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Abstract: Gas hydrates, being promising energy sources, also have good prospects for application in
gas separation and capture technologies (e.g., CO, sequestration), as well as for seawater desalination.
However, the widespread use of these technologies is hindered due to their high cost associated
with high power consumption and the low growth rates of gas hydrates. Previous studies do not
comprehensively disclose the combined effect of several surfactants. In addition, issues related to the
kinetics of CO, hydrate dissociation in the annealing temperature range remain poorly investigated.
The presented review suggests promising ways to improve efficiency of gas capture and liquid
separation technologies. Various methods of heat and mass transfer enhancement and the use of
surfactants allow the growth rate to be significantly increased and the degree of water transformation
into gas hydrate, which gives impetus to further advancement of these technologies. Taking the
kinetics of this into account is important for improving the efficiency of gas hydrate storage and
transportation technologies, as well as for enhancing models of global climate warming considering
the increase in temperatures in the permafrost region.
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1. Introduction

Gas hydrates are ice-like deposits consisting of water and gas. Typically, the prevailing
gas is methane. Gas hydrates are non-stoichiometric compounds. Water molecules form
cage-like structures in which gas molecules are enclosed as guest molecules [1-3]. Gas
hydrates exist in a stable state at very high pressures and relatively low ambient temper-
atures. Huge deposits of natural gas hydrates are located underneath the oceans and in
permafrost regions.

Gas hydrates may consist of different types of gas molecules and be sustainably stored
for a long time under different equilibrium conditions. In addition to the predominant gas
(methane), natural gas hydrates may also contain hydrogen sulfide (H;S), carbon dioxide
(COy), as well as other hydrocarbons, though much less frequently. Hydrates usually form
one of three different repeating crystal structures: structures I (sl), II (sII) (a cubic system)
and the third structure (H) [2-4]. All three structures are implemented in natural conditions,
with the sI being the most common.

Cages of structure I contain smaller gas molecules. The source of such molecules,
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placed in a crystal structure, is a biogenic gas, widespread in the ocean bed deposits.

The unit cell of slI consists of 24 cages (16 small cages and 8 large cages, which are
larger in size than in sI). Natural gas hydrates with sII contain mixtures of gases with
molecules that are larger in size than the ethane molecule, but smaller than the pentane
molecule. The sH is more complex than sl and sl [1,2,5] and contains a cage type with
very large gas molecules (e.g., methyl cyclohexane). The sH hydrates occur naturally in
reservoirs in Barkley Canyon, the Gulf of Mexico, the Caspian Sea and Blake Ridge [6,7].
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The reservoirs contain hydrocarbons such as neohexane, isopentane, methylcyclopentane
and methylcyclohexane.

There are various estimates of natural gas reserves in the form of gas hydrate deposits.
Initial estimates of these reserves ranged between 1.8 x 101 m3 and 2 x 10'® m3 [8]. The
highest estimates of natural reserves (3 x 10'® m?) were based on the assumption that
the gas hydrates occupy the entire floor of the deep ocean [9-11]. By now, it has been
established that the gas hydrates are localized in a narrow depth range (continental shelves)
and that the concentration of gas (methane) there is usually low. Approximate estimates
show that natural gas reserves range between 1 x 10'°-5 x 10> m? [12,13], which is below
the first estimates received. The last estimates of natural gas reserves are confirmed by
a model for predicting the distribution of methane gas hydrate in marine sediments [14].
After all, these reserves are a huge promising source of energy for future generations. In
addition, due to climate change, the reserves of methane and carbon dioxide can have a
substantial impact on climate change on the planet [15,16].

Geo-hazards associated with gas hydrate deposits are usually divided into global and
regional by types of threat. Global climate threats are particular to deep-sea gas hydrate
deposits, as well as reserves of natural gas hydrates in permafrost zones. Existing models
of climate warming demonstrate a more moderate increase in temperature. The faster
warming is assumed to be associated with the additional release of greenhouse gases
from gas hydrate deposits, which may increase in the future and requires more intensive
scientific research [15]. So, in recent decades, there has been a noticeable retreat of the
permafrost zone. Predictive estimates of global warming (the IPCC 2007) [15] show that by
about the year 2100, the mean surface temperature may increase from 1.1 °C to 6.4 °C. The
most likely warming prognosticates an increase in temperature by 4 °C. These estimates
refer to the impact of both the oceans and the permafrost regions. The strongest warming
is ascribed to the permafrost regions in the Northern hemisphere. So, by 2100, warming in
these areas may reach 12 °C [16].

To date, there are no reliable data on methane reserves in and under permafrost
hydrates in the Arctic and Antarctic. Therefore, it is difficult to estimate the amount of gas
released due to warming. At the same time, there are estimates that suggest a significant
increase in the amount of methane in the permafrost region on the East Siberian Arctic
shelf [17-19]. It is assumed that the underwater permafrost is extremely sensitive to regional
warming and covers gas hydrate reserves around the world.

