ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА им. С. М. КИРОВА

Том 276

1976

(1)

УДК 537.52

ФАКЕЛЬНЫЙ РАЗРЯД КАК ЛИНИЯ С РАСПРЕДЕЛЕННЫМИ ПАРАМЕТРАМИ

И. А. ТИХОМИРОВ, В. В. ТИХОМИРОВ, В. С. ЛЕВАШОВ

(Представлена научным семинаром физико-технического факультета)

В работе рассмотрена эквивалентная схема факельного разряда. Из анализа уравнений для линии с распределенными параметрами предложена методика, которая позволяет по экспериментально измеренным входному сопротивлению, частоте и длине разряда, а также по коэффициенту затухания тока в разряде определить емкость, индуктивность и активное сопротивление разряда. Показано удовлетворительное согласие результатов электрических и микроволновых измерений.

Таблица 1, библиографий 12.

В настоящее время для питания в. ч. плазмотронов факельного типа используются промышленные в. ч. автогенераторы с частотами колебаний 10 ÷ 40 *мггц* [1—2]. При этом непосредственное подключение плазмотрона к в. ч. генератору приводит к перестройке его колебательного контура, вследствие того, что электрические параметры факельного разряда складываются с параметрами контура генератора. Поэтому для эффективного использования системы генератор-плазмотрон необходимо знать эквивалентные электрические параметры разряда.

Экранированный высокочастотный факельный разряд (ВФР) в молекулярных газах представляет собой плазменное образование с ярко выделенным каналом, температура которого значительно выше оболочки [3] и длина которого много больше его поперечных размеров. Развивая положение работы [4], где утверждается, что канал ВФР можно рассматривать как тонкий провод, направляющий электромагнитную волну и поглощающий мощность из этой волны, и что пространственное распределение полей в ВФР хорошо описывается функциями Бесселя в канале и Ганкеля вне его, представим эквивалентную нагрузку в. ч. генератора в виде экранированного ВФР как линию с распределенными параметрами, т. е. активное сопротивление, емкость и индуктивность не сосредоточены в одной точке, а распределены по длине канала ВФР. В таком случае при больших мощностях, вкладываемых в разряд, необходимо учитывать в отличие от Неймана [5], не только активное сопротивление и емкость ВФР, но также и индуктивность разряда, поскольку геометрия разряда в металлическом плазмотроне сравнима. с геометрией анодной индуктивности в. ч. генератора.

Если воспользоваться уравнениями [6] для коаксиальной линин, описывающими изменение тока и напряжения в пространстве и времени, то применительно к рассматриваемым условиям получим следующие соотношения:

$$\frac{\partial^2 U}{\partial x^2} = L_0 C_0 \frac{\partial^2 U}{\partial t^2} + (C_0 R_0 + G_0 L_0) \frac{\partial U}{\partial t} + G_0 R_0 U,$$

$$\frac{\partial^2 i}{\partial x^2} = L_0 C_0 \frac{\partial^2 i}{\partial t^2} + (C_0 R_0 + G_0 L_0) \frac{\partial i}{\partial t} + G_0 R_0 i,$$
(1)

решением которых, в случае синусоидальных зависимостей от времени, будут являться комплексы

$$\dot{U} = U_0 e^{j\omega t - \gamma x}$$
 и $\dot{I} = I_0 e^{j\omega t - \gamma x}$. (2)

Здесь R_0 — активное сопротивление канала ВФР, L_0 — индуктивность и C_0 — емкость "канал разряда — плазмотрон", G_0 — активная проводимость между каналом разряда и корпусом плазмотрона. Величины R_0 , L_0 , C_0 и G_0 взяты на единицу длины коаксиальной линии, образованной корпусом плазмотрона и каналом ВФР. Всю линию можно рассматривать как совокупность последовательно соединенных малых элементов dx.

Постоянную распространения электромагнитной волны — у можно записать в виде

$$\gamma = \pm (\alpha + i\beta) = \pm \sqrt{(R_0 + j\omega L_0) \cdot (G_0 + j\omega C_0)}, \qquad (3)$$

где φ — частота поля, α — коэффициент затухания, β — фазовая постоянная или коэффициент фазы.

Если факельный разряд возбуждается в металлическом плазмотроне, внутри которого помещена кварцевая трубка, то с достаточной точностью можно утверждать, что

$$G_0 = 0. \tag{4}$$

Кроме того, из сопоставления результатов зондовых и микроволновых измерений, проведенных нами [7, 8], и результатов работ [9, 10] можно сделать вывод, что

$$R_0^2 \gg (\omega L_0)^2. \tag{5}$$

Воспользовавшись выражениями (4) и (5), после некоторых преобразований можно получить следующие выражения для коэффициента затухания:

$$\alpha = \pm \sqrt{\frac{1}{2} \left(\omega C_0 R_0 - \omega^2 L_0 C_0 \right)}$$
(6)

