УДК 538.91:538.97

Особенности взаимодействия атома водорода в высокоэнтропийном сплаве Nb-Ni-V-Zr-Co: расчеты из первых принципов

В.Г. Кругликов, С.О. Огнев

Научный руководитель: к.ф.-м.н., Л.А. Святкин Национальный исследовательский Томский политехнический университет, Россия, г.Томск, пр. Ленина, 30, 634050 E-mail: vgk11@tpu.ru

Features of the interaction of a hydrogen atom in the high-entropy alloy Nb-Ni-V-Zr-Co: first principle calculations

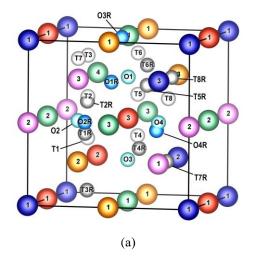
V.G. Kruglikov, S.O. Ognev Scientific Supervisor: Ph.D., L.A. Svyatkin Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: vgk11@tpu.ru

Abstract. In the present work an ab initio study of the binding energies of the hydrogen atom in the lattice of the high-entropy alloy (HEA) Nb-Ni-V-Zr-Co has been carried out. The binding energies of hydrogen in some octa- and tetrahedral sites have been calculated. The strong scattering in the distances and in the energies confirms the manifestation of the "cocktail effect" in the Nb-Ni-V-Zr-Co alloy.

Key words: membrane, high-entropy alloy, hydrogen, ab-initio calculations.

Введение

Мембранные технологии разделения и очистки водорода интенсивно изучаются в последние тридцать лет в связи с бурным развитием водородной энергетики. Данная технология является одним из наиболее эффективных способов очистки и разделения водорода благодаря низким эксплуатационным затратам, высокой производительности и низкому энергопотреблению. В качестве мембранных материалов могут рассматриваться многокомпонентные сплавы, содержащие более четырех элементов и известные также как высокоэнтропийные сплавы (ВЭС). ВЭС обычно обладают отличными механическими свойствами, сохраняющимися в широком диапазоне температур, хорошей износо- и коррозионной стойкостью, фазовой стабильностью и низкой скоростью деградации [1].


Металлы с ОЦК решеткой, такие как Fe, V, Nb и Ta, обычно демонстрируют высокую водородную проницаемость. Металлы с ГЦК решеткой, такие как Pd и Ni, обладают еще большей по сравнению с ОЦК металлами проницаемостью, причем проницаемость Рd больше. Так как Ni значительно дешевле, то сплавы на его основе активно изучаются для получения мембран для разделения водорода [1]. Однако, мембраны на основе только одного металла пятой группы подвержены водородному охрупчиванию при высокой температуре [2]. Для решения этой проблемы используются многоэлементные мембраны на основе ВЭС. Примером такого ВЭС является сплав Nb-Ni-V-Zr-Co, в котором на поведение атомов водорода оказывается сильное и неэквивалентное влияние со стороны атомов сплава. При этом общее влияние на атом водорода со стороны атомов сплава не представляется суммой влияний от атомов по отдельности – «эффект коктейля» [3]. Исходя из этого, целью данной работы является установление особенностей взаимодействия атома водорода высокоэнтропийном сплаве Nb-Ni-V-Zr-Co.

Экспериментальная часть

Расчеты из первых принципов атомной структуры и электронного строения системы ВЭС-водород были выполнены в рамках в рамках теории функционала электронной плотности с использованием методов псевдопотенциала и проекционных присоединенных волн. Для описания обменных и корреляционных эффектов использовалось приближение обобщенного градиента в форме Пердью, Бурке и Эрнцерхофа. Расчеты проводились в пакете программ ABINIT. Проводилась релаксация положений всех атомов в расчетной ячейке системы ВЭС-водород. Релаксация считалась завершенной при значении сил, действующих на атомы, менее 10 мэВ/Å. На каждой итерации самосогласования собственные значения гамильтониана рассчитывались в сетке k-точек 10×10×10 всей зоны Бриллюэна. Энергия обрезания при разложении волновой функции по базису плоских волн, составила 400 эВ.

Результаты

Чтобы установить характер взаимодействия водорода с различными элементами высокоэнтропийного сплава была рассмотрена расчетная суперячейка системы $Nb_4Ni_3V_3Zr_3Co_3$, показанная на рис. 1, а, в которой содержание ниобия составляет 25 ат. %, а содержание Ni, Co, V, Zr взято равным по 18,75 ат. %, что соответствует эквимолярному сплаву, наблюдаемому экспериментально [3]. Концентрация Nb больше, в силу того, что ВЭС делается именно на его основе. Расчетное значение параметра решетки составило 3,128 Å.

