1976

СРАВНИТЕЛЬНОЕ ИЗУЧЕНИЕ РАЗЛИЧНЫХ ВАРИАНТОВ ПОДГОТОВКИ ПРОБЫ ДЛЯ ОПРЕДЕЛЕНИЯ ЭЛЕМЕНТОВ В НЕФТЯХ И НЕФТЕПРОДУКТАХ СПЕКТРАЛЬНЫМ МЕТОДОМ

Р. Д. ГЛУХОВСКАЯ, Л. С. КОЛЕСНИКОВА, Ю. А. КАРБАИНОВ, Л. В. ПЕНЕВА

(Представлена научным семинаром кафедры аналитической химии)

Для определения металлических примесей в нефтях и нефтепродуктах широко используется спектральный метод анализа, позволяющий одновременно определять большой круг элементов в широком диапазоне концентраций с довольно большой чувствительностью.

Спектральные методы анализа делятся на прямые, предусматривающие непосредственный анализ пробы, и косвенные, связанные с концентрированием (чаще всего с озолением) пробы. Вторая группа наиболее пригодна для определения следов элементов, так как здесь достигается более чем тысячекратное обогащение пробы.

Подготовка пробы является одной из наиболее трудоемких и ответственных операций. От выбора способа озоления и его практического выполнения в значительной мере зависит точность и чувствительность результатов анализа.

В литературе известно большое число работ, посвященных спектральному определению элементов с использованием тех или иных способов озоления [1—5], но когда речь идет об определенных примесях, трудно дать предпочтение какому-нибудь из этих методов. В связи с этим в работе были проведены исследования по сравнительному изучению различных способов подготовки пробы. Ниже приводятся результаты анализа некоторых месторождений Западной Сибири с применением различных вариантов озоления пробы.

Озоление по ГОСТ 1461—59 [4]. В заранее подготовленный кварцевый тигель помещают беззольный бумажный фильтр так, чтобы он плотно прилегал ко дну и стенкам тигля. Тигель с фильтром взвешивают и помещают в него около 25 г нефти. Второй беззольный фильтр, свернутый в виде конуса со срезанным верхним концом, опускают в нефть. После того, как фильтр пропитался нефтью, его поджигают и сжигают до получения сухого углистого остатка. Тигель с его содержимым переносят в муфельную печь, нагретую до 500±50°С и выдерживают при этой температуре до полного озоления остатка. Полученную золу анализируют спектральным методом. Для этого к золе добавляют 100—120 мг спектрально-чистого угольного порошка и растирают во фторопластовой ступке в присутствии спирта 1,5—2 часа. Часть полученной смеси разбавляют угольным порошком в 10 и 100 раз и снова тщательно растирают до однородной массы.

Все подготовленные концентраты помещают в канал нижнего электрода (анода). На одной пластинке (УФШ) фотографируют по 2—3 раза

спектры подготовленных проб и эталонов с концентрациями от $3 \cdot 10^{-5} \%$ до $1 \cdot 10^{-2} \%$.

Эталоны в работе готовились растиранием окислов соответствующих элементов с угольным порошком обычным способом [5].

В качестве аналитических линий использовались линии

марганца с д	цлиной волны	2801,06 Å,
титана	,,	3088,03 Å,
ванадия	,,	3185,39 Å,
никеля	,,	3050,82 Å,
меди	,,	3247,54 Å,
свинца	,,	2833,07 Å.

Элементом сравнения служил фон вблизи линии.

Сульфатное озоление [6]. Соответствующую навеску нефти помещают в кварцевую чашку, добавляют равное количество концентрированной серной кислоты и осторожно нагревают на электрической плитке до получения твердой углистой массы. После этого чашку переносят в муфельную печь и прокаливают при температуре 500±50° С до получения золы, которую анализируют спектральным методом, как это было описано выше.

Прямое озоление [7] производилось постепенным нагреванием пробы нефти на электрической плитке до получения твердой углистой массы. Дальнейший ход анализа выглядел аналогично описанному ранее.

Озоление с применением в качестве коллектора угольного порошка [2, 3, 8, 10]. В чашку с навеской нефти помещают 150 мг спектральночистого угольного порошка и постепенно нагревают на электрической плитке до получения твердой массы. Содержимое чашки прокаливают в муфельной печи при тех же условиях и анализируют по методике, описанной выше.

Результаты определения марганца, никеля, свинца, титана, ванадия и меди в нефтях Убинская 311 и Южночеремшанская с применением вышеописанных методов подготовки пробы приведены в табл. 1.

