1970

Некоторые аспекты катализа термического разложения перхлората аммония

Р.Н.Исаев, Ю.А.Захаров

(Представлена научным семинаром кафедры радиационной химии)

Вопросам катализа термического распада перхлората аммонея (ПХА) гетерофазными добавками посвящено значительное число исследований (см., например [1,2])

Нами в предыдущей работе [3] на основании масс-спектрометрического анализа газообразных продуктов распада ПХА, дерыватографии и ДТА смесей добавок с ПХА было предложено демение исследованных добавок на три группы — в зависимости от жарактера влияния их на термораспад.

В соответствие с этой классификацией, I-ю группу катализаторов составляют окислы некоторых металлов переменной вежентности (Co_2O_3 , Ni_2O_3 , видимо другие окислы жежеза, кобальта, никеля) в Cz_2O_3 [2], химически
(твердофазно) не взаимодействующие с ПХА.

Во 2-ю группу входят добавки, реагирующие с перхлоратом (из числа опробованных — CaO и другие окислы
и соли щелочно-земеньных металлов). 3-я группа добавок
включает окислы, влияющие на скорость термораспада ПХА не
только вследствие твердофазной реакции с ними, но и по
иным причинам. Сюда относятся из числа изученных — ZnO,

CdO [4-6] . В результате взаимодействия ПХА с добавками 2 и 3-ей групп образуются перхлорати металлов [3,6].
Причины ускорения при этом распаде ПХА считаются выясненными [5,6] и связанными с образованием легкоплавких
ветектик в системах ПХА — перхлорат металла, т.е. с переводом термолиза ПХА в распавь. Наряду с изложенной, возможны, видимо, и другие причины наблюдаемых изменений скорости термораспада (например, поляризационная сила катиона [6]) добавками этих двух групп.

Очевидно, что механизм и причины влияния на скорость термораспада ПХА добавок I-ой группы должны быть иными, не овязанными с хим. взаимсдействиями в системах ПХА - добав-ка.

В ряде работ по термораспаду ПХА считается, что лимитирующей стадией разложения ПХА является разложение НСЕО₄ [7], образующейся в результате протонного перехода [8]: NHu+ CEO₄ --- NH₂ + HCEO₄.

В связи с этим разумно предположить, что добавки, весьма значительно Э (в десятки или даже в сотпи раз) увеличивающие скорость термораспада ПХА, влияют именно на эту (лимитирующую) стадию процесса.

Ускорение неорганическими полупроводниками термораспада НСЕО, действительно, было обнаружено недавно в работах Коробана [9] и Шольмоши [10]. При этом в работе [9] разложение 70%-ной НСЕО4 производилось в замкнутом объеме, а в [10] кислота разлагалось в газовой фазе; круг опробованных катализаторов при этом весьма ограничен.

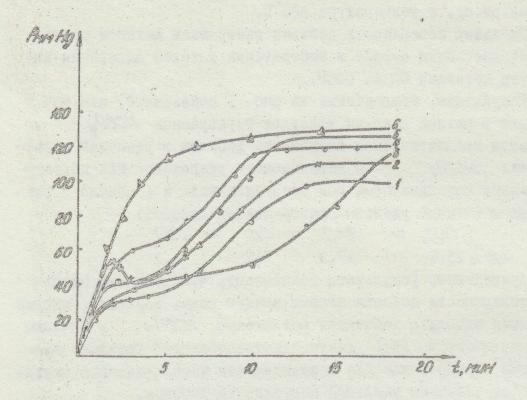
В связи с изложенным, в настоящей работе мы провели начальное изучение каталитического разложения раствора НССОф на различных матализаторах (содержащих окислы всех 3-х групп) и в условиях, аналогичных имевшим место в работе [3].

Прежде всего, опыты по разложению смесей ПХА с добавками в ионном источнике масс-спектрометра МИ-I305 показали, что количество хлорной кыслоты в продуктах разложения омесей ПХА с добавками значитель о меньше, чем в опытах по термораспаду чистого ПХА. Так, интенсивность пика $HCEO_{\phi}$ в масс-спектрах продуктов распада смеси 90% смеси 90% ПХА + I0% $Co_2O_3 \sim$ в 50 раз, в смеси 90% ПХА + I0% $CdO \sim$ в 6 раз, в смеси 90% ПХА + I0% $CdO \sim$ в 5 раз, в смеси 90% ПХА + I0% $CdO \sim$ в 5 раз, в смеси 90% ПХА + I0% $CdO \sim$ в 5 раз, в смеси 90% ПХА + I0% $CdO \sim$ в 5 раз, в смеси 90% ПХА + I0% $CdO \sim$ в 5 раз, в смеси 90% ПХА + I0% $CdO \sim$ в 4,5 раза меньше интенсивности пйка кислоты при распаде чистого ПХА в аналогичных условиях.

Таким образом, уже эти данные указывают на катализ добавками термораспада НСЕСи .

