ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА ИМ. С. М. КИРОВА

Tom 257

ЭКСПЕРИМЕНТАЛЬНОЕ ИЗУЧЕНИЕ АДСОРБИИИ УГЛЕКИСЛОГО ГАЗА НА ОКИСИ АЛЮМИНИЯ

В.В. Нахалов, Н.Ф. Стась, Г.Г. Савельев

(Представлена научным семинаром кафедры общей и неорганической химии)

Окись алюминия хорошо поглощает углекислый газ [I], поэтому она может быть использована в качестве регенерируемого адсорбента для очистки газов от CO_2 .

Активную окись алюминия получают термическим разложением гидроокиси. В зависимости от условий дегидратации поверхность адсорбента получается химически неоднородной [2]. Вследствие этого, процесси хемосорбции в зависимости от степени дегидратации протекают по-разному.

Изучая ИК-спектры молекул CO_2 , адсорбированных на AI_2O_3 , Финк [3] идентифицировал четыре формы хемосорбции, которые при определенных температурах переходят одна в другую:

Форма I представляетс собой случай слабо связанных молекул ${\rm CO}_2$, которые почти полностью удаляются при комнатной температуре путем вакуумирования. Форма II образуется за счет связывания молекул ${\rm CO}_2$ ионами ${\rm AI}^{+3}$ и смежными ионами кислорода, однако связы непрочная, и углекислый газ в этом случае большей частью также может быть десорбирован вакуумированием. Форма II является доминирующей при комнатной температуре; она образуется с участием групп ${\rm OH}^-$, которые всегда присутствуют на поверхности дегидратиро—209

ванных окислов [4].

Переход формы II в форму II при комнатной температуре в начальный момент идет с большой скоростью, однако состояние равновесия устанавливается лишь росле многих часов, Форма II устойчива до 325° С при давлении CO_2 60 мм рт.ст. и до 200° С — в вакууме IO^{-5} мм рт.ст.

Форма IУ — поверхностный карбонат алюминия образуется при температуре выше 200° С. Этот факт особенно интересен потому, что нормальный карбонат алюминия в обычных условиях не известен.

Для изучения хемосорбции CO_2 на окиси алюминия мы использовали установку на основе весов Мак-Бэна с автоматической записыю изменения веса [5].

Гидроокись алюминия была получена из $Al_2(SO_4)_3 \cdot 18 H_2O$ по обычной методике [6]. Образец гидроокиси алюминия, тщательно растертий в ступке, в количестве 50-IOO мг помещался в реакционный сосуд и вакумировался при комнатной температуре до давления 10^{-3} мм рт.ст.

Разложение проводилось в неизотермических условиях со скоростью нагрева $10-15^{\circ}$ в минуту в вакууме $10^{-3} \div 10^{-4}$ мм рт.ст. Нагревание проводилось до 300° С; при этой температуре образец выдерживался до постоянного веса.

Для изучения зависимости адсорбционной емкости окиси алюминия от давления ${\rm CO}_2$ и температуры нами были сняты изотермы адсорбции при температурах 20, 50 и ${\rm 80}^{\rm O}{\rm C}$ (постоянство температуры поддерживалось с точностью $^{\pm}$ 0,4 $^{\rm O}$).

Полученные изотермы представлены на рис. І.

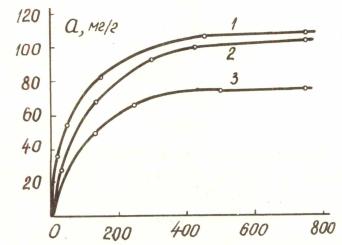


Рис. I Изотермы адсорбции CO_2 на окиси алюминия; $I - 80^{\circ}C$, $2 - 50^{\circ}C$, $3 - 20^{\circ}C$.

Изотермы имеют типичную Лэнгмюровскую форму: с повышением давления ${\rm CO}_2$ величина адсорбции сначала резко, а затем все более медленно возрастает. При 760 мм рт.ст. адсорбционная емкость составляет 76 мг/г при ${\rm 20^{\circ}C}$; с повышением температуры до ${\rm 80^{\circ}C}$ адсорбционная емкость возрастает до ${\rm 108~mr/r}$.

Расчетами по методу Рогинского [7] установлено, что результать экспериментов дают линейную зависимость в координатах $P_Q - f(P)$ Это указывает на то, что изотермы действительно описываются уравнением Лэнгмюра

 $a = a_m \cdot \frac{bp}{1+bp}$,

где О - количество адсорбированного углекислого газа,

р - парциальное давление со2.

 $a_m u b$ - константи, равние для 20° соответственно 84,8 и 0,0119.

