac{S_0' - S_1'}{r_1} T_{\text{H1}} \cdot Y_0$. Паровая фаза

будет конденсироваться и убывать на величину $\Delta Y = \frac{S_0^{''} - S_1^{''}}{r} T_{\text{H1}} \cdot X_0$. В новом состоянии система будет иметь вид $Y_1 + X_1 = 1$. Из этих соотношений видно, что образование каждой фазы пропорционально количеству исходной фазы, имея в виду, что $S_0^{'}-S_1^{''}\approx S_0^{''}-S_1^{''};$ r_1 и $T_{\rm H1}$ имеют одинаковое значение как для паровой, так и для жидкой фазы при давлении P_1 . Из уравнения $(Y_0-\Delta X)+(X_0-\Delta Y)=1$ и вышеприведенной зависимости определяются условия конечной направленности и конечный результат адиабатического фазообразования при изоэнтропическом сбросе давления, количественный перевес и преобладание одного процесса (АК, АП) над другим как в промежуточных, так и в конечном состоянии сброса давления системы.

При $y_0 < \Delta X$; $\Delta y > \Delta X$ — адиабатическая конденсация;

При $y_0 > \Delta X$; $\Delta y < \Delta X$ — адиабатическое парообразование;

При $Y_0 = X_0$; $\Delta Y = \Delta X - A\Phi$ — процесс равного фазообразования.

Основной закон адиабатического фазообразования, количественные характеристики $A\Phi$ хорошо иллюстрируются диаграммой фазового состояния H_2O в T—S-координатах [1-3]. Диаграмма фазового состояния H_2O позволяет произвести анализ влияния величины и интервала изоэнтропического сброса давления, начального и конечного давления, соотношения паровой и жидкой фазы на фазообразующий и энергетический эффект, определить предельное значение новой фазы в конце процесса, кинетической энергии потока и т. п., которые уже известны из

литературы [1, 3].

Основной закон адиабатического фазообразования, открытый на основании теоретических и экспериментальных исследований, является, в свою очередь, следствием «зеркальности» процессов адиабатического фазообразования, тождественности адиабатического парообразования адиабатической конденсации, их одной и той же природы, обусловленной идентичностью и равенством физических и термодинамических свойств и параметров для одного и того же уровня давления. Для данного конечного давления теплота парообразования при адиабатической конденсации (индекс «к») $r_{\rm K}$ в точности равна теплоте фазообразования при адиабатическом парообразовании (инд. «п») $r_{\rm R}$. Температуры насыщения жидкости и пара не отличаются для данного конечного давления для процесса АП и АК. Энтальпия жидкости этих процессов $i'_{(K)} = i''_{(R)}$, насыщенного пара $i''_{\rm K} = i''_{\rm R}$, энтропии $S'_{\rm K} = S'_{({\rm II})}$, $S''_{({\rm K})} = S''_{({\rm II})}$. Поверхностное натяжение жидкости одно и то же как для образования капелек, так и для пузырьков пара для данного уровня давления системы. Сохраняются одни и те же условия для зарождения паровой и жидкой фазы.

Другим важным свейством адиабатического фазообразования является стремление системы в процессе сброса давления прийти в соответствующее состояние, отвечающее данному уровню давления. При данном конечном давлении двухфазная система при АФ обязательно должна иметь физические и термодинамические свойства и параметры насыщен-

ного пара и жидкости.

Метастабильное состояние системы, нарушение равновесного состояния при ${\rm A}\Phi$ является временным, переходным процессом, обеспечивающим зарождение жидкой и паровой фазы, результатом поверхностных сил, пузырьково-капельной природы фазовых переходов ${\rm H}_2{\rm O}$ жидкость — пар. Количественные и качественные характеристики адиабатического фазообразования зависят от величины, интервала и характера сброса давления, а также от состношения жидкой и паровой фазы в исходном состоянии процесса. Условия зарождения паровой и жидкой фазы и дальнейшего развития фаз идентичны как для ${\rm A}\Pi$, так и для ${\rm A}K$ при одних и тех же условиях процесса. При одной и той же температуре насыщения над плоской поверхностью $T_{\rm H}$ и табличного давления $P_{\rm H}$ давле-

ние пара в пузырьке и температура в нем при АП будет определяться поверхностными силами $P_{\rm n}=P_{\rm H}-\frac{2\,\sigma}{\xi}$ и оказывается ниже $T_{\rm H}$. Давле-

ние жидкости в капельке при этих же условиях, наоборот, оказывается на такую же величину выше давления насыщения в потоке.

$$P_{\mathrm{m}} = P_{\mathrm{h}} + \frac{2 \cdot \sigma}{\xi} \quad P = P_{\mathrm{n}} - P_{\mathrm{h}} = P_{\mathrm{m}} - P_{\mathrm{h}} = \pm \frac{2 \cdot \sigma}{\xi}.$$

Вследствие этого, одна и та же температура потока одновременно создает условия зарождения как для пузырьков, так и для капелек жидкости в потоке. Каждая фаза при данной величине изоэнтропического сброса давления в соответствии с основным законом фазообразования ведет себя совершенно идентично, одновременно возникая и развиваясь с одинаковой степенью интенсивности и в равных количествах на одно и то же весовое количество жидкой и парообразной фазы.

