1970

О влиянии распределения примеси Си^{*}на термическую устойчивость АдN₃ и РБ/N₃)₂

Ю.А.Захаров, Г.Т. Шечков, Г.Г. Савельев, А.П. Бочаров (Представлена научным семинаром кафедры радиационной химии)

В работе [I] нами установлено ингибирование термичесжого распада РВ(Na)2 добавкой Си+ введенной соосахдевичк. Эта добавка увеличивает скор сть термического разложения A_0N_3 , причем изменяет кинетику распада A_0N_3 для $P8/N_3/_2 + Cu^{-4}$ наблюдалось увеличение I-го максимума скорости. Для объяснения этих эффектов нами было предположень, что добавка Смо нариду с вхождением в решетку, частично адсорбируется на поверхности A_GN_3 и $P\delta(N_3)_2$, а соответствующее изменен термической устойчивости систем $P\delta(N_3)_2-Cu^{++}$ и $A_GN_3-Cu^{++}$ являются результатом воздействия продуктоя распада вестойкого азида меди [2] . В данной работе для взучения состояния добавки Си в смещанных кристаллах и причим изменения ею термической устойчивости $PB(N_s)_z$ и AqN_s ecchegobannch monorpactanna unetux AgN3 а также содержаних добавку Си . При этом предполагалось, что в сылу термодинамического равновесия между растворги и твеской фазой при получении монокристалнов в режиме медженной кристаливании. а также вспедствие многократной перекреставивание кристанлов [3] . добавка Си толива быть равномерно распределена по объему кристаллов

МЕТОДИКА ЭКСПЕРИМЕНТОВ

Препараты. Поликристаллические образцы чистых и допированных ионами Си заидов серебра и свинца с размером частиц от 0,01 до 0,03 им получали слосаждением из водных растворов по методике, описанной в работе [4] .

Монокристаллы чистого $PB(N_3)_2$ и содержащего 0, I моль% Cu^{-1} выращивали по методике Аппина [5] .

Кристаллы чистого азида свинца обычно имели в сечения форму правильного шестиугольника и достигали в длину 4 \pm 8 мм. Отдельные кристаллы достигали длины 15мм и имели вес до 15 мг. Добавка меди (П) уменьшает размеры кристаллов $PB(N_3)_2$ в полтора -два раза. Окрасива монокристаллов $PB(N_3)_2 + 0.1\%$ Си равномерная, светлорована.

Монокристаллы чистого AgN_3 и содержащего добавки ионов двухванентной меди получали при перекристаллизации порошкообразных препаратов $AgN_3 * Cu^{++}$ в 17%-ном растворе NH_4OH при температуре 16-21°С. Белые непрозрачные кристаллы чистого азида серебра имели форму сросшихся иголок, достигающих в отдельных случаях в длину 10 мм.

монокристаллы AgN3+Си были неравномерно окрашены, размеры их не превышали I5 мм в длину.

Термическое разложение проводили на дифференциальной установке [6] при давлении IO⁻² + IO⁻⁵торр, а также на весовой установке с чувствительностью спирали IO⁻⁵ г/деление диаграммной ленты, при давлении 5.IO⁻²торр. Для экспериментов использовались IO мг навески пре-

для экспериментов использовались 10 мг навески препаратов, помещаемых в чашечки из тонкой (0,005 мк) альминиевой фольги. Опыты на дифференциальной установке, за исключением опециально оговоренных случаев, проводили при работавщей ловушке с индким азотом.

Спектры ЭПР азидов серебра и свинца, содержащих парамагиитине мони меди, снимали на спектрометре ЭПР-2 [7].

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Добавка Си⁺⁺увеличивает скорость термического распеда менокристациов как азида свинца, так и азида серебра. При этом изменяется кинетика разложения монокристаллов $P\delta(N_3)_2 + Cu^{++}$, распад их протекает в отличие от поликристаллических образцов без индукционного периода брис. I, кривые 2 и 3). В монокристаллах кроме тото нет четкого максимума скорости после 5 минутразложения, что, по-видимому, обусловлено существенным уменьшением доле адсоромрованной на поверхности $P\delta(N_3)_2$ добавки Cu^{++} и преимущественно объемным распределением примеси в реметке $P\delta(N_3)_2$. Скорость термического разложения можетие $P\delta(N_3)_2$ при 245°C значительно ниже скорости термолиза порошков (рис. I, кривые I, 5), что вызращено, видимо, различием дисперсности и степени совершенства кристаллов.