Кроме того, по методу Рогинского внчислены изотермические теплоты адсорбции при 20° и 50° С, соответствующие половинному поглощению.

Полученные значения (2090 и 2410 кал/моль соответственно) указывают, что адсорбция ${\rm CO_2}$ на ${\rm AI_2O_3}$ при этих условиях является слабо активированной.

Применяя к полученным изотермам уравнение Клаузиуса — Клапей-

 $Q = \frac{RT_1T_2}{T_1 - T_2} \cdot \ln \frac{\rho_1}{\rho_2},$

где

Q - изотермическая теплота адсорбции;

 $P_1 u P_2$ — равновесние давления для одного и того же количества адсорбированного газа при температурах T_1 и T_2 , мы определили теплоты адсорбили $C0_2$ на AI_20_3 в зависимости от степени заполнения θ .

Полученные (в кал/моль) результати представлени ниже:

0	Q	0	Q
0,05	8350	0,33	3425
0,08	6970	0,41	3230
0,10	5260	0,50	2336
0,17	5260	0,58	2306
0,21	4080	0,62	2170
0,25	3865	0,66	I572

Результаты расчетов теплоты адсороции по методу Клаузиуса-Клапейрона и методу Рогинского (θ = 0,5) хорошо согласуются. Численные значения теплот адсороции указывают, с одной стороны, на неоднородность поверхности адсороента и, с другой стороны, на слабо активированный механизм связывания CO_2 .

Кинетические кривне хемосорбции ${\rm CO}_2$ на окиси алюминия при ${\rm 20^{\circ}C}$ представлены на рисунке 2, из которого видно, что скорость хемосорбции наиболее велика в начальный момент: за 30 минут адсорбируется примерно 50% углекислого газа от равновесного количества, а равновесие достигается за 8-10 часов. Очевидно, для работы адсорбента в реальных условиях представляет интерес начальный участок кинетической кривой.

Наряду с адсорбционной емкостью и кинетикой процесса, в случае регенерируемых поглотителей большое значение имеет стадия регенерирования.

Нами были проведены эксперименты по вакуумной и термовакуумной регенерации на одном и том же образце окиси алюминия. В первом случае адсорбент регенерировался через два часа после начала адсорбщии. При этом путем вакуумной регенерации при давлении 10^{-3} — 10^{-4} мм рт.ст. до постоянного веса удаляется 42,4% хемосорбированной двуокиси углерода. Термовакуумная регенерация при постепенном нагреве до 300° С позволяет удалять 96,6% поглощенной $C0_2$.

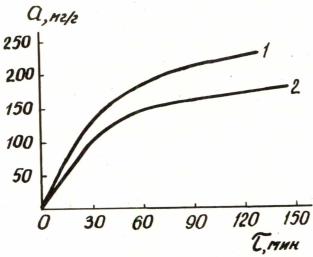


Рис. 2 Кинетика адсороции углекислого газа на окиси алюминия;

I - на свежеприготовленном образце,

2 - после реген рации.

Во втором случае регенерация проводилась через 14 часов после начала адсорощи. В этом случае при вакуумировании десоропруется только 18% хемосоропрованной двускиси углерода. При последующей термовакуумной регенерации при тех же самых условиях ($p = 10^{-3} - 10^{-4}$ мм рт.ст., $T = 300^{\circ}$ C) количество удаленного углекислого газа возрастает до 61%.

Результаты экспериментов по десорбции можно объяснить, исходя из представлений Финка о наличии нескольких форм хемосорбции ${\rm CO}_2$ на окиси алюминия.

Вероятно, в случае, когда десорбция проводится через 2 часа, преобладающей формой адсорбции CO₂ была форма П. В случае, когда регенерация проводится через I4 часов, форма П, по-видимому, переходит в более устойчивую форму Ш и поэтому количество десорбированной CO₂ уменьшается в 2,4 раза (с 42,4% до I7,9%).

ЛИТЕРАТУРА

- I. J.Tuul, " J.Phys.Chem.", 66, N9, 1736, 1962.
- 2. P.Fink, " Z.Chem.", 7, 284, 1967.
- 3. P.Fink, " Z.Chem.", 7, 324, 1967.
- 4. S.J. Gregg, J.D. Ramsay, " J. Phys. Chem.", 73, 1243, 1969.
- 5. Г.Г. Савельев, В.В. Бордачев. Изв. ТПИ, <u>176</u>, 147, 1970.
- 6. Ю.В.Карякин, И.И.Ангелов. Чистне химические реактивы. Госхим-издат. М., 1955.
- 7. Л.С.Харитонова. Методы определения теплоты адсороции на металлах. М., 1968.