Интервал сброса давления, в свою очередь, будет оказывать различное влияние на кинетику адиабатического фазообразования при одной

и той же величине сброса давления [1, 3].

Адиабатическое фазообразование как изолированный от внешней среды процесс протекает в строгом соответствии с материальным и энергетическим балансом системы. Сохранение этих балансов определяет внутреннюю природу процесса адиабатического фазообразования, его специфические свойства и закономерности. Изменение агрегатного состояния системы при сбросе давления является условием соблюдения закона сохранения энергии и вещества для этого процесса, определяет фазообразующий и энергетический эффект, идентичность процессов АП и АК, кинетику этого процесса. При изоэнтропическом сбросе давления насыщенной жидкости ($V_0 = 1$) с P_0 до P_1 располагаемый потенциал энергии определяется энтальпией жидкости (при C = 0) i^1_0 в начальном состоянии, который не может быть изменен при более низком давлении системы. Для соблюдения этого жидкость вынуждена менять свое агрегатное состояние — переходить в двухфазную систему с одновременной генерацией кинетической энергии, связанной со сбросом давления.

$$i'_0 = i''_1 \cdot X_1 + i'_1 \cdot Y_1 + H'_1; \quad H'_1 = i'_0 - [i'_1 + (S'_0 - S'_1) T_{H1}]$$

При изоэнтропическом сбросе давления насыщенного пара система также вынуждена менять свое агрегатное состояние ввиду иных параметров жидкости и пара при более низком давлении и перехода части тепловой энергии в кинетическую энергию потока.

При наличии необратимых процессов снижается энергетическая эффективность ($A\Phi$) и одновременно изменяется фазообразующий эффект ($A\Phi$), без нарушения энергетического и материального баланса системы. При изоэнтропическом сбросе давления двухфазной системы изменение каждой фазы будет также протекать в соответствии с основным законом $A\Phi$.

$$X_{0} + Y_{0} = X_{1} + Y_{1} = (X_{0} - \Delta Y_{1}) + (Y_{0} - \Delta X_{1});$$

$$\Delta Y_{1} = \frac{S_{0}^{"} - S_{1}^{"}}{r_{1}} T_{H_{1}} \cdot X_{0}.$$

$$\Delta X = \frac{S_{0}^{'} - S_{1}^{'}}{r_{1}} T_{H_{1}} \cdot Y_{0}; \quad \frac{S_{0}^{"} - S_{1}^{"}}{r_{1}} T_{H_{1}} = \frac{S_{0}^{'} - S_{1}^{'}}{r_{1}} T_{H_{1}}.$$

$$\Delta Y_{1} = \alpha \cdot X_{0}; \quad \Delta X_{1} = \alpha \cdot Y_{0}.$$

Сохранение материального и энергетического баланса, действие основного закона АФ определяют предельные возможности этого прцесса

по кинетической энергии и по фазообразующему эффекту. В частности, система никогда не может достигнуть однофазного состояния в конце процесса, как это возможно в процессе изменения агрегатного состояния с внешним теплообменом и при неизменном давлении.

Основной закон АФ, сохранение внутреннего энергетического и материального баланса системы определяют кинетику адиабатического фазообразования, фазосбразующий и энергетический эффект этого процесса. В этой связи непригодными являются современные представления газодинамики двухфазных сред, кинетики расширения влажного пара в паровых турбинах, теоретические основы влажнопаровых турбин, методика экспериментальных и теоретических исследований потерь от влажности, построенных на понятиях непрерывного ординарного роста капелек жидкости за счет теплообмена — передачи тепла от жидкости к пару при его расширении в проточной части влажнопаровых турбий и другие представления [4, 5], не связанные с понятием адиабатического фазообразования [4, 5].

Такое традиционное представление кинетики и физической сущности расширения влажного пара в соплах паровых турбин не обеспечило даже правильной постановки теоретических и экспериментальных исследований потерь от влажности в паровых турбинах в отечественной и зарубежной практике [1, 6, 7].

ЛИТЕРАТУРА

1. С. В. Положий. К вопросу о кинетике процесса конденсации пара в турбинной ступени. Изв. ТПИ, том. 137, 1965.

2. С. В. Положий. Паросиловые установки с адиабатическим парообразованием.

Изв. вузов СССР. Энергетика, № 1, 1965

3. С. В. Положий. Адиабатическое фазообразование. Информ. бюллетень по проблеме перевода ТЭ на адиаб. фазообр. ТПИ, № 4, 1969.

4. М. Е. Дейч, Г. А. Филиппов. Газодинамика двухфазных сред. Энергия, 1968. 5. И. И. Кириллов, Р. М. Яблоник. Основы теории влажнопаровых турбин. Машиностроение, 1968.
6. С. В. Положий. К вопросу влияния влажности пара на КПД турбинной ступени. Изв. вузов СССР. Энергетика, № 7, 1962.

7. С. В. Положий. Еще раз к вопросу влияния влажности пара на КПД турбинной ступени. Изв. вузов СССР. Энергетика, № 3, 1963.