Том 250

1975

ВУЛКАНИЗАЦИЯ СКС-30 АРМ-15 В ПРИСУТСТВИИ СТЕАРИНОВОКИСЛОГО 9-ЭТИЛ-3,6-ДИАМИНОКАРБАЗОЛА

В. Д. БОГОСЛОВСКИЙ, Н. И. ЮХНОВЕЦ

(Представлена научно-методическим семинаром органических кафедр химикотехнологического факультета)

Сополимерные бутадиен-стирольные маслонаполненные синтетические каучуки, к ним относится и СКС-30 АРМ-15, при смешении с остальными ингредиентами резиновой смеси не требуют предварительной пластикации. Относясь к каучукам общего назначения, маслонаполненные бутадиен-стирольные каучуки получили широкое применение в производстве резиновых изделий прессовой вулканизации (шин, РТИ, фор-

мовой резиновой обуви).

Задачи повышения производительности вулканизационного оборудования при вулканизации изделий в форме требуют создания быстро вулканизующихся резин с определенным комплексом физико-механических свойств и отсутствием склонности к преждевременной вулканизации. В общем случае ускорение вулканизации достигается рациональным выбором и дозировкой комбинации ускорителей вулканизации и вулканизующегося агента. Для бутадиен-стирольного и некоторых типов других СК рекомендуются ускорители замедленного действия типа сульфенамидных.

Амины активируют ускорители вулканизации группы тиазола. В присутствии активированных основаниями ускорителей жирные кислоты могут оказывать дополнительное активирующее действие. Активирующее действие оснований частично компенсируется действием жирных кислот. Поэтому, применяя жирные кислоты и активированные основаниями ускорители типа меркаптопроизводных, можно увеличить период сохранения текучести резин при температуре вулканизации с одновременным улучшением физико-механических свойств вулканизатов [1].

Целью работы была проверка возможного активирующего действия стеариновокислого 9-этил-3,6-диаминокарбазола на вулканизацию стандартной смеси типа протекторной для шин. Смесь готовилась на каучуке СКС-30 APM-15. Ускоритель вулканизации — альтакс (бензотиазол-

дисульфид).

Синтез стеариновокислого 9-этил-3,6-диаминокарбазола включал несколько стадий. Первой стадией было получение 9-этил-3,6-динитрокарбазола нитрованием 9-этилкарбазола дымящей азотной кислотой в среде нитробензола.

На второй стадии полученный динитрокарбазол восстанавливался оловом и соляной кислотой в среде уксусной кислоты. Получающийся 9-этил-3,6-диаминокарбазол — неустойчивое, легко окисляющееся сое-

Физико-механические показатели опытных резин и вулканизатов на СКС-30 APM-15. Температура вулканизации 143°C

Смесь	1					2				. 3					
Смесь	Время вулканизации, мин				Время вулканизации, мин				Время вулканизации, мин						
Показатели	10	20	30	45	90	10	20	30	45	90	10.	20	30	45	90
Пластичность смеси на-			0,40					0,32			K	- 	0,37		
Пластичность после 60- минутного кипячения в воде			0,46					0,31					0,34		
Прочность на разрыв, кг/см²	8	40	125	195	261	25	60	130	220	262	32	104	196	250	278
Относительное удлинение, %	1100	1300	1200	1000	810	960	1110	1100	870	650	1070	1050	1000	860	670
Остаточное удлинение, %	140	120	110	60	38	120	110	62	50	30	110	68	52	40	24
Твердость по Шору	16	26	34	36	45	32	35	38	42	47	28	37	43	45	50
						- 37 - 4 - 4								0	
Эластичность по Шобу	28	27	27	28	28	29	27	27	28	29	27	27	28	29	28
Коэффициент старения (144 часа при 70°С) вулканизата 60 минут							· \								
По прочности	230:270=0,85				270:260=1,04				256:285=0,94						
По относительному уд- линению	680:900=0,73				600:780=0,77				550:800=0,69						

динение. Поэтому соляную кислоту брали с избытком и получали более

стойкую солянокислую соль диамина.

На последней стадии получался стеариновокислый 9-этил-3,6-диаминокарбазол. Солянокислый диамин нейтрализовали расчетным количеством щелочи, и быстро отфильтрованный 9-этил-3,6-диаминокарбазол переносился в горячий раствор стеариновой кислоты в бензоле.

Реакционная масса отфильтровывалась, и при охлаждении из фильтрата выпадала соль в виде белого кристаллического вещества с температурой плавления 70—76° С. Выход соли составлял 94% от теорети-

ческого.

Опытные резиновые смеси были приготовлены по следующим рецептам (в % на 100 весовых частей каучука):

	Рецепт І	Рецепт 2	Рецепт 3
CKC — 30 APM — 15	100	100	100
Стеариновая кислота	2,0	2,0	2,0
Белила цинковые	5,0	5,0	5,0
Сажа газовая	50	50	50
Cepa	2,0	2,0	2,0
Альтакс	2,0	1,0	1,5
Стеариновокислый 9-этил-3,6	-		
диаминокарбазол	_	2,4	1,2

Рецепт I — стандартный для каучука СКС-30 APM-15 — типовой протекторной смеси. Дозировки ускорителей в смесях эквимолекулярны. Соотношение дозировок 0,5:0,5 молярных для смеси 2 и 0,75:0,25 — для смеси 3.

Опытные смеси вулканизовались в прессе при 143±1° С. Физико-механические показатели опытных резин и вулканизатов определялись по

стандартным методикам [2].

Опытные резиновые смеси не склонны к преждевременной вулканизации. Вулканизаты резин, вулканизованных в присутствии стеариновокислого 9-этил-3,6-диаминокарбазола, отличались высокой прочностью, лучшей упругостью и более широким плато вулканизации. Остальные по-казатели аналогичны таковым для контрольной смеси с одним ускорителем — альтаксом.

Резиновые смеси на комбинации ускорителей в начале процесса вулканизовались быстрее. Время достижения оптимума вулканизации, по произведению упругости, составляет для контрольной смеси 1 и опытной 2-45 мин, а для опытной смеси 3-30 мин. Опытные смеси отличаются

лучшей теплостойкостью.

Из анализа результатов физико-механических испытаний опытных резин и вулканизатов следует, что стеариновокислый 9-этил-3,6-диамино-карбазол в комбинации с альтаксом служит активным противостарителем и ускорителем вулканизации резин на СКС-30 АРМ-15. Резины не склонны к преждевременной вулканизации и дают вулканизаты с улучшенными физико-механическими характеристиками. Время вулканизации можно уменьшить.

ЛИТЕРАТУРА

^{1.} В. Гофман. Вулканизация и вулканизующие агенты. «Химия», Л., 1968. 2. Резина. Методы испытаний. Стандартгиз, М., 1960.