Existing climate warming models are also indicative of the future noticeable increase
in water temperature (IPCC 2007). Seawater at a depth of 200 to 1500 m washes sediments
that contain gas hydrates. However, estimates of the gas release into the atmosphere and,
accordingly, the temperature increase due to the dissociation of gas hydrates vary greatly
because of the high uncertainty of the gas content in gas hydrates in these areas [20-23].
The models predict that the release of methane can add an extra temperature increase of
0.5 °C to global warming without regard to additional water heating. Thus, further studies
are necessary to estimate the amount of methane and other greenhouse gases in and under
gas hydrate deposits. Moreover, it is expedient to further develop models of stability limits
of these deposits, depending on the natural conditions and the composition of the deposits.

2. Combating the Warming by Reducing Anthropogenic Emissions and CO, Separation

Aside from the causal link between natural gas hydrates and climate warming, it
is also extremely important to pay attention to warming issues associated with human
activities. High industrial carbon dioxide emissions can also have a negative impact on
the climate. Earlier, emphasis was placed on the growing influence of methane emissions,
formed during the dissociation of natural gas hydrates, on climate warming. However,
carbon dioxide, which belongs to anthropogenic greenhouse gases, also plays an important
role in climate change. Over the past 3040 years, there has been an increase in annual CO,
emissions by more than 70-80%. To date, the share of carbon dioxide in the total amount of
anthropogenic greenhouse gases (according to forecasts of the Intergovernmental Panel
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on Climate Change (IPCC)) is approximately 75-80% [15]. Therefore, it is carbon dioxide
emissions that increased attention is paid to. Estimates testify that due to the increase in
CO, emissions, the average global temperature on the planet may increase by 1.9 °C as
early as in 2100 [24].

It is generally recognized that in order to reduce the negative impact of anthropogenic
emissions, it is necessary to develop alternative environmentally friendlier energy tech-
nologies [25,26]: for example, nuclear power, biotechnology, biomass processing, as well
as actively developing solar and wind energy. However, today environmentally safe
technologies can meet only a small part of modern energy needs.

In the coming decades, common fossil fuels will remain the major ones due to their low
production costs, as well as ease of storage and transportation. Therefore, in the near future
it will be impossible to significantly reduce CO, emissions by reducing and reengineering
production. A more realistic strategy is aimed at creating highly efficient technologies for
the separation and capture of carbon dioxide from industrial emissions. To reduce the
cost of these technologies, it is necessary to intensify scientific and technological research
in the fields of chemical and physical absorption, membrane technologies and cryogenic
separation, chemical and electrochemical technology, biotechnology, as well as separation
technologies using gas hydrates [25,26]. In recent years, great attention has been paid to
the development of effective technologies for capturing carbon dioxide from industrial
flue gases and emissions of the automotive industry. More attention has been given to the
issues of carbon dioxide storage in natural reservoirs, technologies of gas separation, water
desalination, gas storage and transportation, as well as refrigeration technologies based on
gas hydrates.

Consideration has been also given to the monitoring of methane reserves included
in natural gas hydrates, as well as gas hydrates with carbon dioxide. Due to the high
solubility of carbon dioxide in seawater, as well as the high compressibility of liquid CO,
relative to seawater, liquid carbon dioxide acquires neutral buoyancy at a sea depth of
2500-3000 m [27]. One of the most well-known methods of probing deep-sea reserves of
natural gas and CO; in the form of gas hydrates is marine sounding using the geophysical
electromagnetic method (CSEM technology), which employs an electric dipole source
placed above the seabed. This source transmits a time-varying electromagnetic field.
The CSEM technology facilitates remote mapping of subsurface resistivity distribution
without the need to drill additional wells. Carbon dioxide has less conductivity than
an environment without CO,. Therefore, with sufficient sensitivity of the method, it is
possible to distinguish peaks of conductivity changes at a certain depth. The influence of the
electromagnetic field on the kinetics of gas hydrate growth, as well as on the monitoring of a
formation containing carbon dioxide, is considered in [26,27]. Geophysical electromagnetic
methods are widely used to monitor sequestration of carbon dioxide in an environment
with seawater [27].

The technology of separation of gas hydrates is relatively new and rapidly developing.
The method of successful separation of propane and propylene using gas hydrates served
as the basis for the rapid progress of this technology, which successfully switched to
the technology of separation of mixtures [28,29] and carbon dioxide capture. Integrated
Gasification Combined Cycle of syngas with the use of gas hydrates is already being
applied today and garners great interest. Economic estimates show the high efficiency of
CO; separation by the gas hydrate method in comparison with other generally accepted
methods [30]. The rapid formation of carbon dioxide hydrate is due to the fact that the
pressure at CO; hydrate formation is much lower than that of nitrogen. Thus, at the ice
melting temperature, the equilibrium pressure for the formation of carbon dioxide hydrate
is approximately 1.2 MPa, and for nitrogen hydrate it is approximately 16 MPa.

CO;, hydrates are separated and dissociated to obtain a gas stream with a high content
of carbon dioxide in the pipeline, which is not connected to the external atmosphere. One of
the important problems of this technology is the need to create a high equilibrium pressure
for the formation of hydrates. The physical and chemical features of this technology



Energies 2023, 16, 3318

4 0f 20

are considered in [31,32]. An important method for increasing efficiency is the use of
promoters, which allow the reduction of the pressure with the growth of the gas hydrate.
The advancement of these technologies requires joint research of scientific and scientific—
technical centers dealing with various fields of physics, chemistry and geology.

