ОЧИСТКА СТОЧНЫХ ВОД КОКСОХИМИЧЕСКОГО ЗАВОДА ОТ МАСЕЛ С ПРИМЕНЕНИЕМ ТВЕРДЫХ НОСИТЕЛЕЙ, ОБРАБОТАННЫХ КАТИОНОАКТИВНЫМ ВЕЩЕСТВОМ

С. А. БАБЕНКО, Л. Ф. ПРОСЕКОВА

(Представлена научным семинаром кафедр ПМАХП и ОХТ)

Флотациснный метод нашел широкое применение для очистки сточных вод от эмульгированных частиц нефти, смол, масел, так как имеет следующие преимущества: 1) флотационные машины, занимая малую площадь, имеют большую производительность; 2) незначительные капитальные и эксплуатационные расходы; 3) простота обслуживания. Однако для очистки сточных вод коксохимических заводов от масел данный метод пока не находит применения из-за особенности физического состояния масла в сточных водах, обусловленного находящимися в них примесями. В частности, сточная вода Кемеровского коксохимического завода в своем составе содержит следующие вещества (в z/n): фенолы — 0,22, цианиды — 0,16, роданиды — 0,5, пиридиновые основания — 0,145, нафталин — 0,021, смолы — 0,071, масла — 0,588 (анализ сточной воды в конце декабря 1969 г.). Вода содержит большое количество ми-

Таблица 1

Результаты флотационной очистки сточной воды кварцем (крупность — 10 мм), предварительно обработанным анп (РН=9, температура 20°С, начальное содержание масла 0,57 л)

Порядок загрузки кварца	Содержание масла в очищенной воде, z/n	% очистки
1	0,095	81
2	0,107	79
3	0,113	77
4	0,120	76

неральных примесей, и рН воды равно 9. Значительная щелочность и наличие фенолов и пиридиновых оснований, обладающих гидротропными свойствами [1], способствует переводу части масла в истиннорастворимую форму. Поэтому флотационные методы очистки, дающие высокие результаты, когда масло находится в виде эмульсии, будут малоэффективны для той части масла, которая находится в растворенном виде.

Для повышения извлечения масла в пенный продукт

предлагается добавлять к сточной воде катионоактивное вещество —

аминонитропарафин (АНП).

АНП обеспечивает снижение содержания масла до нужных пределов, что было проверено исследованиями на нескольких пробах сточной воды завода. Но поскольку АНП обладает бактерицидными свойствами, в случае его накапливания в воде последняя не будет подвергаться биологической очистке. В этой связи, используя способность АНП

не десорбироваться с поверхности минералов в щелочной среде [2], проводились опыты по очистке сточной воды кварцем, предварительно обработанным амином. Такой кварц легко переходит в пену, адсорбируя на своей поверхности масло. В пену переходит также некоторое количество воды, после ее отделения от кварца последний вновь загружался во флотомашину с новой порцией воды. Таким образом, один и тот же кварц (раз обработанный АНП) использовался как гидрофобная добавка с целью более полного извлечения масла из сточной воды.

Соотношение твердого к жидкому во флотационной камере равнялось 1:2. Результаты опытов (табл. 1) свидетельствуют о принципиальной возможности такой очистки воды от масел. Расход АНП при этом составлял — 180 мг/л сточной воды (определялось по количеству за-

крепленного амина на поверхности кварца).

Таким образом, для снижения перехода АНП в очищаемую воду можно рекомендовать флотацию с применением носителей, обработанных катионоактивным веществом.

ЛИТЕРАТУРА

1. Л. А. Польстер. Физико-химические особенности и гидрогеологические фак-

торы миграции природных растворов. Изд. «Недры», М., 1967.
2. В. И. Классен, В. А. Мокроусов. Введение в теорию флотации. Госгортехиздат, М., 1959.