Таблица 1

Прямой $1,5\cdot 10^{-5}$ $1,3\cdot 10^{-4}$ $1,9\cdot 10^{-6}$ $5,5\cdot 10^{-6}$ $2,5\cdot 10^{-4}$ $3,6\cdot 10^{-4}$ $1,7\cdot 10^{-5}$ $1,5\cdot 10^{-4}$ $1,7\cdot 10^{-6}$ $5,9\cdot 10^{-6}$ $3,6\cdot 10^{-4}$ $3,6\cdot 10^{-4}$ $3,9\cdot 10^{-5}$ $2,6\cdot 10^{-4}$ $2,1\cdot 10^{-6}$ $6,5\cdot 10^{-6}$ $8,3\cdot 10^{-4}$ $4,1$ Убинская 311 $1,3\cdot 10^{-4}$ $3,3\cdot 10^{-3}$ $2,0\cdot 10^{-4}$ $3,3\cdot 10^{-4}$ $2,5\cdot 10^{-3}$ $4,5\cdot 10^{-4}$ $1,1\cdot 10^{-4}$ $2,1\cdot 10^{-3}$ $1,4\cdot 10^{-4}$ $4,3\cdot 10^{-4}$ $1,9\cdot 10^{-3}$ $3,6\cdot 10^{-4}$ $1,9\cdot 10^{-3}$ $1,1\cdot 10^{-4}$ $1,1\cdot $							
Сульфатный 1,5·10 ⁻⁵ 3,0·10 ⁻⁴ 2,0·10 ⁻⁶ 7,1·10 ⁻⁶ 4,5·10 ⁻⁴ 4,6 Прямой 1,5·10 ⁻⁵ 1,3·10 ⁻⁴ 1,9·10 ⁻⁶ 5,5·10 ⁻⁶ 2,5·10 ⁻⁴ 3,6·10 ⁻⁴ 3,6·10 ⁻⁴ 3,9·10 ⁻⁵ 2,6·10 ⁻⁴ 2,1·10 ⁻⁶ 6,5·10 ⁻⁶ 8,3·10 ⁻⁴ 4,1 Убинская 311 Сульфатный 1,3·10 ⁻⁴ 3,3·10 ⁻³ 2,0·10 ⁻⁴ 3,3·10 ⁻⁴ 2,5·10 ⁻³ 4,5 Прямой 1,1·10 ⁻⁴ 2,1·10 ⁻³ 1,4·10 ⁻⁴ 4,3·10 ⁻⁴ 1,9·10 ⁻³ 3,6 ГОСТ 1461-59 1,3·10 ⁻⁴ 2,0·10 ⁻³ 2,3·10 ⁻⁴ 4,9·10 ⁻⁴ 2,3·1, -3 3,5 10 ⁻⁴ 2,0·10 ⁻³ 3,6 10 ⁻⁴ 2,0·10 ⁻³ 2,0·10 ⁻⁴ 2,0·10 ⁻⁴ 2,0·10 ⁻³ 3,6 10 ⁻⁴ 2,0·10 ⁻³ 3,6 10 ⁻⁴ 2,0·10 ⁻³ 2,0·10 ⁻⁴ 2,0·10 ⁻⁴ 2,0·10 ⁻³ 3,6 10 ⁻⁴ 2,0·10 ⁻³ 2,0·10 ⁻⁴ 2,0·10 ⁻⁴ 2,0·10 ⁻³ 3,6 10 ⁻⁴ 2,0·10 ⁻³ 2,0·10 ⁻⁴		Найдено, %					
Прямой $1,5\cdot 10^{-5}$ $1,3\cdot 10^{-4}$ $1,9\cdot 10^{-6}$ $5,5\cdot 10^{-6}$ $2,5\cdot 10^{-4}$ $3,6\cdot 10^{-1}$ $1,7\cdot 10^{-5}$ $1,5\cdot 10^{-4}$ $1,7\cdot 10^{-6}$ $5,9\cdot 10^{-6}$ $3,6\cdot 10^{-4}$ $3,6\cdot 10^{-4}$ $3,9\cdot 10^{-5}$ $2,6\cdot 10^{-4}$ $2,1\cdot 10^{-6}$ $6,5\cdot 10^{-6}$ $8,3\cdot 10^{-4}$ $4,1$ Убинская 311 $1,3\cdot 10^{-4}$ $3,3\cdot 10^{-3}$ $2,0\cdot 10^{-4}$ $3,3\cdot 10^{-4}$ $2,5\cdot 10^{-3}$ $4,5\cdot 10^{-4}$ $1,1\cdot 10^{-4}$ $2,1\cdot 10^{-3}$ $1,4\cdot 10^{-4}$ $4,3\cdot 10^{-4}$ $1,9\cdot 10^{-3}$ $3,6\cdot 10^{-4}$ $1,9\cdot 10^{-3}$ $1,1\cdot 10^{-4}$ $1,1\cdot $	Метод озоления	Mn	Ni	Pb	Ti	V	Gu
Сульфатный $1,3\cdot 10^{-4}$ $3,3\cdot 10^{-3}$ $2,0\cdot 10^{-4}$ $3,3\cdot 10^{-4}$ $2,5\cdot 10^{-3}$ $4,5\cdot 10^{-4}$ $1,1\cdot 10^{-4}$ $2,1\cdot 10^{-3}$ $1,4\cdot 10^{-4}$ $4,3\cdot 10^{-4}$ $1,9\cdot 10^{-3}$ $3,6\cdot 10^{-4}$ $1,9\cdot 10^{-3}$ $1,3\cdot 10^{-4}$ $1,3\cdot 10$	Прямой ГОСТ 1461-59	$1,5 \cdot 10^{-5}$ $1,7 \cdot 10^{-5}$	$1,3 \cdot 10^{-4}$ $1,5 \cdot 10^{-4}$	$1,9 \cdot 10^{-6}$ $1,7 \cdot 10^{-6}$ $2,1 \cdot 10^{-6}$	$5,5 \cdot 10^{-6}$ $5,9 \cdot 10^{-6}$ $6,5 \cdot 10^{-6}$	$2,5 \cdot 10^{-4} \\ 3,6 \cdot 10^{-4}$	
	Прямой	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					