Another important problem is related to gas extraction from gas hydrate deposits. It
can lead to the loss of strength and subsidence of the seabed [33,34]. The elimination of
such negative consequences and geological hazards requires a non-destructive method
of methane recovery using carbon dioxide or the flue gas injection into natural reservoirs
of gas hydrates [35—42]. This method provides simultaneous performance of both the
methane recovery function and the CO, separation capture function. The injection of
flue gases from industrial waste can be realized without additional separation of carbon
dioxide [41-43]. The largest number of studies is associated with CH4—CO, replacement
in sl hydrates [36,37,43-46]. sH hydrates are also sometimes found at significantly lower
depths of seawater. The smaller drilling depth makes sH hydrates more convenient for
extracting methane and injecting carbon dioxide [47,48].

3. The Use of Gas Hydrates Containing Carbon Dioxide
3.1. The Gas Separation Using Gas Hydrates Containing CO;

The largest number of studies on CH4—CO, replacement concerns gas hydrates with
sl [49-57]. The introduction of the carbon capture and sequestration technologies requires
huge expenditures, which slows down their development, and also explains the insufficient
pace of combating flue gas emissions. The use of gas hydrates for the problems of CO,
capture and sequestration significantly increases the technology’s efficiency [58]. However,
in order to reduce the cost of storage, transportation and disposal, there is a need for
additional studies, which will be considered later.

The submarine geological storage of carbon dioxide based on gas hydrates is one
of the most effective methods. The heat flux from the ambient medium and the hydrate
volume fraction have an essential effect on the dissociation process and the stability of the
gas hydrate [59]. The possibilities and prospects for the development of the technologies of
the hydrocarbon industry for carbon capture, utilization and sequestration are considered
in [60]. The CO; injection into natural gas hydrate reservoirs is discussed in [49-62]. These
methods avoid the need in the initial creation of a gas hydrate with carbon dioxide and
the pressure drop for hydrate formation using promoters, since gas hydrate deposits have
a large depth and high pressure in the rock. Huge natural reserves of gas hydrates also
open up a great prospect for the utilization of greenhouse gases. However, there remains
the problem of delivering the flue gas from industrial enterprises to remote places of
natural deposits.

The processes of the dissociation of gas hydrates at great depths are realized in porous
media. Therefore, it is important to investigate the effect of various porous media on the
kinetics of the growth and dissociation of gas hydrates. The technologies of the CH,;/CO;,
replacement for CO, sequestration in porous media are considered in [63]. This paper
discusses the key mechanisms of hydrate formation in various porous media and provides
an analysis of the gas hydrate formation in various porous materials: activated carbon;
solid and hollow silica with nanoparticles; glass beads. Furthermore, the matter in question
here is problems and limitations in the replacement process, considering: effects on the
use of secondary gas; effects of kinetic and thermodynamics promoters; effects of carbon
dioxide state and pressure; effects of porous media, thermal stimulation and saturation.
Amidst the restrictions on the use of this technology are the low output of methane and a
slow rate of replacement due to an impenetrable barrier of CO, hydrate film formed on
the gas hydrate surface. These problems significantly impair the economic efficiency and
implementation of this technology [63].

The analysis of the technologies of methane production and CO, storage using
the natural gas hydrate-bearing sediment is given in [64]. The paper shows that the
depressurization-assisted replacement could surmount the weakening of the geo-mechanical
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strength of the sediment for depressurization only, and the slow production rate for re-
placement only. It would be useful for low-carbon energy production from the natural gas
hydrate-bearing sediments.

For carbon dioxide utilization, taking into account the location of gas hydrate deposits,
the depth of gas hydrates corresponds to 1000-2500 m. At such a great depth, quite high
pressures and temperatures are realized: hundreds of degrees Celsius and hundreds of
bars [65]. Various methods are used to utilize carbon dioxide and simulate the dissociation
of natural gas hydrate using wells of great depths. Effective methods of extraction, as well
as analysis of data from natural reservoirs are given in [66].

The influence of physical and chemical features of gas hydrates on their technical
application and prospects for the technology development, including hydrates with carbon
dioxide, is described in [67]. The presence of carbon dioxide hydrate reduces the perme-
ability of the formation, which inhibits the dissociation of methane hydrate and diminishes
the efficiency of methane extraction from the formation [68]. At that, the presence of CO,
hydrate increases the strength of the formations (layers) and decreases the probability of
sand occurrence.

Various key factors have an important influence on the gas hydrates exploitation with
CO; replacement: the phase state of the carbon dioxide used for injection; thermodynamic
conditions during the synthesis of CO;-based gas hydrate; the type of auxiliary gases used
(for example: nitrogen, hydrogen, air); the structural parameters of the gas hydrate; and the
hydrate saturation in the rock [69]. This paper also examines the limitations and prospects
for further research of technologies using CO, replacement.