Разложение 57% раствора *НСЕО*4 изучалось нами на установке, описанной в [II] , газообразные продукты распада кислоты анализировались на масс-спектрометре мX-I303. Разложение проводилось при сстаточном давлении воздуха 205 мм.рт.ст. и температуре 220°C.

Удельная поверхность добавок измерялась методом термической десорбции аргона в лаборатории глзовой адсорбции института катализа СО АН СССР.


Результаты, приведенные на рис. І показывают, что всо добавки в разной степени ускоряют термораспад НСЕО4 . При этом каталитическая активность добавок в реакциях термораспада НСЕО4 и термического разложения ПХА по ряду изученных катализаторов ментется одинаково и симбатно с уве-личением величин удельных поверхностей окислов:

$$Syd^{\frac{3}{2}} 23,6$$
 $ZnO > Cd > CaO$ $Syd^{\frac{3}{2}} 23,6$ $I7,2$ $7,2$ $3,2$

Приведенные результаты показывают, что величина удельной повершности добавки играет важную роль. Возможно, именно
с фактом катализа добавками разложения НСЕО4 и связаны
наблюдавшиеся в [I1] факты "дистанционного" катализа добавками термораспада ПХА и зависимости каталитической активности от величины удельной поверхности добавок.

Из рис. I следует, что термораспад НССОц катализирует также и поверхность ПХА. Это последнее указывает на гетерогенность протекания лимитирующей стадии термолиза ПХА.
Можно считать , в некотором приближении, что одна (возможно - основная) из причин ускорения добавками распада
ПХА состоит во внесении в систему поверхности катализатора,
активность которой в реакции термораспада ПХА выше активности поверхности самого перхлората.

Очевидно, что при термораспаде смесей ПХА с добавками П и II групп каталитическое разложение НСЕО4 на добавке имеет место лишь до момента полного расхода её в твердофазной реакции с ПХА. Данные рис. І показывают, что каталитическое разложение протекает и в этом случае. Однако оно не может быть причиной наблюдаемого ускорелия термораспада ПХА.

Рас. І. Влинене добавок на термическое разложение раствора хлорной кислоты.

I. HCEO4+10% CaO

2. HCEO4+10% CdO

3. HC204

4. HCEO4+10%, NHA CEO4

5. HCEO4 + 10%, ZAO 6. HCEO4 + 10%, CO2O3

поскольку каталитическая активность этих добавок в реакция термораспада *НСЕОд* ниже, чем активность поверхности самого ПХА.

Анализируя в общем случае вопросы о возможных причинах катализ неорганическими полупроводниками термораспада ПХА, следует указать, что наряду с изложений эффект межет бить вызван также ускорением добавками процесса окисления аммиа-ка продуктами термораспада хлорной кислеты [3].

Третья возможная причина каталитического влинии добавов, не проанализированная до ностоящего времени, может состоять в образовании у граници раздела ПХА — добавка — в процессе прогрева или даже в процессе хранения твердих растворов. Вошедине же в решетку ПХА чужне мони могут изменять скорость термораспада, например, по причинам, изложенным в [13].

Не исключена, наконец, возможность, что добавки катадизкруют процесс прямого взаимодействия продуктов термораспада *НСЕО* с ПХА, например, по скеме [9] :

NHUCLOW + Cla O6 -- NHUCLOZ + Cla O7.

Высеме окислы хлора нами были обнаружены масс-спектрометрычески в небельших количествах в продуктах разложения чистого ПХА и смесей его с добавками.

ЛИТЕРАТУРА

- I. А.А. Шидловский, Л.Ф. Шмагин, В.В. Буланова. Изв. ВУЗов, сер. "Хим. и хим. технология", 7, 533 (1965.
- 2. A. Hermony, A. Salmon 8th Symp. on Combustion 1962, p.656
- 3. Р.Н. Исаев, Ю.А. Захаров, В.В.Бордачев.Изв.ГПИ, 199, 84 (1969)
- 4. F. Solymosi, Z. Revesz. Z. amer. allg. Chem. 322,86 (1963)
- 5. F. Solymosi, K. Fonagy. 11th Symp on Combystion 1966, p. 429
- 6. А.В. Болдырева, В.Н. Мозжова, Кинетика и катализ. 7., 734 (1966)
- 7. В.А. Коробан, В.М. Сугункин , Б.С. Светлов. Тезиси докладов, "2 Всесован. сомпозиума по горению и вариву", Ереван, 1969, стр. 204.
- 8. П.Джейкобс, А.Рассел-Джонс. Ракет. тех-ка и космонавтика" .5., 274 (1967).
- Э. В.А. Коробан, Канд. диссертация, МХТИ, Москва, 1968.
- 10. F. Solymosi u op. Comb. and Flame 12,398 (1968)
- II. Р.Н. Исаев , D.A. Захаров, В.В. Болдирев. Ж.физ. химии, 41, 2398 (1967); Изв. ТПИ 199,50 (1969)
- 12. В.В. Болдарев. ДАН СССР 181,1406 (1968)
- I3. А.В. Боидырева, Б.Н. Безруков, В.В.Болдырев, Кын. в катализ, 8 293 (1967).