УДК 519.713.8

Сравнение решений уравнения поверхностной диффузии при помощи конечно-разностной схемы и методов теории клеточных автоматов

М.А. Тамошкин¹, М.А. Шипуля², Ю.Ю. Эрвье³ Научный руководитель: к.ф.-м.н. М.А. Шипуля³, Научный консультант: д.ф.-м.н. Ю.Ю. Эрвье³

¹Национальный исследовательский Томский политехнический университет, Россия, г. Томск, пр. Ленина, 30, 634050

²Томский университет систем управления и радиоэлектроники, Россия, г. Томск, пр. Ленина, 40, 634050

³Национальный исследовательский Томский государственный университет, Россия, г. Томск, пр. Ленина, 36, 634050

E-mail: ervye@mail.tsu.ru

Comparison of solutions of the diffusion equation using a finite-difference scheme and methods of the theory of cellular automata

M.A. Tamoshkin¹, M.A. Shipulya², Yu.Yu. Hervieu³ Scientific Supervisor: Ph.D. M.A. Shipulya², Scientific Consultant: Dr. Yu.Yu. Hervieu³

¹Tomsk Polytechnic University, Russia, Tomsk, Lenin str., 30, 634050

²Tomsk University of Control Systems and Radio Electronics, Russia, Tomsk, Lenin str., 40, 634050 ³Tomsk State University, Russia, Tomsk, Lenin str., 36, 634050

E-mail: ervye@mail.tsu.ru

Abstract. The paper presents the results of a comparison of calculations for solving the diffusion equation using the classical finite difference scheme and methods of the theory of cellular automata. **Key words**: cellular automata, nanowires, finite difference scheme.

Введение

Диффузия атомов, адсорбированных на кристаллических поверхностях, играет важную роль в процессах катализа, роста кристаллов и формирования различных наноструктур. В частности, диффузионно-индуцированный механизм роста нитевидных нанокристаллов (ННК) является основным при выращивании ННК с использованием МОС-гидридной и молекулярно-пучковой эпитаксии [1]. В настоящей работе рассматривается начальная стадия роста ННК в пределах прямоугольных участков, создаваемых с помощью селективного травления (метод селективной эпитаксии [2]). В данном случае, отсутствие цилиндрической симметрии затрудняет аналитическое решение соответствующей краевой задачи поверхностной диффузии и необходимо использовать численные методы. В работе обсуждается эффективность применения метода клеточных автоматов [3–5] в сравнении с классической конечно-разностной схемой решения уравнения параболического типа с соответствующими начальным и граничными условиями.

Результаты

При использовании метода селективной эпитаксии осаждаемые из газовой фазы или молекулярного пучка атомы совершают случайное блуждание в пределах определенной области на поверхности подложки. Эта область ограничена с одной стороны, внешней границей ∂d капли катализатора, а с другой – внутренней границей ∂S , задаваемой условиями селективного травления. Будем полагать, что граница капли катализатора представляет собой окружность радиуса r_0 с центром в точке (x_0, y_0) , совпадающим с центром фигуры, определяющей внешнюю границу области. В простейшем случае такая область может иметь

форму правильного многоугольника. Атомы, диффундирующие по подложке, не покидают пределов внешней границы и остаются на поверхности до тех пор, пока не попадают внутрь капли катализатора. В этот момент они удаляются с подложки и участвуют в процессе роста ННК. Упрощенное описание данного процесса может быть представлено с помощью уравнения диффузии для плотности распределения атомов u(x, y, t) с соответствующими граничными и начальными условиями:

$$\partial_t u(x, y, t) = D\Delta u(x, y, t),\tag{1}$$

$$u(x, y, 0) = u_0, \qquad \langle \vec{n}(x, y), \vec{\nabla} u(x, y) \rangle \Big|_{(x, y) \in \partial S} = u(x, y, t)|_{(x, y) \in \partial d} = 0$$
 (2)

Здесь $\vec{n}(x,y)$ — вектор, направленный по нормали к границе ∂S , D — постоянный коэффициент диффузии, характеризующий скорость движения диффундирующих атомов по подложке. В качестве границ области, определяющей возможные перемещения атомов, выбраны, соответственно, квадрат со стороной 2R для ∂S , и окружность с диаметром $2r_0$ для ∂d . Численное значение плотности, полученное в результате применения классической конечно-разностной схемы решения уравнения параболического типа (1) с соответствующими начальным и граничными условиями (2), для различных значений времени представлено на рис. 1.