Добавка ионов Си ** катализирует термическое разложение как поли, -так и монокристаллов Яд №3 личие от монокристаллов чистого A_2N_3 , разложение которых протекает с небольшим, но заметным индукционным пориодом, обусловленным скорее всего разогревом навески до температуры опыта, распад поликристаллов $A_2N_3+Cu^{++}$ и чистого AgN_3 , а также монокристаллов $AgN_3 + Cu^{\dagger +}$ протекает без индукционного периода с максимальной скоростью. Эти явления вызваны в случае Яо N3 гист. особенностями его распада, а для образцов $A_9N_3 + Cu^{++}$, по-видимому, низкотермическим разложением адсорбированной на поверхности добавки. В поликристаллических образцах Ад № Сы AaN2 после 40 минут изотермического разложения при 245°С скорость разложения резко уменьшается, а доля разложившегося вещества составляет>80%. Эти препараты Ад N3 + Cu++ имеющие до разложения вий розовых крупинок, после терколива представляют единую спекшуюся губчатую серо-чёрную массу, что скорее всего указывает на плавление разцов при разложении

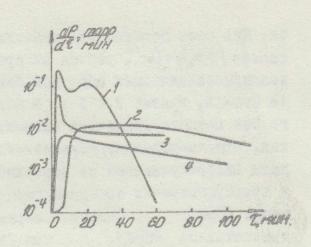


Рис. Г. Скорость разложения поликристаллического $PB(N_3)_2$ гист – f, $PB(N_3)_2 + 0.7$ нель % Cu^2 -L при 240°C и монокристаллов $PB(N_3)_2 + 0.1$ мель % Cu^2 -L $PB(N_3)_2$ гист – f при 255°C, $PB(N_3)_2$ гист – f при 240°C

Рис. 2. Скорость термического разложения поликристаллов A_0N_3 гист — 4, A_0N_3 + 0.1 мель % Cu^4-1 при 240°C и монокристаллов A_0N_3 гист. — 2, A_0N_3 + 0.1 мель % Cu^4 3) при 245° с

Появление нового максимума скорости в поли— и мон— вристаллических образцах $AqN_3 + Cu^{++}$ и увеличением его в поликристаллических образцах $Pb(N_b)_2 + Cu^{+}$ по сравнение о чистыми AqN_3 и $Pb(N_3)_2$ являются, по намему инению, результатом либо адсорбции, либо приповерхностного распределения части примеси Cu^{++} в вристаллах в, как следетие этого, наблюдается выгорание её в ходе разогрева образца до задавной температуры.

Отсутствие резкого ускорения (I-го максимума скорости) разложения в монокристациих $PB(N_3)_2 \rightarrow Cu^{+}$ говорит, что встраивается в узлы решетки и равномерно распределена по

 $Pb[N_{Ny}]_{X}$ кристаллов, что было показано Рябых [8]. Об этом же свидетельствует равнямерная окраска монокристаллов $Pb[N_{3}]_{X}$, содержащих добавку монов меди. Неравномерное, пренмущественно поверхностное распределение Cu^{++} в поликристаллических образцах AgN_{3} и $Pb(N_{3})_{2}$ покавано ваме рядом приемов.

I. Отсутствие в ЭПР спектрах СТС (сверхтонкой структуры) указывает, по мнению Казанского и др. [9], на диполь-дипольное взаимодействие парамагнитных мойов, что возможно при адсорбционном либо повет чостном распределении примесы. На спектрах ЭПР поликристаллических образцов $AgN_3 - Cu^{++}$ и $PB(N_3)_2 - Cu^{++}$ [1] сверхтонкая структура не была разрешена.

2. О поверхностном распределении примеси Cu^{++} свидетельствует также неизменность температуры фазового перехода (180°C) в AqN_3 и AqN_3 —Cu по данным ДТА.

об изменении температуры фазового перехода ряда соеди-

3. В монокристаллах AqN_3 + 0,04 моль % Cu^{**} распределение добавки также неравномерное, преимущественно поверхностное. В таблице I приводится распределение монов меди в монокристаллах AqN_3 + Cu^{**} , которые последовательно растворялись в четыре приема. Общий вес монокристаллов 50 мг

Таблица І Распределение добавки Cu^{+} по объему монокристаллов AgN_3 .

Вес растворенных слоев мгр.	Содержание Си+* в растворе %
9 8	2,9 IO ⁻² 8,2 IO ⁻³
I0 I2	2,I .IO ⁻³ I .IO ⁻⁴

Выгорание добавки при термолизе систем $PS(N_3)_2 - Cu^4$ и $AgN_3 - Cu^4$ доказывается отсутствием сигнала ЭПР после IO-минутного прогрева образцов при температурах I5O и 240° С и обесцвечиванием препаратов при таком прогреве. Стёпени превращения образцов при этом приводятся в табамие 2.6

Кроме того, в ходе равномерного нагрева азида свинца, содержащего моны меди, на дифференциальной установке, в интервале температур $120-150^{\circ}$ С наблюдается каксимум скорости газовыделения, возрастающий при увеличения конщентрации добавки (рис. 3). Такого максимума скорости не наблюдаются при прогреве монокристаллов $PB(N_p)_2$ + 0, 1 можь % Cu^{++} (рис. 3, кривая 4), при этом може вристаллы не обесцве чиваются в течение длительного врежение.