и волнового сопротивления факела

$$Z_b = \sqrt{L_0/C_0}.\tag{7}$$

Отрезок коаксиальной линии, длиной *l*, должен обладать собственной частотой, которая при выполнении условий (4) и (5) будет иметь вид

$$\omega_{\rm n} = \frac{\pi n}{l} \sqrt{\frac{1}{L_0 C_0} - \frac{l^2 R_0^2}{2\pi n^2 L_0^2}}.$$
 (8)

Из выражения (8) можно заметить, что для экранированного ВФР $l \sim \omega^{-1}$, в отличие от неэкранированного, где $l \sim \omega^{-\frac{1}{2}}$ т. е. при постоянной мощности, рассматриваемой в плазме ВФР, длина его канала устанавливается такой, что собственная частота ВФР в плазмотроне равна частоте генерации, т. е. выполняется условие (8), где $\omega_{\Pi} = \omega_{\text{ген}}$.

Из сопоставления уравнений (6), (7) и (8) можно сделать вывод, что при наличии достаточного количества экспериментальных данных, решая эти уравнения относительно L_0 , R_0 и C_0 , можно получить информацию о величине активного сопротивления, индуктивности и емкости ВФР.

Таким образом, предлагаемый нами новый метод определения *R*, *C* и *L* заключается в следующем.

Измеряется частота в. ч. поля, длина канала ВФР, а также его входное сопротивление, которое согласно [4] равно его волновому сопротивлению (отношению разности потенциалов между каналом разряда и экранирующим цилиндром к току в разряде). Коэффициент затухания α определяется из выражения (2) при известном распределении тока по длине разряда, которое находится по методике, описанной в нашей работе [11]. Искомые параметры, определяются из решения системы уравнений (6), (7), (8).

Для проверки предложенной методики одновременно с электрическими измерениями было проведено микроволновое зондирование разряда, т. е. определены средние по диаметру разряда значения электронной концентрации — n_e и эффективной частоты соударений — $v_{э\phi}$. Зная n_e и $v_{\varepsilon\phi}$ при $\omega_{ren}^2 \ll v_{э\phi}^2$ можно определить удельную электропроводность

$$\sigma = \frac{e^2 \cdot n_e}{m \cdot \nu_{9\Phi}},\tag{9}$$

а затем при известной геометрии разряда вычислить удельное активное сопротивление разряда.

Разработанная нами установка для проведения СВЧ измерений, а также методика обработки экспериментальных данных описаны в работе [12].

Измерения проведены при атмосферном давлении в воздушной плазме.

. Результаты проведенных измерений и расчетов представлены в табл. 1.

Т	a	б	Л	И	Ц	a	1

				And a second	the second s	THE R. LEWIS CO., LANSING MICH.	
la	f	1	Up	Ip	Zb	α	C ₀
a	мггц	М	в	а	ом	M ⁻¹	ngb/M
0,8	42,95	0,05	560	2,10	267	20,4	27,3
1,0	42,92	0,10	630	2,14	294	11,0	25,0
1,2	42,90	0,13	750	2,16	347	6,4	20,2
1,4	42,85	0,16	875	\$ 2,20	398	4,9	17,3
1,6	42,82	0,22	1000	2,24	447	4,0	14,2
						1	and the second sec
L ₀	R_0	ne	νэф	<i>R</i> ⁰ свч	R	С	L
L ₀ мкгн/м	R ₀	r_e	^У эф сек ⁻¹	R _{0 СВЧ}	R ом	C ngp	L мкгн
L ₀ мкгн/м 1,92	R ₀ ом/м 11,5·10 ⁴	n _e см ⁻³	^v эф сек ⁻¹	 	R ом 5760	C ngb	L мкгн 0,09
L ₀ мкгн/м 1,92 2,34	$ \begin{array}{c} R_0 \\ \hline 0.0$	n_e c_{M}^{-3} $1,15\cdot 10^{11}$	$\frac{\overset{\nu_{9\phi}}{}}{ce\kappa^{-1}}$	R _{0 СВЧ} <i>ом/м</i> 5,4·10 ⁴	R ом 5760 3080	C ncb 1,36 2,50	L мкгн 0,09 0,23
<u>L₀</u> мкгн/м 1,92 2,34 2,15	$ \begin{array}{c} R_0 \\ \hline 0 \mathcal{M} / \mathcal{M} \\ \hline 11, 5 \cdot 10^4 \\ 3, 08 \cdot 10^4 \\ 1, 62 \cdot 10^4 \\ \end{array} $	$\frac{n_e}{c_{M}^{-3}}$ 1,15.10 ¹¹ 1,30.10 ¹¹	$rac{\nu_{3\phi}}{ce\kappa^{-1}}$ 2,12.10 ¹¹ 2,20.20 ¹¹	$ \begin{array}{c} R_{0 \ CB4} \\ \hline 0 \ \mathcal{M} / \mathcal{M} \\ \hline 5, 4 \cdot 10^{4} \\ 2, 1 \cdot 10^{4} \end{array} $	<i>R</i> <i>ом</i> 5760 3080 2110	C ngb 1,36 2,50 2,64	<i>L</i> <i>мкгн</i> 0,09 0,23 0,33
L ₀ мкгн/м 1,92 2,34 2,15 2,74	$ \begin{array}{c} R_0 \\ \hline 0.0$	n_{e} c_{M}^{-3} $1,15\cdot10^{11}$ $1,30\cdot10^{11}$ $1,75\cdot10^{11}$	$ \frac{\nu_{9\phi}}{ce\kappa^{-1}} $ 2,12.10 ¹¹ 2,20.20 ¹¹ 2,54.10 ¹¹	$ \begin{array}{c} R_{0 \ CB4} \\ \hline \\ \\ \\ $	<i>R</i> <i>ом</i> 5760 3080 2110 1750	C ngb 1,36 2,50 2,64 2,78	<i>L</i> <i>мкгн</i> 0,09 0,23 0,33 0,44
	$ \begin{array}{c} I_a \\ \hline a \\ 0,8 \\ 1,0 \\ 1,2 \\ 1,4 \\ 1,6 \\ \end{array} $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I_a f l a $Mzzu$ M $0,8$ $42,95$ $0,05$ $1,0$ $42,92$ $0,10$ $1,2$ $42,90$ $0,13$ $1,4$ $42,85$ $0,16$ $1,6$ $42,82$ $0,22$	I_a f l U_p a $M224$ M B $0,8$ $42,95$ $0,05$ 560 $1,0$ $42,92$ $0,10$ 630 $1,2$ $42,90$ $0,13$ 750 $1,4$ $42,85$ $0,16$ 875 $1,6$ $42,82$ $0,22$ 1000	I_a f l U_p I_p a $M224$ M B a $0,8$ $42,95$ $0,05$ 560 $2,10$ $1,0$ $42,92$ $0,10$ 630 $2,14$ $1,2$ $42,90$ $0,13$ 750 $2,16$ $1,4$ $42,85$ $0,16$ 875 $2,20$ $1,6$ $42,82$ $0,22$ 1000 $2,24$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Емкость, индуктивность и активное сопротивление факельного разряда

