82

УДК 665.71.03

Разработка и верификация методики повышения эффективности депрессорных присадок для низкозастывающего дизельного топлива

А.О. Ефанова

Научный руководитель: к.т.н. М.В. Киргина Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050

E-mail: aoe4@tpu.ru

Development and verification of a method for increasing the efficiency of depressant additives for low-freezing diesel fuel

A.O. Efanova

Scientific Supervisor: Ph.D. M.V. Kirgina Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050 E-mail: aoe4@tpu.ru

Abstract. This work is devoted to a study on changing (increasing) the effectiveness of a depressant additive by modifying the molecular weight distribution of n-paraffinic hydrocarbons in diesel fuel by adding weighting components in low concentrations. A technique has been developed to increase the efficiency of depressant additives for diesel fuel by adding weighting components. The developed methodology has been verified on commercial diesel fuel samples.

Key words: diesel fuel, depressant additive, weighting component, low-temperature properties, chromatography-mass spectrometric analysis.

Введение

В настоящее время производство дизельного топлива занимает лидирующие позиции, несмотря на активное развитие источников альтернативной энергии. Данный вид топлива зарекомендовал себя как надежный, экономичный и мощный, является одним из основных видов топлива, на котором работают крупногабаритные установки и транспорт. Помимо этого, особую роль дизельное топливо выполняет при освоении Арктики и Крайнего Севера. Работа оборудования в данной местности возможна только при использовании низкозастывающего дизельного топлива, соответствующего требованиям стандартов.

Исследования, направленные на получение дизельного топлива с улучшенными низкотемпературными свойствами, являются наиболее перспективным в нефтегазовой промышленности. Одним из способов расширить рабочий температурный диапазон дизельного топлива является добавление депрессорных присадок в его состав. Этот метод улучшения низкотемпературных свойств дизельного топлива является доступным в экономическом плане и не требует наличия специальных условий для его реализации.

Механизм взаимодействия депрессоров и н-парафинов в составе дизельного топлива носит специфический характер, поэтому не всегда получается путем добавления только депрессорных присадок достичь необходимых низкотемпературных свойств дизельного топлива.

Многочисленные исследования по данной тематике свидетельствуют о том, что для повышения эффективности действия депрессорной присадки необходимо учитывать углеводородный состав дизельного топлива, т.е. соотношение н-парафиновых углеводородов различной молекулярной массы.

Целью данной работы является разработка и верификация методики повышения эффективности депрессорных присадок для низкозастывающего дизельного топлива (ДТ).

Экспериментальная часть

Объектом исследования были выбраны образцы прямогонного (A_1 и A_2) и товарного ДТ (B_1 и B_2), полученные с месторождений Западной Сибири и АЗС Томской области, соответственно. В исследовании применялись утяжеляющие компоненты (УК): высокопарафинистая фракция (P_1), тяжелая фракция (F_1) и вакуумный газойль, полученный из мазута и газового конденсата (VG₁ и VG₂, соответственно). Из исходных компонентов были приготовлены топливные композиции с добавлением депрессорной присадки. Концентрации УК составили 1, 3, 5 и 10 % об. Концентрация депрессорной присадки составили 0,26 мл на 100 мл топлива, в соответствии с указаниями производителя.

В ходе работы была определена предельная температура фильтруемости (ПТФ) для исходных компонентов и топливных композиций, согласно методике [1]. Для исходных ДТ и УК были получены результаты хромато-масс-спектрометрического анализа.

Результаты

Исходя из полученных данных, при добавлении УК VG_2 в концентрации 3 % об. в топливные композиции с A_1 и депрессорной присадкой было зафиксировано максимальное улучшение показателя ПТФ, а именно снижение на 14 °C, с -7 до -21 °C. Ввод УК P_1 и F_1 также носит положительную динамику изменения показателя ПТФ, т.е. повышает эффективность действия депрессорной присадки.

Согласно молекулярно-массовым распределениям н-парафиновых углеводородов (рис. 1) образец A_1 характеризуется высоким содержанием жидких н-парафиновых углеводородов (C_6 - C_{13} — 18,24 % мас.) и более низким — твердых н-парафиновых углеводородов (C_{14} - C_{33} — 14,01 % мас.).