Natural reservoirs can be efficient to store carbon dioxide, combining the extraction of
methane and the disposal of harmful and greenhouse gases. The combination of natural
hydrates exploitation and CO, storage is considered in [70]. After a long-term reformation,
the methane recovery ratio increased from 24% to 85%. In addition, the CO; storage ratio
was raised to 79-80%. The study of the micro-scale characterization of the sI hydrates
containing a mixture of CHy and CO, was performed in [71]. A comparison of the technical
and economic indicators of CO, separation technologies (at a high carbon dioxide content
in natural gas) based on membranes and the controlled freeze zone separation is given
in [72].

Much attention in terms of increasing gas production is paid to the following meth-
ods: thermal stimulation with CO, and Nj injection [73], the cycling depressurization
method [74], and using electrical heating [75].

The metal-organic framework and gas hydrate synergy is an effective technology
for CH4 storage and CO; separation [76]. This review article presents the structural
characteristics of the metal-organic framework and gas hydrates, as well as an analysis of
restrictions on the storage and separation of carbon dioxide. Metal-organic frameworks
(MOF) used for capturing, separating and storing CO, usually have a developed micro—
nano pore system, which allows for a large pore volume and a high specific surface area
of a porous material [76,77]. The wider application of the metal-organic frameworks
necessitates additional research on the kinetics of the physical sorption of gas molecules on
the metal surface, MOF water resistance and the effect of nano-retention and properties of
water in nanopores.

The addition of a small amount of carbon dioxide (about 15%) to the air stream
(nitrogen) leads to an increase in methane production by almost 25%. It has been found that
the optimal ratio (mole ratio of carbon dioxide to methane) corresponds to 1.3-1.45 [78].
Small additions of nitrogen and hydrogen to the gas mixture can not only increase methane
production, but also prevent CO, liquefaction [79]. The injection of CO,/H; gas mixture
allows a high efficiency of natural gas hydrate exploitation and carbon sequestration to be
achieved [80]. In CO,/H; gas phase systems, several gas hydrates with different phase
equilibrium temperatures can be formed [81]. The growth of gas production from gas
hydrate deposits due to CH4—CO, /H; is described in [82]. The efficiency of gas extraction
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and the use of the promoter depend on the type of gas mixtures: flue gas (CO,/N>/0Oy);
sulphur hexafluoride (SF¢); and gas mixture (SFq/Nj) [83-86].

Modeling of the kinetics of growth and dissociation of hydrates with carbon dioxide is
considered in [87-90]. To simulate the conditions of dissociation and synthesis at such great
depths, the accuracy of the models should be increased. Most of the reliable calculation
methods deal with the moderate depths of natural gas hydrates. The model of brine
systems (CO,/CH4/H;S/Ny) for simulating a non-isothermal multicomponent system
in the presence of high temperatures and pressures is discussed in [91]. Modeling of the
process of growth and dissociation of carbon dioxide hydrate, taking into account heat and
mass transfer, is described in [92-97]. The numerical study of the gas hydrate formation
during the gas injection into a porous medium is considered in [98].

The application of molecular dynamics (MD) methods related to carbon dioxide-based
hydrates is explained in [87-89]. Modeling of CO, replacement of CH4 hydrate using MD
methods is demonstrated in [87]. The use of MD for the growth of carbon dioxide hydrate
in the presence of an electric field is considered in [88,89]. Modeling of the formation
and dissociation of carbon dioxide hydrate in porous media is presented in the review
article [89]. The analysis of kinetic mechanisms on the natural gas hydrate replacement by
CO;, is considered in [99].

The warm brine injection during CH4/CO; replacement process enhances the intensity
of heat and mass transfer and the reaction rate [100]. Great attention is paid to the issues
of hydrate formation in seawater. The key points on the desalination of seawater using
carbon dioxide hydrates are discussed in Section 3.3.

3.2. The Use of Promoters to Increase the Efficiency of the Growth of Gas Hydrates

To develop the technology for the efficient separation of carbon dioxide from the flue
gas, it is necessary to use various mechanisms: lowering the temperature and pressure;
reducing the induction time and increasing the nucleation rate; and increasing the rate of
hydrate growth and the gas content in the gas hydrate. Within the frameworks of these
tasks, the effect of various surfactants on the equilibrium parameters, gas solubility, surface
properties of gas hydrate (for example, surface tension), as well as on the morphology of
growing hydrate particles are investigated.

High equilibrium pressure at the formation of hydrates with carbon dioxide noticeably
increases the cost of CO; capture technology based on gas hydrate technology. To reduce
the cost of the technology, both the equilibrium temperature and the equilibrium pressure
were reduced using various promoters. Tetrahydrofuran (TF) was chosen as one of the first
promoters [101]. In this paper, the regularities of the CO; recovery from the flue gas by the
formation of a gas hydrate were investigated. Using the three-stage separation process, a
high degree of purification of the gas mixture from carbon dioxide was achieved (up to 99%
in the temperature range of 273-283 K) at a concentration of 17% carbon dioxide in the gas
mixture. However, the induction time of crystallization remained quite large. Reducing the
induction time, in addition to increasing the gas hydrate rate, is an important parameter
for enhancing the efficiency of the separation process.

