УДК 622.276; 544344.9

Синтез гидрофильных глубоких эвтектических растворителей на основе принципов зелёной химии для повышения нефтеотдачи в Арктических регионах

М.Р. Шолидодов, А.Р. Сайденцаль
Научный руководитель: профессор, д.т.н. Л.К. Алтунина
Институт химии нефти СО РАН,
Россия, г. Томск, пр. Академический, 4, 634055
Национальный исследовательский Томский политехнический университет,
Россия, г. Томск, пр. Ленина, 30, 634050
Е-mail: sholidodov93@inbox.ru

Synthesis of hydrophilic deep eutectic solvents based on green chemistry principles for enhanced oil recovery in Arctic regions

M.R. Sholidodov, A.R. Saidentsal
Scientific Supervisor: Prof., Dr. L.K. Altunina
Institute of Petroleum Chemistry, SB RAS, Russia, Tomsk, Akademichesky str., 4, 634055
Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050
E-mail: sholidodov93@inbox.ru

Abstract. The paper presents the results of synthesis and development of innovative DES-based oil-displacing compositions for enhanced oil recovery in the Arctic regions. The studies demonstrate that the created composition has a high oil-displacing ability and is characterized by a low freezing point. These properties make it particularly effective for use in the harsh climatic conditions of the Arctic, contributing to more efficient oil production.

Key words: deep eutectic solvents, enhanced oil recovery methods, oil displacing composition, surfactants.

Введение

В связи с растущей сложностью добычи нефти в Арктических регионах возникает необходимость разработки новых технологичных решений, направленных на повышение нефтеотдачи пластов. Одним из перспективных направлений является использование гидрофильных глубоких эвтектических растворителей (ГЭР), созданных на основе принципов зеленой химии [1].

Однако работ по созданию реагентов и технологий для увеличения нефтеотдачи на основе ГЭР крайне мало, а в промышленном масштабе до сих пор ни в мире, ни в России они не реализованы. ГЭР представляет собой эвтектическую смесь кислот и оснований Льюиса или Бренстеда, которая имеет более низкую температуру плавления по сравнению с температурой плавления отдельных её компонентов за счет образования межмолекулярной водородной связи, наличия объемных несимметричных ионов с малой энергией решетки, комплексообразования и делокализации заряда, опосредованных наличием донорно-акцепторных водородных связей. Один из компонентов ГЭР выступает в роли акцептора водородных связей, другой — их донора [2]. ГЭР, имеют такие преимущества, как биоразлагаемость и биосовместимость, возможность использования в качестве «зеленых» растворителей, химическая совместимость с водой, простота приготовления, нетоксичность и низкая температура плавления.

В настоящей работе представлены результаты синтеза и разработки новых гидрофильных глубоких эвтектических растворителей для эффективного и экологически безопасного увеличения нефтеотдачи в сложных условиях арктических пластов.

Экспериментальная часть

Экспериментальная работа заключалась в определении температуры плавления бинарных систем, образуемых компонентами: глицерин, борная кислота и карбамид. Все компоненты (реагенты) бинарных систем характеризовались степенью чистоты «х.ч.». Последовательность экспериментов состояла в следующем: в чистые сухие колбы засыпали предварительно взвешенные на аналитических весах навески исходных веществ в различном соотношении их молярных концентраций. Колбы нагревали на песчаной бане при постоянном перемешивании, до образования прозрачного расплава. При получении прозрачного расплава нагревание останавливали и помещали колбу с исследуемым составом в термостат на 4 часа при 80 °C для получения ГЭР и ее дальнейшего исследования. Остывшие полученные расплавы растирали в ступке в порошок до мелких частиц. Затем небольшое количество тонко растертого сухого расплава помещали в запаянный с одного конца тонкостенный стеклянный капилляр. После этого стеклянный капилляр помещали в прибор измерения температуры плавления «Stuart SMP 30» и устанавливали температуру приблизительно на 10 °C ниже предполагаемой температуры плавления. По достижению заданной температуры, включали нагрев и нагревали стеклянный капилляр со скоростью 1°С/мин. Постоянным наблюдением определяли температуру, при которой последняя твердая частичка переходит в жидкую фазу. Температура, при которой последний кристалл расплава переходил в жидкую фазу, регистрировалась как температура плавления исследуемой смеси.

Также в работе представлены результаты экспресс-оценки нефтевытесняющей способности химической композиции. Фильтрационные эксперименты проводились на установке физического моделирования фильтрационных процессов с использованием насыпных моделей неоднородного пласта Усинского месторождения. Подробности о геолого-физических характеристиках Усинского месторождения приведены в работе [1].

Результаты

Для создания новой нефтевытесняющей композиции были синтезированы и исследованы бинарные системы и тройная система ГЭР на основе пентаэритрита (ПЭР), карбамида (КА) и хлорида холина (XX) (табл. 1).