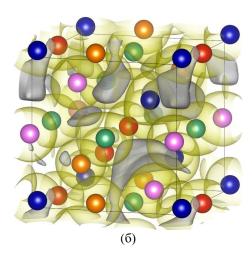


Рис. 1. Расчетная ячейка системы Nb-Ni-V-Zr-Co с водородом в междоузлиях идеальной (O1-O4 показанные голубым и T1-T8 – светло серым) и отрелаксированной (O1R-O4R – синим и T1R-T8R – темно серым) ОЦК решетки ВЭС (а) и распределение валентной электронной плотности (б) в ней. Зелеными кружками показаны атомы Nb, оранжевыми – Ni, синими – Co, красными – V, розовыми – Zr. Для удобства обсуждения атомы каждого элемента сплава пронумерованы. О – октаэдрическое междоузлие, T – тетраэдрическое междоузлие, R – отрелаксированное положение в соответствующем междоузлие

На рис. 1, б представлено распределение валентной электронной плотности. Наблюдается сильное искажение решетки, и, как следствие, значительная неоднородность в распределении электронной плотности — есть как области с высокой (более 0.05 эл./Å³, показаны желтым цветом) электронной плотностью вблизи атомных ядер, так и с низкой плотностью (менее 0.025 эл./Å³, показаны серым) в межатомной области.

В расчетной ячейке наблюдается сильное смещение атомов металлов из узлов идеальной ОЦК решетки, однако кардинального изменения ее структуры в целом не происходит. Исходя из этого, атом водорода помещался в тетра- или октаэдрические междоузлия идеальной ОЦК решетки (рис. 1, а). Концентрация водорода в $Nb_4Ni_3V_3Zr_3Co_3$ -H была взята равной ~ 6 ат. %. Это позволяет отследить локальный характер взаимодействия водорода с ближайшими к нему атомами металлов.

Наибольший интерес представляют междоузлия в областях с низкой электронной плотностью, а также в междоузлия с неэквивалентными соседними атомами сплава. В табл. 1 приведены энергии связи водорода с ВЭС Nb-Ni-V-Zr-Co, рассчитанные по формуле

$$E_{CB} = E(B \ni C) + \frac{1}{2} E(H_2) - E(B \ni C - H),$$

где $E(B \ni C)$ — энергия системы расчетной ячейки Nb-Ni-V-Zr-Co; $E(H_2)$ — энергия молекулы водорода; $E(B \ni C - H)$ — энергия системы расчетной ячейки Nb-Ni-V-Zr-Co с атомом водорода Н в одном из рассмотренных междоузлий.

В силу того, что ВЭС делается на основе ниобия, были проведены расчеты энергии связи атома водорода в ОЦК решетке ниобия с концентрацией в ~ 6 ат. % в окта- и тетраэдрических междоузлиях, которые составили 0,033 и 0,327 эВ соответственно. Из таблицы видно, что среди рассмотренных междоузлий есть положения (O2, O3 и T7), которые характеризуются заметно большей энергией связи, чем в чистом ниобии.

Таблица 1 Энергия связи атома водорода в ВЭС $Nb_4Ni_3V_3Zr_3Co_3$ в окта- и тетраэдрических междоузлиях

	Междоузлия											
	O1	O2	О3	O4	T1	T2	Т3	T4	T5	Т6	T7	T8
Еь, эВ	0,005	0,450	0,668	0,285	0,027	0,052	0,208	0,066	0,253	0,028	0,504	0,198
Соседние атомы	Nb1 Nb4 V3 Zr3	Nb3 Ni2 V3 Zr2 Zr3	Nb1 V2 Zr1 Zr3 Co3	Nb2 Nb3 V3 Zr1 Zr2 Co3	Nb2 Ni2 V2 V3	Nb2 Nb4 V3 Zr3	Nb1 Ni2 V1 V2 Zr3	Nb1 Nb3 Ni1 V2 V3 Co2	Nb1 Nb3 Nb4 Ni3 V3	Nb1 Nb3 Nb4 Ni1 Ni3	Nb1 Nb2 V3 Zr1 Co2	Nb1 Nb2 Ni3 V1 V3 Co3

Взаимодействие атомов сплава друг с другом проявляется в сильном искажении решетки, что приводит к существенному варьированию энергий связи атома водорода в зависимости от его ближайших соседей. Наблюдается разброс значений как в расстояниях от атома водорода до ближайших атомов сплава (1,68 Å–2,57 Å), так и в энергиях связи (0,005 эВ–0,668 эВ). Такой разброс в характеристиках связи водорода с металлами в зависимости от его координации в сплаве обусловлен локальными искажениями ОЦК решетки и сильной неоднородностью электронной плотности, подтверждая наличие «эффекта коктейля» в ВЭС.

Заключение

В работе были проведены расчеты из первых принципов атомной структуры и электронного строения системы Nb-Ni-V-Zr-Co-H. Рассчитанные энергии связи водорода в рассмотренных окта- и тетраэдрических междоузлиях ОЦК решетки сплава варьируются в пределах от 0,005 до 0,668 эВ и от 0,027 и до 0,504 эВ соответственно. Сильный разброс по расстояниям и энергиям подтверждает проявление «эффекта коктейля» в ВЭС Nb-Ni-V-Zr-Co.

Список литературы

- 1. Ockwig N.W., Nenoff T.M. Membranes for Hydrogen Separation // Chemical Reviews. 2007. № 107. P. 1078–4110.
- 2. Erhu Y. et al. Design of Nb-based multi-phase alloy membranes for high hydrogen permeability and suppressed hydrogen embrittlement // Journal of Membrane Science. -2020. No 595. P. 117531.
- 3. Kashkarov E., Krotkevich D., Koptsev M., Ognev S., Svyatkin L., Travitzky N., Lider A. Microstructure and Hydrogen Permeability of Nb-Ni-Ti-Zr-Co High Entropy Alloys // Membranes. 2022. 12. P. 1157.