An environmentally friendly promoter for the growth rate of gas hydrates is Tetra-
n-butyl ammonium bromide (TBAB), which forms a semi-hydrate with water molecules
and gas molecules. The equilibrium conditions, as well as the dissociation enthalpy of the
semi-hydrates, were investigated in [102-104]. The use of TBAB allows the conditions for
the formation of the semi-hydrate to be significantly simplified [105].

Forming the Tetra-n-butyl ammonium bromide semi-clathrate hydrate substantially
reduces the induction time of the gas hydrate formation. Carbon dioxide is purified
from 17.0 mol% to 99.4% with two-stage hydrate separation (the CO, split fractions for
stage 1 and stage 2 are 0.54 and 0.39, and the separation factors are 9.6 (stage 1) and 62.2
(stage 2)) [106]. The medium-pressure clathrate hydrate/membrane hybrid process is used
to purify flue gas that includes carbon dioxide with a concentration of 16.9% [31]. The
use of Tetrahydrofuran increases the gas hydrate growth rate compared to the pure water
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system [84]. The use of sodium dodecyl sulfate and anionic fluorosurfactant to capture and
sequester carbon dioxide from the gas mixture (N, and CO,) was considered in [107]. The
regularities of the gas separation and storage of the CO,-TBAB semi-clathrate hydrate were
performed in [108]. With the growth of TBAB concentration in aqueous solution, the CO,
separation grows, reaching maximum, and further (while exceeding the mass concentration
of 35%) changes slightly. TBAB semi-clathrate hydrate increases the hydrate stability at
its formation [109]. The CO; separation from the gas mixture (N, and CO,) using the
semi-clathrate hydrates with TBAB (0.29 mol%) and with dodecyl trimethyl ammonium
chloride was investigated in [110]. The study of the hydrate formation, as well as the gas
storage capacity of the gas hydrate, was performed in [111]. The use of a hydrate promoter
to increase CO, separation from the CO; and Ny gas mixture was also studied in [112].

Natural deposits of gas hydrates may contain various surfactants that affect the rates
of synthesis and dissociation [1,2,113]. In pure water, the growth rate of gas hydrate is
extremely low. The formation of a hydrate crust on the surface of the particles inhibits
the front motion into the particle due to slow diffusion. The gas solubility controls the
reaction rate and the nucleation mechanisms of CO;, gas hydrate [114]. The presence of
surfactant significantly affects the gas solubility and the gas hydrate formation [115]. One
of the first hypotheses on the influence of surfactant explained the effect of accelerating
hydrate formation with a decrease in the surface energy of hydrates and with an increase
in gas solubility. Thus, the adsorption of surfactant molecules on the free surface of a solid
particle leads to an increase in the hydrate formation rate [116]. The relation of hydrates’
growth rate to the solubilization effects was also indicated in [101]. Another point of view
on the faster kinetics of hydrate growth was associated with the morphology of hydrates.
It has been shown that in the presence of surfactants, the surface of the gas hydrate ceases
to be a solid and durable crust. Surfactants make the surface of the gas hydrate loose and
porous [117,118]. The capillary force allows the solution to move inside the porous particle.
The formation of dendrites on the solution surface and the presence of capillary force affect
the rate of hydrate layer growth [119,120]. The change in kinetics was associated with the
mechanisms of concentration diffusion, micelle formation and deposition of surfactant
crystals. Another key role in the growth of the hydrate formation rate was associated with
micelles [121-123].

Characterization of clathrate hydrates formed with CO, and tetrahydrofuran (THF)
is considered in [124,125]. The phase behavior of CO, gas hydrate in the presence of
tetrahydropyran (THP) is investigated in [126-128]. The reduction of hydrate formation
pressure is influenced by cyclopentane (CP) [127,129-131], cyclobutanone and cyclohexane
(CH) [128], 1,3 Dioxolane [132], 1,3,5 Trioxane [133]. In practice, tetrabutyl ammonium
and phosphonium salt are often used [102-106,134,135]. The growth rate of CO, gas
hydrate increases with the use of sodium dodecyl sulfate (SDS) [115,136], Tween [137] and
Dodecyltrimethylammonium chloride (DTACI) [137]. The advantages and disadvantages
of different gas hydrate promoters and porous materials, as well as the analysis of the
properties of CO; hydrates at the molecular level are given in [138].

The effect of reaction promoters in the form of graphene nanoparticles is given in [139].
The use of graphene and SDS solutions can significantly accelerate the CH4 hydrate forma-
tion and increase the CO, sequestration ratio. The analysis of the use of highly effective
kinetic and thermodynamic promoters to increase the growth rate of gas hydrates, as well
as to increase the stability of natural gas hydrates, is presented in [140]. The promoter in the
form of hydrophobic fluorinated graphene provides a high growth rate of carbon dioxide
hydrate, as well as the high storage capacity [141]. The classification of promoters for CO,
hydrate formation is presented in Table 1.
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Table 1. Classification of promoters for CO, hydrate formation.

