УДК 543.422

Анализ интенсивности линий инфракрасного спектра ¹²CD4 в области пентады Гуань Синьжань

Научный руководитель: профессор, д.ф-м.н, О.В. Громова Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050 E-mail: 2498767673@qq.com

Line strength analysis of the ¹²CD₄ infrared spectra in the pentad region

Guan Xinran

Scientific Supervisor: Prof., Dr. O.V. Gromova Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: 2498767673@qq.com

Abstract. High accurate ro-vibrational spectra of $^{12}\text{CD}_4$ were measured in the pentad region with a Bruker IFS125 HR Fourier transform infrared (IR) spectrometer at an optical resolution of 0.003 cm $^{-1}$ and different pressures and optical path-lengths. The analysis of 1264 experimental absolute transition strengths belonging to all nine ro-vibrational sub-bands of the $^{12}\text{CD}_4$ pentad was performed using the Voigt profile to simulate the measured line shape and to determine experimental line intensities. A set of 10 parameters was obtained from the weighted fit analysis of experimental data in the frame of the model of an effective dipole moment operator of the $^{12}\text{CD}_4$ pentad. The obtained set of 10 effective dipole moment parameters reproduces the initial 1264 absolute transition strengths with the $d_{rms} = 4.52 \%$.

Key words: Tetradeuteromethane, infrared spectroscopy, high accurate ro-vibrational spectroscopy, absolute transition strengths

Введение

В химической физике метан можно рассматривать как прототип углеводорода, имеющий фундаментальное значение, начиная от теории химической связи, вращательной динамики в симметричных молекулах, нашего понимания структуры потенциальных гиперповерхностей, теории скорости унимолекулярных реакций, фундаментальной динамики бимолекулярных реакций. В последних случаях очень важно знание спектроскопических свойств не только основной модификации CH_4 , но и всех изотопных видов метана. В настоящей работе проводится анализ интенсивностей линий девяти подполос $v_3(F_2)$, $2v_4(F_2)$, $v_2+v_4(F_2)$, $v_2+v_4(F_1)$, $2v_4(E)$, $2v_2(E)$, $v_1(A_1)$, $2v_4(A_1)$, и $2v_2(A_1)$ молекулы $^{12}CD_4$.

Молекула СD₄ представляет собой молекулу типа сферического волчка, симметрия которой изоморфна точечной группе симметрии T_d . Как следствие, ее девять колебательных координат обладают следующей симметрией: $q_1 \in (A_1)$ — невырожденная, $q_2 \in (E)$ — дважды вырожденная, $q_3 \in (F_2)$ и $q_4 \in (F_2)$ — трижды вырожденная. Известно (см., например, [1, 2]), что вращательно-колебательные состояния таких молекул разбиваются на группы (полиады) более или менее изолированных состояний, которые взаимодействуют друг с другом внутри полиады. При этом отдельная полиада характеризуется полиадным числом $N = \omega_1 \simeq \omega_3 \simeq 2\omega_2 \simeq 2\omega_4$, а все колебательные состояния ($v_1v_2v_3v_4$, Γ) (здесь Γ — симметрия колебательной функции), удовлетворяющие этому условию, объединяются в полиаду с близкими друг к другу колебательными энергиями.

Экспериментальная часть

Семь спектров чистого CD_4 были измерены с оптическим разрешением $0,003~\rm cm^{-1}$ в диапазоне волн от $500~\rm до~5000~\rm cm^{-1}$ с помощью ИК-спектрометра с Фурье-преобразованием Bruker IFS125HR (прототип ZP2001) [3]. Три спектра I, II и IV были использованы в нижнем

спектральном диапазоне 500—1800 см $^{-1}$, содержащем фундаментальные полосы v_2 и v_4 и информацию о «горячих переходах» и «горячих полосах», которые вносят вклад в обертонные и комбинационные полосы, которые играют важную роль для анализа данной работы. Однако в центре внимания оказалась спектральная область 1800-2400 см $^{-1}$. Обзор трех (спектры III, VI и VII) из семи спектров 12 CD₄, записанных в области 1800-2400 см $^{-1}$, показан на верхней части рис. 1. Ветви P, Q и R полос v_3 , v_2+v_4 и $2v_4$ хорошо видны в спектрах VI и VII. Идентичность молекулы, а также химическая и изотопная чистота видна из спектров.