Из табл. 1 видно, что для определения марганца, никеля, свинца, титана, ванадия и меди наиболее рациональными методами являются кислотное и озоление с коллектором (угольным порошком). Прямое озоление и озоление по ГОСТ 1461—59 приводят к частичной потере некоторых

Сравнение сульфатного метода озоления пробы нефти Мыльджинского месторождения, проводимого в кварцевых чашках емкостью 200 мл и тиглях емкостью $75 \, \text{мл}$, показало (табл. 2) некоторое занижение результатов, полученных при озолении в тиглях. Это связано, по-видимому,

Таблица 2

	Найдено, %					
Метод озоления	Mn	Ni	Pb	Ti	V	Gu
Сульфатное в ча-	4,5.10-4	2,7.10-4	1,7·10 ⁻⁵	$2,2\cdot 10^{-5}$	$8,3 \cdot 10^{-4}$	$4,5 \cdot 10^{-4}$
Сульфатное в ти-	$4,1\cdot 10^{-4}$	$2,5 \cdot 10^{-4}$	$1,2\cdot 10^{-5}$	$2,1\cdot 10^{-5}$	7,5.10-4	3,5·10 ⁻⁴
Данные фотометрического определения	$5,7\cdot10^{-4}$	$2,6\cdot10^{-4}$		$3,2\cdot 10^{-5}$	$6,7 \cdot 10^{-4}$	

с более продолжительным озолением. Пробы, помещенные в тигель, озолялись на 3-4 часа дольше, чем в чашках, что и привело к частичной потере элементов.

Выводы

- 1. Приведенные в табл. 2 результаты фотометрического определения удовлетворительно согласуются с данными спектрального анализа.
 - 2. Проведено сравнительное изучение некоторых косвенных методов
- подготовки пробы нефтей для спектрального анализа.
- 3. Найдено, что наиболее пригодными методами являются сульфатное озоление и озоление с использованием в качестве коллектора угольного порошка.

ЛИТЕРАТУРА

- 1. К. И. Зимина. Применение спектрального анализа масел для повышения надежности машин и механизмов. МДНТП. 1965, стр. 90.
- 2. Н. П. Горожанкина, С. Г. Соболева. Применение спектрального анали-
- за масел для повышения надежности машин и механизмов. МДНТП, 1965, стр. 86. 3. М. М. Маренова, С. К. Кюрегян. Применение спектрального анализа масел для повышения надежности машин и механизмов. МДНТП, 1965, стр. 32.
- 4. Нефтепродукты, методы испытания. М.—Л., «Стандарт», 1965.

 5. Методы анализа химических реактивов и препаратов. М., вып. 8, 1964, стр. 10.

 6. С. Н. Александров, Я. Э. Шмуляковский, С. А. Алексеев. Химия и технология топлив и масел, № 969, (1958) (1).

 7. Д. И. Зульфугорлы, Ф. Р. Бабаев. Уч. записки Азерб. гос. ун-та, Серия
- хим. наук, № 3, 57 (1969). 8. А. И. Соколов. Химия и технология топлив и масел, № 2, 70 (1964).