Classes Promoters

Action Principle Some Types of Promoters

thermodynamic

Tetrahydrofuran (THF) [101,124,125]
Tetrahydropyran (THP) [126-128]
Cyclopentane (CP) [127,129-131]
Cyclobutanone [128]
Cyclohexane (CH) [128]

Reduces the pressure or increases the 1,3 Dioxolane [132]

temperature of hydrate formation. 1,3,5 Trioxane [133]

Tetra-n-butylphosphonium acetate (TBP-Ace) [127]
Tetra-n-butyl ammonium bromide (TBAB) [102-106]
Tetra-n-butyl ammonium nitrate (TBANO3) [134]
Tetra-n-butylphosphonium bromide (TBPB) [135]
Tetra-n-butyl phosphonium chloride (TBPC) [135]

kinetic

Sodium dodecyl sulfate (SDS) [115,136]
Tween [137]
Dodecyltrimethylammonium chloride (DTACI) [137]
L-methionine [127,138]

Enhances the kinetics of hydrate L-norvaline [127,138]

formation without affecting the L-norleucine [127,138]

thermodynamics L-glycine [127,138]

L-tryptophan [127,138]
Metal particles and metal oxides [138]
Nanotubes [138]
Graphene [138,139,141]

Despite numerous studies of surfactants, there is currently no clear understanding
of which of these factors are more important for the kinetics of formation and growth
of gas hydrates. Most likely, the majority of factors are important at different stages:
dissolution and diffusion of gas, formation of nuclei, growth of hydrate particles. For the
rapid and effective separation of carbon dioxide from the flue gas due to gas hydrates, it is
necessary not only to lower the temperature and equilibrium pressure, but also to reduce
the induction time and increase the rate of gas hydrate and the carbon dioxide content in
the gas hydrate. For these purposes, it is important to use different types of promoters
simultaneously. It is also important to solve the problems of increasing the efficiency of
storage and transportation of the obtained hydrates with the presence of carbon dioxide,
which were synthesized using various promoters.

3.3. Desalination of Water and Release of Harmful Impurities Using a Gas Hydrate Containing
Carbon Dioxide

In the previous paragraph, the issues of climate change due to greenhouse gases and
technologies for combating atmospheric pollution through the use of CO; hydrate were
discussed. The problems related to water desalination, as well as the purification of various
media from harmful impurities, are also of great interest. These areas of research are also
associated with global environmental problems. Wastewater discharges from domestic
and industrial enterprises have increased significantly in recent decades, leading to an in-
crease in soil contamination with metal ions [142,143]. Wastewater may contain hazardous
materials, non-toxic organisms, bacteria, viruses, sewage, detergents and garbage.

As a result of the activities of the industrial chemical industries, a huge number of
heavy metals enters wastewater every year: Cr, As, Pb, Zn, Ni, Cu and Cd. Since metals
are easily dissolved in an aqueous medium, their concentration often reaches high values
exceeding human safety limits [144]. The features of the application of technologies for the
purification of heavy metals and their harm to the human body are considered in [145-147].

In addition to heavy metals, a huge number of toxic substances dangerous to human
health appears in the environment every year: oil, aromatics, pesticides and dye [148-152].
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The most commonly used technologies for the purification of aqueous solutions from
heavy metals are associated with the electrochemical method, the use of membranes, the
adsorption and chemical deposition of impurities [153]. These methods are technologically
advanced, but still have significant drawbacks: not a very high degree of liquid purification
from metal, significant limitations on the selectivity of various types of metal, the formation
of a large amount of waste after cleaning, the formation of sludge, as well as significant
energy consumption for cleaning. Due to the deterioration of the environmental situation,
it is necessary to develop alternative technologies. One of these methods is wastewater
treatment using gas hydrates [1,5,142,146]. This technology significantly increases the
efficiency of the release of impurities in the form of dissolved minerals and heavy metals,
but is still highly energy consuming. The low growth rates of gas hydrate should be also
noted. Therefore, for the development of technologies based on gas hydrates, further
research is needed to increase the growth rate and reduce energy consumption.

The effective technology development through the use of gas hydrates is hindered
due to the rather slow kinetics of hydrate growth, as well as due to problems associated
with the removal of salt from the hydrate (hydrate solution with salt) and with clogging the
crystal surface with salt. A conveyor belt can be used to separate the crystals. Dissociation
is realized in different compartments using a non-stirred reactor. Another method is
associated with the uprise of hydrates, formed at great depth, due to buoyancy and with the
hydrate washing with water [154]. The use of liquid propane (as a hydrate-forming agent)
at the bottom of the reactor zone turns out to be a fairly effective method of desalination.
The formed hydrate ascends to the water surface due to buoyancy. Separation plates ensure
effective separation of hydrate crystals from the salt solution [155]. To apply the heat of
hydration for the hydrate dissociation (and as a solvent for the formation of hydrate), a
heat exchange liquid that does not mix with water is used [156]. The hydrate suspension
and its extraction to the surface, as well as the use of pipelines and columns are considered
in [157,158]. The deposition of hydrate crystals during their formation, the usage of a
conveyor belt and the transportation of washed hydrates to the dissociation region are
considered in [159]. The formation of a thick layer of hydrate blocks the flow of salt water.
The resulting hydrate is separated when the pressure decreases [160,161]. The applied
blend of hydrochlorofluorocarbons, hydrofluorocarbons and chlorofluorocarbon molecules
decreases the dendritic growth of hydrate. Ice formation on top of hydration and salt
leaching (on the hydrate surface) during ice melting using a vertical tubular reactor is
considered in [162]. The employment of hydrate-forming gas (microbubbles), which is
pumped into a reactor with salt water, is discussed in [163]. The formation of CO, hydrate
in 2 wt. % brine solution allows achieving the high removal efficiency of 60.08% [164].
The application of graphene helps to solve the problem of filtration and desalination of
water [165].