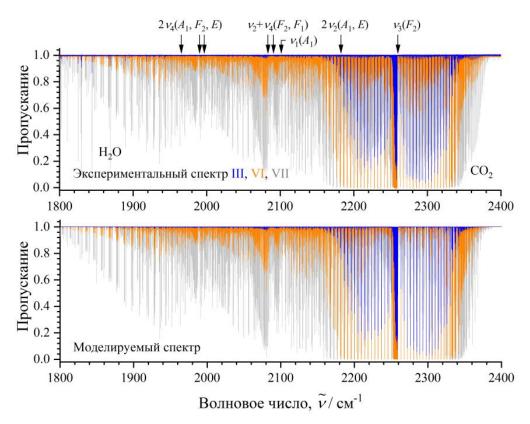


Рис. 1. Верхняя часть: Обзорные спектры III (синий), VI (оранжевый) и VII (серый) $^{12}CD_4$ в области пентадных полос; Нижняя часть показывает смоделированные спектры $^{12}CD_4$

Доплеровское уширение для 12 CD₄ при температуре около 294 K находится в диапазоне от 0,005 до 0,0066 см⁻¹ для области между 1800 и 2400 см⁻¹; полная ширина линии при давлении 352 Па составляет 0,00080 см⁻¹ для спектра с самым высоким давлением, что практически незначительно; а инструментальная ширина линии составляет 0,0020 см⁻¹, являясь произведением номинального инструментального разрешения 0,003 см⁻¹ и коэффициента аподизации Бокскар 0,68. Таким образом, общая ширина линии в анализируемой области для семи зарегистрированных спектров находится в диапазоне от 0,00536 до 0,00696 см⁻¹ (что может быть аппроксимировано корнем квадратным из свертки доплеровской ширины, уширение линии давлением и инструментальной ширины линии). Калибровка положений спектральных линий проводилась по линиям CO_2 и H_2O [3–5].

Давление измерялось с помощью манометров с емкостным датчиком Pfeiffer CMR, изготовленных по керамической технологии, с диапазоном давления до 100 и 1000 гПа. Они имеют температурную компенсацию, заводскую калибровку, устойчивы к агрессивным газовым средам и не зависят от вида газа.

Используя закон Беера-Ламберта, сила линии S может быть выведена из площади одной линии поглощения A_{Line} , постоянной Больцмана k_B , (парциального) давления P газа $^{12}\mathrm{CD_4}$, температуры T в (K) и оптической длины пути L (M):

$$S = \frac{k_B T}{PL} A_{Line} \tag{1}$$

где (с применением декадного логарифма lg = log10), e-естественная константа (около 2,71828), $I_0(\nu)$ – интенсивность полосы ν , $I(\nu)$ – интенсивность полосы ν после поглощения, $d\nu$ – интегральный микроэлемент частоты ν .

$$A_{Line} = \frac{1}{\lg(e)} \int \lg\left(\frac{I_0(\nu)}{I(\nu)}\right) d\nu \tag{2}$$

Интенсивности линий были получены прямым интегрированием измеренных эффективных линий поглощений, которые хорошо согласуются с профилем Фойгта.

Результаты

Были получены 1264 индивидуальных абсолютных интенсивности линий, относящихся ко всем девяти колебательно-вращательным подполосам пентады ¹²CD₄.

Заключение

Был проведен анализ абсолютных интенсивностей переходов в ИК-Фурье-спектре высокого разрешения $^{12}\text{CD}_4$, которые были зарегистрированы на спектрометре с Фурье-преобразованием Bruker IFS 125HR в области пентады. 1264 индивидуальных абсолютных интенсивности линий, относящихся ко всем девяти колебательно-вращательным подполосам пентады $^{12}\text{CD}_4$ с использованием профиля Фойгта для моделирования формы измеренных линий. Из взвешенного анализа экспериментальных данных в рамках модели оператора эффективного дипольного момента был получен набор из 10 параметров. Полученный набор из 10 параметров эффективного дипольного момента воспроизводит исходные 1264 абсолютные интенсивности линий с d_{rms} = 4,52 %.

Список публикаций

- 1. Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Raspopova N.I., Sennikov P.G., Koshelev M.A., Velmuzhova I.A., Velmuzhov A.P., Bulanov A.D. High resolution study of M GeH₄ (M = 76,74) in the dyad region // J Quant Spectroec Radiat Transfer. -2014. Vol. 144. P. 11-26.
- 2. Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Raspopova N.I., Kashirina N.V., Fomchenko A.L., Sydow C., Bauerecker S. High resolution study of M SiH4 (M=28, 29, 30) in the dyad region: Analysis of line positions, intensities and half—widths // Journal of Quantitative Spectroscopy and Radiative Transfer. 2017. Vol. 203. P. 496–510.
- 3. Albert S., Keppler Albert K., Quack M. High–resolution Fourier transform infrared spectroscopy. // Handbook of high resolution spectroscopy. John Wiley & Sons. 2011. P. 965–1020.
- 4. Maki A.G., Wells J.S. Wavenumber calibration tables from heterodyne frequency measurements // National Institute of Standards and Technology. 1991. 668 p.
- 5. Gordon I.E., Rothman L.S., Hargreaves R.J., R. Hashemi et al. The HITRAN2020 Molecular Spectroscopic Database // Journal of Quantitative Spectroscopy and Radiative Transfer. 2022. Vol. 277 (11). P. 107949.