ТЕХНОЛОГИЯ ОЧИСТКИ СТОЧНЫХ ВОД КАРАНДАШНОЙ ФАБРИКИ

С. А. БАБЕНКО, О. И. ПОПОВА, С. И. ОЛЕНЕВ

(Представлена научным семинаром кафедры процессов, аппаратов и кибернетики химических производств)

Сточные воды Томской карандашной фабрики образуются, главным образом, в процессе обработки карандашной дощечки в автоклавах аммиачной водой и острым паром. Процесс происходит при температуре

125—135° С, давлении 2 ат и длится два часа. Затем конденсат сливается, а дощечка обрабатывается острым паром при тех же условиях еще в течение часа. Образующийся конденсат сливается, дощечка помещается в парафиновую ванну на 1 мин, а затем выдерживается в автоклаве 15 мин. Избыток парафина также поступает в общий слив.

Сток автоклава представляет собой черную жидкость со смолянистохвойным запахом, исчезающим при разведении в 64 раза. Окраска исчезает при разведении в 1024 раза. Прозрачность натуральной сточной воды и воды после двухчасового отстоя равна нулю. Химический состав исследуемой сточной воды (табл. 1) показывает значительное содержание аммиака и органических веществ.

Таблица 1 Химический состав сточной воды Томской карандашной фабрики

Вещества, загрязняющие воду	Содержание мг/л	
Аммиак	1520—1700	
Нитриты	следы, нитриты — не об- наружены	
Сульфаты	25,6—30,0	
Железо	не обнаружено	
Хлориды	3,0—6,0	
Фенолы и крезолы	3,0—5,0	
Эфирорастворимые вещества	850—1700	
Взвешенные вещества при 105° C	1100—1200	
Взвешенные вещества прокаленные	35,0—40,0	
Сухой остаток	13000—19000	
Прокаленный остаток	160—330	
БПК5	19000—20000	
ХПК	17000—18000	
pH	8,5—9,2	
Окисляемость	50,0—60,0	

Аналогичные по составу сточные воды подвергаются грубой очистке путем обработки гашеной или хлорной известью и углекислым газом [1]. Имеются данные о высаживании лигнина сернокислым алюминием в присутствии полиакриламида [2, 3]. Предварительные опыты по очистке исследуемой сточной воды показали, что только гашеная известь обладает способностью связывать органические вещества. Хлорная известь, хлористый кальций, неорганические соли, минеральные кислоты и высокомолекулярные флокулянты

Таблица 2 Содержание органических веществ в очищенной сточной воде в зависимости от расхода извести. Начальное содержание органики

24 г/л, температура воды 20° С

Pacxoд Ca(OH) ₂ ,	Содержание органических веществ, z/n	Процент очистки
10	13,84	42,0
20	13,23	43,0
30	12,99	45.8
40	12,18	48,8
50	12,0	50,0
60	11,97	50,0
80	9,23	61,2
100 -	9,01	62,5

не обладают сколько-нибудь заметным свойством осаждать органические вещества даже при значительных расходах реагентов.

Влияние расхода извести и температуры на полноту очистки сточной воды (табл. 2, 3) показали, что увеличение расхода извести в десять раз увеличивает степень очистки воды всего на 20% (42% — расход извести $10\ s/n$ и 65,2% — расход $100\ s/n$). Повышение температуры воды с $15\ до\ 80^\circ$ С при расходе извести $40\ s/n$ практически не сказывается на процесс очистки воды от органических веществ.

Недостаточную очистку сточной воды известью мож-

но объяснить различным составом органических веществ. Известно, что при обработке древесины щелочными растворами из нее удаляется большая часть экстрактивных и ароматических веществ, то есть избиратель-

ного растворения не происходит и щелочные экстракты оказываются химически гетерогенными. В хвойной древесине значительную часть экстрактивных веществ составляют смоляные кислоты [4].

Горячая вода растворяет как углеводы, так и лигнин. Часть растворенного вещества, по-видимому, представляет собой лигноуглеводный комплекс, большая часть растворяющегося в воде материала состоит из полисахаридов.

Режим обработки дощечки: щелочная среда, продолжительность и высокая температура создают хорошие условия для перехода в воду углеводов, лигниноподобных и ароматических веществ, масел и смол. Такое обилие разнообразных по своим свойствам и строению органических веществ невозможно удалить из воды каким-то одним

Таблица 3 Содержание органических веществ в очищенной воде в зависимости от температуры. Начальное содержание органики — фенола — 24 г/л. Расход извести — 40 г/л

t°C	Соде р жание органических веще с тв, <i>г</i> / <i>л</i>	Прощент очистки
15	12,18	49,4
30	11,94	50,2
50	11,94	50,2
60	11,71	51,1
70	12,40	48,4
80	13,35	44,5

способом. Поэтому после щелочной обработки и удаления около 60% органических веществ сточная вода подвергалась дальнейшей очистке и обесцвечиванию окислителями. В качестве окислителей исследовались окись марганца и магния, гипохлорит кальция, газообразный хлор и кислород, перманганат калия. Предпочтительным оказался последний

окислитель, при расходе 3—4 г/л происходило полное обесцвечивание сточной воды.

На основании проведенных исследований можно рекомендовать схему, согласно которой сточная вода из автоклава подается в парафиноуловитель, где частицы парафина улавливаются и отправляются в парафиновую ванну. Затем вода и известковое молоко тщательно перемешиваются в смесителе и подаются в отстойник. Осадок из отстойника обезвоживается на фильтр-прессе и регенируется в обжиговой печи, после чего снова подается в цикл, а вода и фильтрат обрабатываются перманганатом калия в реакторе-окислителе. Часть очищенной воды расходуется на приготовление растворов КМпО4 и извести, а остальная часть сбрасывается в канализацию.

ЛИТЕРАТУРА

1. А. Петру. Промышленные сточные воды. М., Стройиздат, 1965.

2. Очистка и использование сточных вод целлюлозно-бумажной промышленности. Киев, Изд-во Укр. НИИНТИ, 1968.

3. «Химия древесины». Рига, 1968, № 1.

4. «Химия древесины». М., Изд-во «Лесная промышленность», 1967.