A comprehensive review on the application of clathrate hydrates as a promising
carrier for water desalination/treatment is presented in [166]. Problems and prospects
of development of the hydrate-based desalination technology are discussed in [167]. A
review of the latest achievements, technological potential and disadvantages of heavy metal
removal methods, as well as industrial wastewater treatment systems was made in [168].
Fundamental properties of gas hydrate formation, including CO, hydrate, thermodynamic
and kinetic aspects and energy consumption are described in the review article [169].

The use of hydration, as well as carbon dioxide during hydrate formation, serves
to purify the aqueous solution from salt, as well as to separate CO; and solve the issues
of carbon dioxide storage (greenhouse gas utilization) [170-173]. The installation of the
continuous production and granulation of CO; hydrate is demonstrated in [174]. This
unit is used to investigate the removal efficiency of salt ions in water-salt solution. The
employment of carbon dioxide, as well as the water-immiscible formers to form double
hydrates, provided for a high salt removal rate (over 90%) [175]. Experimental results of the
hydrate formation in the presence of carbon dioxide, as well as mixed formers containing
carbon dioxide, are given in [176-180].
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Molecular dynamic (MD) simulation of the interaction of methane and water gas
molecules, the CO; hydrate nucleation and the hydrate growth are considered in [181-187].
The mechanism of methane hydrate formation by replacing carbon dioxide molecules was
investigated using MD simulation in [186]. It has been found that a large amount of hydrate
residues (in methane hydrate) facilitates the nucleation of the CO, hydrate and accelerates
the hydrate growth [187].

Water volume affects the CO, hydrate-based desalination. With an increase in water
volume from 300 mL to 500 mL, the removal efficiency increases from 31% to 60% [188].
The kinetics of the growth of CO, hydrate in a porous medium is studied in [189]. CO,
hydrate has a faster growth kinetics in quartz sand compared to an aqueous salt solution.
In this porous medium, the hydrate conversion reaches 87% compared to 55% in a water-
salt system.

To improve desalination efficiency, a hybrid desalination process, using carbon dioxide
gas hydrate and capacitive deionization with synthesized electrodes based on the activated
carbon and their chemical properties modified using nitric acid, is proposed in [190]. This
method allows removing about 82% of Na*, 100% K*, Ca?* and Mg2+ ions from salt water.

Tetrahydrofuran and cyclopentane are used as effective thermodynamic promoters
of reactions for the liquid hydrate formers of sII [191-202]. As mentioned above, the slow
kinetics of hydrate growth, as well as the low temperature and high pressure of hydrate for-
mation, hinders the effective development of desalination technology. The thermodynamic
promoter, cyclopentane (6 mol %), increases the hydrate formation temperature from 277 to
291 K at a pressure of 2.0 MPa [191].

Tetrahydrofuran is water-miscible, while CP is a water-immiscible strong thermody-
namic promoter, easily removed from water. In addition, cyclopentane forms gas hydrates
at atmospheric pressure [192]. Morphology and kinetic studies of cyclopentane are per-
formed in [193-200]. Thermodynamics and structural parameters of cyclopentane/CO,
hydrates, as well as the kinetics of their dissociation kinetics are considered in [201]. Studies
using the X-ray diffraction have shown that the large cages of the cyclopentane/CO; slI
hydrates s are completely filled with gas molecules, while the small cages are filled with
CO; by only 62%. It has also been found that the presence of salt molecules in water slows
down the growth of gas hydrate. Experiments and simulations of the phase equilibrium
and dissociation of CO, with cyclopentane hydrate in an aqueous salt solution for CO,
capture are given in [202].

3.4. Dissociation of CO, Hydrate at Temperatures below the Melting Point of Ice

As indicated in the Introduction, climate warming leads to a significant decrease in
the permafrost area, which results in the release of a large amount of greenhouse gases. In
addition, the storage of natural gas in the fields at subzero temperatures in the northern
regions also creates additional scientific and technological problems. For example, the
dissociation of natural gas hydrate or CH4—CO; replacement (during the extraction of
natural gas) can be realized at negative temperatures (at temperatures below the melting
point of ice).

The kinetics of the gas hydrate dissociation at negative temperatures differs from that
at positive temperatures and very high pressures, when deposits of natural raw materials
are located at great depths.