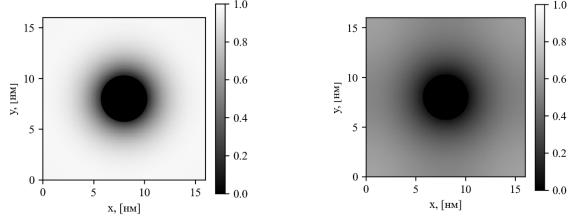


Рис. 1. Численное решение уравнения диффузии внутри области, ограниченной кривыми ∂d и ∂S в процессе диффузии (слева) и через 2^3 шагов алгоритма (справа)

Зависимость максимального значения плотности диффундирующих рассматриваемой области атомов от времени t возможно также получить и применяя для моделирования описанного процесса модель клеточных автоматов с окрестностью Мура [4] при равновероятном переходе между их состояниями. В частности, на рис. 2 представлено сравнение относительных значений количества диффундирующих атомов, не попавших в область капли катализатора на подложке размером 32 х 32 нм для различных значений радиуса границы ∂d (рис. 2, a) и начального значения u_0 (рис. 2, б). Пунктирные линии на рисунке соответствуют численным решениям (1), сплошные линии – результат работы машин клеточных автоматов. По оси ординат графиков на рис. 2 представлено отношение $u(t)/u_0$, где u(t) – текущее среднее по всей области подложки вне капли катализатора значение концентрации атомов, а u_0 — максимальное значение, данной величины, заданное в начальный момент времени. Ось абсцисс на графиках рис. 2 соответствует количеству циклов численного решения (1) в конечно-разностной схеме, или числу шагов машины в случае клеточных автоматов. Данную величину, для наглядности, удобно представлять в логарифмическом масштабе. Как легко понять, эта величина прямо пропорциональна времени протекания процесса диффузии в рассматриваемой системе. При этом, скорость процесса диффузии определяется коэффициентом D, от которого, очевидно, также зависит и диффузионная длина атомов на подложке до присоединения к капле.

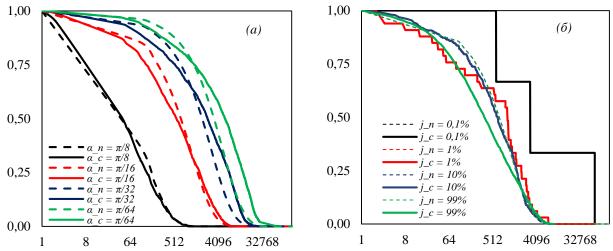


Рис. 2. Среднее относительное значение количества атомов, содержащихся внутри области селективного травления в зависимости от числа шагов алгоритмов: для различных r_0 при j=50 % (a); для различных u_0 при $\alpha=\pi/8$ (б)

Время протекания процесса диффузии, очевидно, зависит от начальной концентрации частиц u_0 (рис. 2, б), находящихся внутри области между указанными границами, т.е. от плотности заполнения клеток n машины автоматов размерности N в каждый рассматриваемый момент времени. Данное соотношение определяется при помощи величины $j = -\lg_2(n/N)$, где количество клеток автомата ассоциируется с числом атомов на подложке в рассматриваемой области. Кроме того, время протекания рассматриваемого процесса зависит также и от отношения площадей областей, соответствующих границам рассматриваемой области (рис. 2, а), которое удобно характеризовать при помощи безразмерного коэффициента $\alpha = (\pi r_0/4R)$. Как легко видеть, графики, полученные при помощи численного решения дифференциального уравнения (1, 2) и при помощи моделирования работы клеточных автоматов, демонстрируют схожие тенденции.

Заключение

Таким образом, в работе показано, что решение уравнения, описывающего процесс свободной диффузии атомов ростового вещества на начальной стадии образования ННК при осаждении из газовой фазы на подложку в ограниченной области, может быть получено как при помощи классической конечно-разностной схемы для уравнения второго порядка в частных производных параболического типа с соответствующими граничными и начальным условиями, так и при помощи машины клеточных автоматов с окрестностью Мура, вероятность перехода между состояниями которых не изменяется в ходе всего рассматриваемого процесса.

Список литературы

- 1. Dubrovskii V.G. Nucleation theory and growth of nanostructures. Springer: Heidelberg New York Dordrecht London, 2014. 601 p.
- 2. Yuan, X., Pan, D., Zhou, Y., Zhang, X., Peng, K., Zhao, B., Deng, M., He, J., Tan, H.H., Jagadish, C. Selective area epitaxy of III–V nanostructure arrays and networks: Growth, applications, and future directions // Applied Physics Review. -2006. V. 8, No 2. P. 021302.
 - 3. John von Neumann. Theory of self-reproducing automata URSS. 2010. 384 c.
 - 4. Тоффоли Т. Машины клеточных автоматов М.: Мир, 1991. 283 с.
- 5. Аладьев В.З., Ваганов В.А., Шишаков М.Л. Базовые элементы теории клеточных автоматов. USA: Lulu Press, 2019.-418 с.