Из сопоставления значений R_0 , вычисленных из результатов электрических измерений и R_{0 свч} из микроволновых, можно сделать вывод, что расхождение не превышает 20%, т. е. предложенная нами методика пригодна для определения электрических параметров ВФР. Завышенные значения R_{0 свч} объясняются тем, что при микроволновых измерениях определяются параметры, усредненные по пути зондирования, а не относящиеся непосредственно к каналу разряда.

Как видно из таблицы, не только эквивалентная емкость факельного разряда, но и его индуктивность сравнимы с параметрами колебательного контура в. ч. генератора, поэтому их необходимо учитывать при расчете и конструировании факельных плазмотронов для промышленных в. ч. генераторов.

ЛИТЕРАТУРА

1. Г. Н. Колпаков, В. Л. Теплоухов, И. А. Тихомиров, К. Н. Югай. В сб.: «Генераторы низкотемпературной плазмы». М., «Энергия», 1969, стр. 341. 2. И. А. Тихомиров, В. М. Савельев, В. Л. Теплоухов, Г. Н. Колпа-ков, В. В. Тихомиров, К. Н. Югай, А. П. Кутлин, В. В. Цой, В. П. Дрямов. В сб.: «Физика, техника и применение низкотемпературной плазмы». Алма-Ата,

1970, стр. 702. 3. А. Григоровичи, Д. Кристеску. «Оптика и спектроскопия», 6, 129, (1959).

4. А. В. Качанов, Е. С. Трехов, Е. П. Фетисов. В сб.: «Физика газоразрядной плазмы». Вып. 1, М., Атомиздат, 1968, стр. 39, 48.

5. М. С. Нейман. «Известия электропромышленности слабого тока», № 7, 1, (1935)

б. К. Шимони. Теоретическая электротехника. Пер. с нем. под ред. К. М. Поливанова. М.. «Мир», 1964.

7. И. А. Тихомиров, В. В. Тихомиров, В. Я. Федянин. «Известия ТПИ», т. 225, Томск, изд-во ТГУ, 1972, стр. 89. 8. И. А. Тихомиров, В. В. Тихомиров. В. В. Марусин. В сб.: «Вопросы

физики низкотемпературной плазмы». Минск, «Наука и техника», 1970, стр. 189.

9. А. А. Кузовников, Н. А. Капцов. Известия вузов, «Физика», № 6, 64, (1960).

10. А. Таlsky. «Чехосл. физ. журнал» SB. 14, 594, (1964). 11. И. А. Тихомиров, В. В. Тихомиров, Н. А. Мошненко, В. Я. Федянин. В сб.: «Физика, техника и применение низкотемпературной плазмы». Алма-Ата, 1970, стр. 709.

12. И. А. Тихомиров, В. В. Тихомиров, А. А. Соловьев, В. И. Шишковский. Известия ТПИ, т. 276. Изд-во ТГУ, 1975, с. 26.