The stability zone of gas hydrates in the permafrost region is related to the depth
range of 200-2000 m. However, the occurrence of self-preservation at temperatures below
the ice melting point leads to the long-term existence of gas hydrates at depths less than
those indicated [203,204]. Thus, core samples of frozen rocks of the northern hemisphere
demonstrate the presence of gas hydrates at a depth of 70-120 m. There is an intensive
release of natural gas and CO, when drilling wells in cryolithozones, containing relict
hydrate-bearing layers. Rapid freezing of the rock is assumed to lead to a sharp jump in
pressure at the freezing front due to water and gas accumulation. Thus, even short-term
freezing of the rock leads to the appearance of gas hydrates and their long-term storage.
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Another important area related to gas hydrates (including hydrates with carbon
dioxide) is related to storage and transportation issues. The carbon dioxide hydrates
obtained during the purification of industrial gas waste, as well as those obtained as a
result of desalination technology, must be stored for a long time. Long-term storage of
gas hydrate raw materials at negative temperatures is effective due to the phenomenon
of self-preservation.

Self-preservation is understood as a phenomenon when abnormally low dissociation
rates of gas hydrate are realized in the temperature range of 230-267 K [205-211]. So, if a
gas hydrate covered with a thin shell of ice is stored in a given temperature range, then the
half-life of the gas hydrate can reach several weeks or months. The high strength of the ice
shell is achieved due to the small size of ice grains (about 10-50 pm), which are formed
during the dissociation of gas hydrate [205,207,208].

The phenomenon of self-preservation also manifests itself at high heat fluxes, when
the external temperature can reach high values, and the temperature of the gas hydrate is
below the freezing point [212-215]. To increase the storage time of gas hydrates, powder
pressing (tableting) is used, which significantly reduces the dissociation rate [216]. The
most optimal diameter of gas hydrate particles for long-term storage is ~1 mm [217-219].
The smaller particle size leads to a high dissociation rate. It is inefficient to use larger
diameters of individual particles because of the very low growth rate (during the synthesis
of gas hydrate) and high energy costs. The combined effect of porosity, permeability and
particle size is described in [220]. Ways to increase the storage efficiency of natural and
artificial methane hydrates at subzero temperatures are considered in [221].

A study on the decomposition effect on the replacement of the CO,—~CHy hydrate in
hydrate-bearing sediments below the freezing point is presented in [222]. The kinetics of
CO, hydrate dissociation (activation energy and pre-exponential multiplier) at negative
temperatures differs from dissociation at positive temperatures [223-225]. When using a
CO; hydrate to extinguish a flame, it is also necessary to take into account the kinetics of
the gas hydrate dissociation, which determines the rate of carbon dioxide release [226].

Thus, in order to refine the models for forecasting climate and global warming, it
is necessary to elaborate the models describing the dissociation of natural gas hydrate
deposits in permafrost zones. So, it is crucial to know the exact kinetics of the gas hydrate
dissociation, depending on the porosity of the formation, the size of gas hydrate particles,
the thickness of the formation, self-preservation, as well as the influence of seasonal
temperature fluctuations.

To increase the efficiency of storage and transportation of carbon dioxide hydrate
(formed in desalination technologies, separation of heavy metals, utilization of carbon
dioxide from flue gases) at negative temperatures, there is a need for further studies on
the combined effect of: powder temperature, particle size and pressed granules (tablets),
porosity parameters and morphology of structures on the surface of the ice shell.

4. Conclusions

This analysis of existing works has shown that carbon dioxide hydrate has a huge
potential for a wide range of applications. The prospects for the development of tech-
nologies based on CO, hydrate for the separation and capture of gases, as well as for
the desalination of seawater are associated with their efficiency enhancement. It is worth
noting some important areas of research in this field:

(i) Gas extraction from gas hydrate deposits may lead to the strength loss and subsi-
dence of the seabed. To avoid severe negative consequences and natural hazards, a
non-destructive method of extracting methane with carbon dioxide supply for the
formation of CO, hydrate is used.

(ii) The use of gas hydrates for the CO; capture and sequestration significantly increases
the technology’s efficiency by enhancing transportation and long-term storage of
gas hydrates.
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(iii) High equilibrium pressure at the formation of hydrates with carbon dioxide leads
to a noticeable increase in the cost of CO, capture technology. To reduce the cost,
the equilibrium temperature is increased and the equilibrium pressure is reduced
using various promoters. The applied promoters can substantially slow down the
induction time of gas hydrate formation. In this article, various types of promoters
were considered.

(iv) The development of technologies for the purification and desalination of reservoir
and seawater based on gas hydrates requires further research aiming at significant
increase in the growth rate of CO; hydrate and concomitant reduction of energy costs.

(v) To increase the duration of CO, hydrate storage, it is advisable to apply the phe-
nomenon of self-preservation (abnormally low dissociation rates), which is realized at
a temperature of 230-267 K. The half-life of the gas hydrate in this temperature range
can reach several weeks or months. The diameter of the synthesized gas hydrate
particles which is the most optimal for its long-term storage is 1-2 mm.

(vi) Analysis of the results of experiments, mathematical modeling, bench-scale and indus-
trial tests indicates that enhancement of the efficiency of the CO, hydrate use requires
additional studies on the effect on the kinetics of hydrate formation and dissocia-
tion at negative temperatures: porosity, particle size, self-preservation, thermobaric
conditions, as well as the joint influence of several promoters.
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