УК VG₁ имеет состав, отличный от состава УК VG₂, P_1 и F_1 , а именно характеризуется значительно более высоким содержанием н-парафиновых углеводородов твердого агрегатного состояния (C_{14} - C_{33} – 55,07 % мас.) и низким содержанием жидких н-парафиновых углеводородов (C_6 - C_{13} – 3,27 % мас.). Так, ввод даже в малых концентрациях данного УК приводит к резкому увеличению содержания твердых н-парафинов, повышению ПТФ и снижению эффективности действия депрессорной присадки. В остальных образцах УК соотношение н-парафинов в жидком и твердом агрегатных состояниях более равномерное.

При добавлении УК в топливные композиции с A_2 и депрессорной присадкой положительной динамики изменения показателя ПТФ замечено не было. В составе данного образца ДТ (рис. 1) изначально имеется оптимальное количество твердых н-парафиновых углеводородов для формирования начальных центров кристаллизации и дополнительный ввод данных компонентов не требуется, поскольку это приводит к их излишнему содержанию в образце ДТ, что, в свою очередь, приводит к забивке фильтрующего элемента.

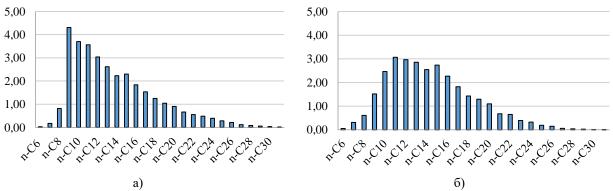


Рис. 1. Молекулярно-массовое распределение н-парафинов в образцах прямогонного ДТ: а) A_1 б) A_2

Повышение эффективности действия присадки достигается при нормализации (сокращении разницы) соотношения жидких и твердых н-парафинов в составе топлива.

Была проведена процедура верификации полученных закономерностей на образцах товарного ДТ B_1 и B_2 с депрессорной присадкой и добавлением УК, показавших максимальный эффект на образцах прямогонного ДТ A_1 и A_2 .

Как показано на рис. 2, образец B1 характеризуется более высоким содержанием н-парафиновых углеводородов средней молекулярной массы, преимущественно C11-C21. Образец B2 характеризуется недостатком тяжелых н-парафиновых углеводородов и содержит больше н-парафинов C10-C20.

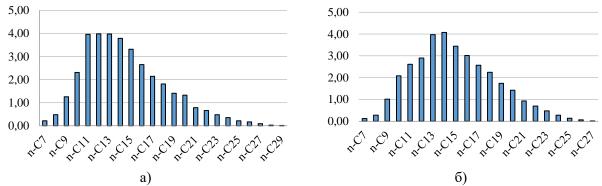


Рис. 2. Молекулярно-массовое распределение н-парафинов в образцах товарного ДТ: $a) B_1$ б) B_2

Максимальный эффект на действие присадки для B_1 оказывает добавление P_1 : при добавлении УК в концентрации 5 % об. — ПТФ изменяется с -23 до -31 °C относительно образца B_1 с депрессорной присадкой без добавления P_1 . Максимальный эффект на действие присадки для B_2 оказывает добавление VG_1 : при добавлении УК в концентрации 1 % об. — ПТФ изменяется с -24 до -28 °C относительно образца B_2 с депрессорной присадкой без добавления VG_1 .

Образцы B_1 и B_2 имеют сходство по соотношению жидких и твердых н-парафиновых углеводородов с образцом прямогонного ДТ A_2 : содержание твердых н-парафинов гораздо выше, чем содержание жидких н-парафинов. Однако, несмотря на отсутствие повышения эффективности действия присадки в отношении ПТФ при добавлении УК для A_2 , для образцов товарного ДТ повышение эффективности действия депрессорной присадки, наоборот, характерно. Причиной такого эффекта является то, что для B_1 и B_2 средняя часть молекулярномассового распределения н-парафинов (с числом атомов углерода от 10 до 20) гораздо больше, чем для A_2 , а содержание твердых парафиновых углеводородов нормального строения практически не изменяется, по сравнению с A_2 .

Заключение

В ходе данного исследования было установлено, что повысить эффективность действия депрессорной присадки в отношении ПТФ добавлением УК возможно, добившись оптимального соотношения тяжелых н-парафинов, формирующих начальные центры кристаллизации, с количеством н-парафинов со средней длиной углеводородной цепи, для торможения роста кристаллов которых эти начальные центры кристаллизации и необходимы.

Список литературы

1. ГОСТ EN 116-2013 Топлива дизельные и печные бытовые. Метод определения предельной температуры фильтруемости – М.: Стандартинформ, 2013. – 28 с.