ИЗВЕСТИЯ

ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

т. 268

О СОСТАВЕ ЖИДКОГО ПРОДУКТА СИНТЕЗА ИЗ ОКИСИ УГЛЕРОДА И ВОДЯНОГО ПАРА НА ЖЕЛЕЗОМЕДНОМ КАТАЛИЗАТОРЕ

С. И. СМОЛЬЯНИНОВ, А. В. КРАВЦОВ, И. В. ГОНЧАРОВ, В. И. СИГАЕВ, Н. А. САМСИКОВ

(Представлена научно-методическим семинаром ХТФ)

Использование окиси углерода в целях синтеза ценных органических соединений в связи с загрязнением ею атмосферы представляет в настоящее время большой интерес.

Групповой состав продуктов синтеза из окиси углерода и водяного пара в основном определяется применяемым катализатором и давлением. В общем случае эти продукты содержат соединения жирного ряда нормального строения. Углеводороды состоят из парафинов и α-олефинов, а кислородсодержащие соединения включают в себя спирты и кислоты с небольшими примесями альдегидов, кетонов, эфиров. Ароматических и нафтеновых углеводородов, несмотря на их термодинамическую вероятность образования, пока обнаружено не было.

Соотношение алканов и алкенов в углеводородной части продукта зависит от применяемого катализатора. Чем большей гидрирующей способностью обладает катализатор, тем больше предельных соединений. Количество олефинов падает в ряду катализаторов: железо, кобальт, никель. Соотношение между углеводородами и кислородсодержащими соединениями зависит в основном от давления. Молекулярный вес продукта зависит от ряда факторов, таких как давление, температура, объемная скорость и т. д. Нами были проанализированы продукты синтеза из окиси углерода и водяного пара, полученные на железомедном катализаторе при повышенном давлении. Некоторые результаты приведены в табл. І и ІІ.

Как видно из полученных данных, с повышением давления возрастает количество кислородсодержащих соединений и падает доля углеводородов. Молекулярный вес продукта также уменьшается.

Хроматографический анализ подтвердил данные химического анализа. Было установлено, что жидкий продукт представляет собой смесь,

Таблица 1 Разгонка продуктов синтеза во фракциях

	A CONTRACTOR OF THE PARTY OF TH				
	Выход в процентах весовых				
Пределы выкипания	давление 50 ати	давление 100 ю <i>тм</i>			
Фракция, выкипающая до 250° С	50,21	52,43			
Фракция, выкипающая до 350° С	96,38	96,47			
Остаток выше 350° С	3,62	3,53			

Таблица 2

Некоторые результаты опытов

	Степень превра- щения	Масляный слой						Водный слой				
Давление		молекулярны й вес	плотность г/см³	показатель преломления	кислотное число мг КОН г	% кислот в пересчете на С ₁₀	йодное число г на 100 г	% оле- финов	гидрок- сильное число	% спиртов в пересчете на С ₁₀	кислотное число мгКОН г	жислот в пересчете на С ₃
10	72,15	154,3	0,8017	1,4483	0,58	0,75	100,0	60,2	7,21	2,0	1,43	0,19
50	65,31	147,7	0,8217	1,4493	7,41	2,24	65,3	39,8	20,13	5,6	10,31	1,36
100	78,18	143,2	0,8242	1,4554	10,91	10,91	59,1	36,3	66,16	18,7	46,28	6,58

состоящую преимущественно из н-парафинов, олефинов, н-спиртов и н-кислот жирного ряда с числом углеродных атомов от 6 до 21.

Вероятность нахождения того или иного соединения с определенным числом углеродных атомов в жидком продукте подчинена нормальному вакону распределения. При этом максимум вероятности падает на соединения с числом углеродных атомов, равных 12.

Спектральные исследования подтвердили отсутствие ароматических и нафтеновых углеводородов, в то же время для образцов, полученных при 50 и 100 атм, было обнаружено значительное усиление интенсивности полос поглощения в областях, характерных для жирных спиртов и кислот.