Tаблица 1 Физико-химические характеристики Γ ЭР на основе пентаэритрита, карбамида и хлорида холина

ГЭР на основе	Донор водородных связей	Акцептор водородных связей	Соотношение компонентов, % мол.	Температура застывания / кристаллизации, °C	Плотность, $\Gamma/\text{см}^3$
ПЭР и ХХ	ПЭР	XX	50,0:50,0	98	1,2458
ПЭР и КА	ПЭР	КА	400: 60,0	96	1,2346
КА и ХХ	КА	XX	67,0: 33,0	18	1,2158
ПЭР, КА и ХХ	ПЭР и КА	XX	27,0:51,5: 21,5	минус 14	1,2387

В результате исследования бинарных и тройной систем ГЭР на основе пентаэритрита, карбамида и хлорида холина показано, что самая низкая температура плавления/застывания (минус 14,5 °C) характерна для эвтектического состава тройной системы ГЭР. Наличие одной точки эвтектики и отсутствие других экстремумов на линии солидуса в бинарных и тройной системах свидетельствует об отсутствии образования новых химических соединений. В результате донорно-акцепторного взаимодействия компонентов тройной системы ГЭР «пентаэритрит — карбамид — хлорид холина» образуется молекулярный комплекса. Водородные связи являются основным фактором снижения температуры застывания эвтектической смеси.

На основе эвтектического состава тройной системы ГЭР, путем его растворения в воде и добавлением ПАВ, была создана нефтевытесняющая композиция ГЭР и ПАВ. Концентрация воды в композиции составляет от 26 до 85 %. В состав нефтевытесняющей композиции входят поверхностно-активные вещества (ПАВ) для улучшения отмывающей способности растворов и облегчения их взаимодействия с породой-коллектором. Композиция обладает высокой нефтевытесняющей способностью, совместимостью с минерализованными водами и снижает набухаемость глин, что способствует извлечению остаточной нефти из зон с различной проницаемостью.

Для того, чтобы оценить применимость созданной нефтевытесняющей композиции на основе тройной системы ГЭР «пентаэритрит – карбамид – хлорид холина» и ПАВ к разным геолого-физическим условиям и на разных стадиях разработки месторождений, а также их влияние на коэффициент нефтевытеснения и коэффициент охвата пласта заводнением или паротепловым воздействием, были проведены исследования фильтрационных характеристик и нефтевытесняющей способности композиции в условиях Усинского месторождения с карбонатным коллектором.

В табл. 2 представлены результаты влияния нефтевытесняющей композиции на основе тройной системы ГЭР и ПАВ на фильтрационные характеристики модели пласта Усинского месторождения при температурах 23, 90 и 150 °C, что моделирует пластовую температуру и паротепловое воздействие на пласт.

Таблица 2 Прирост коэффициента нефтевытеснения в зависимости от объема оторочки закачанной композиции на основе ГЭР

M	T, °C	№ закачки	Объем закачанной композиции, $V_{\text{пор}}$	$\Delta K_{ m B},\%$		
Модель				1 колонка	2 колонка	Суммарный
1	23	1	1	0,0	2,5	2,5
		2	1	6,0	9,6	15,6
	90	за счет температуры		2,0	0,0	2,0
		3	1	5,3	3,0	8,3
	150	за счет температуры		0,0	0,0	0,0
		4	1	3,7	2,8	6,5
		5	1	3,4	5,6	9

Заключение

Исследование фильтрационных характеристик моделей неоднородного пласта месторождений с карбонатным типом коллектора в процессе вытеснения нефти с помощью разработанной композиции показало ее высокую эффективность. Прирост коэффициента нефтевытеснения за счет обработки композицией составил от 15,3 до 50,1 % в целом по моделям пласта во всех экспериментах. Эффективность композиции обусловлена как высокими нефтеотмывающими свойствами, так и ее способностью к выравниванию фильтрационных потоков внутри пласта за счет увеличения его охвата заводнением. Результаты определения подвижности жидкостей внутри отдельных колонок, составляющих модель пласта, позволили проследить изменение направления фильтрационных потоков: отношения подвижности жидкостей при большой разнице на стадии фильтрации воды после обработки композицией существенно снизилось и стремилось к единице, то есть наблюдалось выравнивание фильтрационных потоков.

Работа выполнена в рамках государственного задания Института химии нефти Сибирского отделения Российской академии наук, финансируемого Министерством науки и высшего образования Российской Федерации (НИОКТР № 121031500048-1).

Список литературы

- 1. Sholidodov M.R., Kozlov V.V., Altunina L.K., Kuvshinov V.A. and Stas'eva L.A. Laboratory testing of acidic EOR oil-displacing compositions based on surfactants, inorganic acid adduct and polyols // J. Sib. Fed. Univ. Chem. -2022. Vol. 15, N 2. P. 186–196.
- 2. Abbott A.P., Capper G., Davies D.L., Rasheed R.K., Tambyrajah V. Novel solvent properties of choline chloride/urea mixtures // Chem. Commun. -2003. N 1. -P. 70-71.