1976

ПРИМЕНЕНИЕ ФЛОКУЛЯНТОВ ДЛЯ ОЧИСТКИ КИСЛЫХ СТОЧНЫХ ВОД

С. А. БАБЕНКО, Р. И. ТАСОЕВ, О. И. ПОПОВА

(Представлена научным семинаром кафедры процессов, аппаратов и кибернетики химических производств)

Сточные воды одного из томских заводов слагаются из травильных растворов, имеющих состав Fe^{3+} — $70 \ e/n$, Fe^{2+} — $96 \ e/n$, Cu^{2+} — $60 \ e/n$, хромсодержащей воды, содержащей Cr^{6+} — $1 \ e/n$, и промывной воды с переменным количеством ионов тяжелых металлов — 0.1— $300 \ me/n$.

В результате выполненных исследований по очистке сточной воды указанного состава различными методами рекомендована технологическая схема, предусматривающая восстановление шестивалентного хрома хлористым железом, входящим в состав травильного раствора с последующей нейтрализацией всей сточной воды известковым молоком. Образующаяся при этом гидроокись металлов выпадает в осадок. С целью интенсификации процесса их осаждения применили флокулянты ПАА и К-4.

Таблица 1 Зависимость осветления суспензии гидроокисей металлов от расхода флокулянтов

Расход флокулянтов, z/m^3	Процент осветления, мин					
	1	3	5	10	20	30
- 12.6	2	12	31	59	77	81
ПАА—1 г/м3	7	46	68	80	89	90
ПАА—5 г/м3	19	70	76	83	85	90
ПАА-50 г/м3	75	85	87	90	92	94
К-4—1 г/м3	2	22	45	70	80	82
К-4—5 г/м3	4	32	60	75	83	85
К-4—50 г/м3	5	32	54	73	82	84

Методика проведения опытов сводилась к следующему: пробы воды с гидроокисями металлов заливались в цилиндр емкостью $500~m\Lambda$, после добавления расчетного количества коагулянта через определенные промежутки времени отмечался процент осветления. Осветление принималось за 100%, когда гидроокиси осядут и займут объем $90~cm^3$ (такой объем гидроокиси занимают через месяц стояния). Температура воды — 18° С.

Как видно из табл. 1, добавление к суспензии флокулянтов K-4 и ПАА ускоряет осаждение гидроокисей металлов, причем ПАА действует более эффективно. Так, при расходе ПАА 1 г/м³ через 3 мин процент осветления увеличивается более чем в два раза по сравнению с суспензией без флокулянта (осветление соответственно 68 и 31%). Дальнейшее повышение расхода ПАА до 5 и 50 г/м³ увеличивает скорость осаждения гидроокиси особенно в начале процесса. Флокулянт K-4 ускоряет процесс осаждения гидроокиси незначительно даже при расходе 50 г/м³.

Таким образом, применение ПАА позволяет существенно ускорить процесс осаждения гидроокисей металлов, полученных в результате ней-

трализации кислых сточных вод.