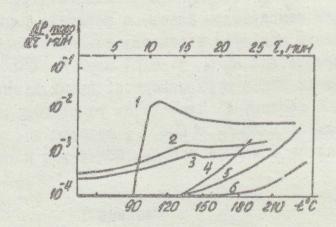


Рис. 3. Изменения скорости термического разложения $PB/N_3/2$ при нагрезе образдов (4 град/мин) 1,2,3 - $PB/N_3/2$ + 0,7,0.3,0.1 можь% См (поликристаллы) сообратственно. 4 - $PB/N_3/2$ +0,1 можь% См (моно-кристаллы) 5,6 - $PB/N_3/2$ чист (поли-и монокристаллы соответственно)

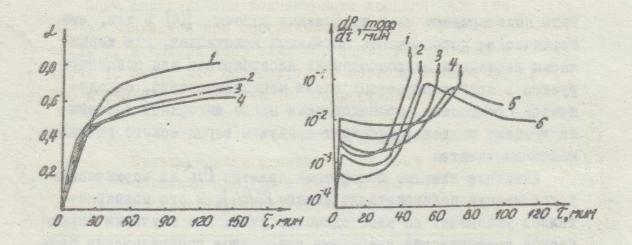
Нама сопоставлены концентрации добавки Cu^* (по N_3^+), введенной при соосаждении в $P\delta(N_1)_2$ (поликристаллы), и потеря веса этих образцов, разложенных в течение IC мин., что соответствует первому максимуму, при 150 и 240°C при давлении 10^{-4} торр (табл.2)

Таблица 2 Сравнетельная оценка потери веса 10 мг. образцов при 150 и 240°С и веса N_3 , соответствующего концентрации Cu в $PB(N_8)_R$

Cocrab	Вес N ₃ соответствучщ. % добавки	Потеря неса при		Потеря васа при	
		d (3)	a (m)	and the state of t	a(Mr)
PB/N ₃ / ₂	ett auss vermittelliten vastet kallet sich diest frauer tretter verzeiten vor, sich in dem Hällig	0,01	0,0003	2	0,056
PB/No/2 +0,1 % Cil	0,0028	650-4	(0:00) E	4	0,11
PB/N3/2+0,3% Cut	0,0085	***	with the second	6,5	0,193
PB(N3)2+0,7% Cut		1	0,028	IO	0.35
PB(No)2 + 8.77. Cut	10 - 10 10 10 10 10 10 10 10 10 10 10 10 10	0,5	0,014	No. of	
прогрев при 150°C 20иин	0,0198	8	0,23	25	0,425

Оказалось, что потеря веса препарата $PB(N_p)_2 + 0.7$ моль% Cu^{\dagger} при ISO° С соответствует содержанию примеси Cu^{\dagger} . Потеря веса в образцах, разложенных при 240° С, значительно превышает потеры веса соответствующую концентрации добавки $Cu^{\dagger\dagger}$ в $PB(N_p)_2$

В первои случае, очевидно, происходит выгорание добавки, так как разложение $PB(N_s)_2$ начинается при температуре > 200°C, а во втором происходит также и разложение


РВ(Ма/г , катализкруемое добавкой Сит.

Поскольку факт выгорания добавки Cu^+ при термическом разложении $AgN_3 + Cu^+$ и $P8(N_3)_2 + Cu^+$; за исключением монокрис-

таллов РВ (N₃)₂+Си^{4,4} установлен, то для выяснения причин наблюдаемых изменений скорости разложения после I-го максимума скорости, нами была исследована термическая устойчивость РВ (N₃)₂ с возможными продуктами термораспала азида меди в наших условиях — Си , Си 0,

 Cu_20 . В работе [II] показано наличие H_20 в $Pb(N_3)_2$ даже после 18 минут изотерми неского разложения при 240° С в вакууме $\sim 10^{-7}$ торр, поэтому образование окислой меди, при разложении Си (N2), выпавлей в отдельную фазу (адсорбировавшейся на поверхности), возможно. Все используемые окислы квалификации х.ч. были просеяны на сите № 23 и тшательно перемешаны с азидом свинца в отношении I : 10 по весу. Избыток окислов в пересчете на Си ион по сравнению с количеством Си++, вводимой соосаждением, взят с целью компенсации малой поверхности колтакта в смеси окисел-азид по сравнению с гомофазной примесью. При термическом разложении спесей на весовой уста-8.10⁻²торр и температуре 240°С эффекновке в вакууме тивность добавок одинанова и все они являются ингибиторами термического разложения $PB(N_3)_2$ (рис. 4).

При разложении этих же смесей при более низком давлении 10^{-5} торр и вымораживании продуктов распада при- 196° С на дифференциальной установке добавка CuO является катализатором, тыгда как Cu и Cu_2O по-прежнему являются интибиторами термического распада $Pb(N_3)_2$ рис. 5. Подобное изменение характера влияния некоторых добавок окислов на термическую устойчивость $A_C N_3$ наблюдалось и в работе [12]. Необычное поведение смеси $Pb(N_3)_2$ — CuO объяснимо при учете развиваеных нами представлений о взаниодействии адсербированных газов и продуктов распада с неразложившимся свидом свинца [II]. Подтверждением этому является увеличение длительности индукционного периода в ходе разложения смеси $Pb(N_3)_2$ при отсутствии ловушки с хидеим азотом (рис. 5).

Рас. 4. Разложение $P8/N_3$ /2 чист. при 245° - (1) и содержищего 10 вес. 2 Си. , соответствен-

Рис. 5. Скорость термического разлонения $P\delta(N_3)_2$ при 245°C I.6.5 - $P\delta(N_3)_2$ " + IC вес % CuO, Cu, Cu_2O , соответственно. 2 - $P\delta(N_3)_2$ чистии 4.3 - $P\delta(N_3)_2$ чистии соответственно, обыты без ловущии с жидким N_2 .

Теринческая устойчивость гетерофазных смесей AgN_3-CuQ , AgN_3-CuQ изучалась в работе [13], где установлено, что окислы CuO и CuQ0 являются катализаторами разложения AgN_3 . Таким образом, наблидаетон симбатность влияния гомофазной примеси Cu^{++} и гетерофазных добавок Cu, CuO, CuQO, которые могут быть продуктами разлада $Cu(N_3)_2$, на термическую устойчивость порошкообразных AgN_3 и $Pb(N_3)_2$. Эти резуль-

таты подтверждают один из выводов работы [14] о том, что термическая устойчивость смещанных кристаллов, где термически нестойкий микрокомпонент адсорбирован или концентрируется в приповерхностных слоях макрокомпонента, определяется процессами, происходящими после выгорания добавки на границе раздела: субстрат-продукты термического распада микрокомпонента.

Активное влияние гомофазной примеси Cu^* на термическую устойчивость поликристаллического $Pb(N_3)_2$, и его монокристаллов указывает на необлодимость учета при изучении термической устойчивости смещанных кристаллов распределения примесей, которяе завивит от условий синтеза [3].

JUTEPATYPA

- I. Г.Т. Шечков, Г.Г. Савельев, Ю.А. Захаров, Изв. ТИИ, 152, 50, 1970.
- 2. K. Singh, Trans. Farad. Soc, 55, 1, 124, 1959.
- 3. В.Г. Хлопин. Избранные труды, т.І, изд. АН СССР, 1957.
- 4. О.А.Захаров, Г.Г. Савельев, В.В. Болдырев, Л.А. Вотинова, Кинетика и калализ, 5,807, 1964.
- 5. А.Я.Аппин, Сб. статей по теории В.В., Оборонгиз, М., 1940, стр. 106.
- 6. Г.Г. Савельев, В.В. Бордачев, Изв. ТПИ, 157, 75 ,1970.
- 7. Л.А. Воеводский, В.В. Блюменфельд, Л.Г. Семенов, Применение х электронного парамагнитного резонанса в химии, Изв. СО АН СССР, Новосибирск, 1962, стр. 35.
- 8. В.П.Пичугина, С.М.Рябых, Изв.ТПИ, ,199,66,1969.
- 9. В.Б. Казанский, З.И.Ежкова, А.Г.Любарский, В.В.Воеводский, И.М.Иоффе, Кинетика и катализ, 2,862, 1961.
- 10. Г Г.Берг. Введение в термографию, Изд. "Наука", М., 1969.
- II. Г.Т. Шечков, Ю.А. Захаров, В.А. Каплин, Г.Г. Савельев, Е.Н. Свободин, Кинетика и катализ, 1970 (в печати)
- 12. **Ю.А.** Захаров, Э.С. Курочкин, Г.Г. Савельев, Ю. Н. Руфов, Кинетига и Катализ, 7,3,425,1966.
- 13. Э.С. Курочкин, Кандидатская диссертация, Томск, 1969.
- I4. Г.Т. Шечков, Настоящий сборник.