
где $\tau_{r\theta}$ и $\tau'_{r\theta}$ — касательные напряжения с учетом и без учета шероховатости.

Рис. 4. График зависимости касательных напряжений от геометрических параметров при кручении

СПИСОК ЛИТЕРАТУРЫ

- 1. Мусхелишвили Н.И. Некоторые основные задачи математической теории упругости. М.: Наука, 1966. 648 с.
- 2. Кулиев С.А. Двумерные задачи теории упругости. М.: Строй-издат, 1991. 350 с.
- Калбиев Р.К. Кручение кольцевых пластин с шероховатостью // Сборник научных трудов по механике. – Баку: АзИСУ, 1998. – Ч. 1. – № 8. – С. 24–27.

Как видно из рис. 4, после некоторых значений λ влияние шероховатости на напряженное состояние вала резко увеличивается.

Выводы

При кручении призматического бруса, продольно ослабленного цилиндрическими полостями по окружности внутри наружного контура сечении призмы (квадрата) и при кручении кольцевого бруса при равным диаметре, касательные напряжений одинаковы. В таком случае, геометрические параметры внутреннего контура более существенно влияет на напряженное состояние бруса, чем наружные.

Для оценки прочности бруса найдено касательное напряжение, действующее вблизи шероховатого контура. После некоторых значений $\lambda = r/R_1$ влияние шероховатости на напряженное состояние вала резко увеличивается.

- Калбиев Р.К. Исследование напряженного состояния в шестиугольной пластинке, ослабленной центральными круглым отверстием с шероховатостью // Известия Томского политехнического университета. – 2006. – Т. 309. – № 1. – С. 142–146.
- Калбиев Р.К. Определение напряженного состояния кольцевого бруса с шероховатостью при кручении // Труды XXI Междунар. конф. по теории оболочек и пластин. – Саратов: СГТУ, 2005. – С. 111–113.

УДК 519.71:622.3

ИНТЕГРИРОВАННЫЕ МОДЕЛИ И АЛГОРИТМЫ ИДЕНТИФИКАЦИИ ДЕБИТА СКВАЖИН НЕФТЯНЫХ МЕСТОРОЖДЕНИЙ

В.Л. Сергеев, Д.В. Севостьянов

Томский политехнический университет E-mail: SVL@mail.tomsknet.ru

Рассматривается задача идентификации дебита скважин нефтяного месторождения с учетом дополнительной информации о дебитах (приемистости) соседних скважин окружения, дополнительной априорной информации и экспертных оценок параметров модели притока жидкости, представленных непараметрическими моделями. Приводятся результаты статистического моделирования по определению точности предложенных оценок продуктивности скважин и пластового давления.

Актуальной проблемой мониторинга и оперативного управления работой скважин месторождений углеводородов является задача идентификации гидродинамических параметров (дебита нефти, жидкости, воды, пластового давления, фильтрационных параметров пласта и т. д.), которая заключается в построении оптимальных, в смысле заданных критериев качества, математических моделей на основе промысловых данных, результатов исследований скважин с использованием дополнительной априорной информации, экспертных оценок, накопленного опыта и знаний [1–3].

Использование классических методов идентификации гидродинамических параметров [1, 2] часто связано с проблемами низкой точности реше-

ний в связи с неполнотой, неоднородностью промысловых данных, результатов исследований скважин, наличия различного рода ошибок, отсутствием достоверной информации о моделях взаимодействия скважин, моделей дополнительных априорных сведений и экспертных оценок.

В этой связи актуальным является идентификация гидродинамических параметров пластов с использованием метода интегрированных моделей [3—5], который позволяет учитывать различную неоднородную, дополнительную априорную информацию, дает оптимальное решение задачи идентификации с обеспечением устойчивости решения, согласованности исходных данных и дополнительных априорных сведений.

В данной работе рассматривается интегрированная система моделей дебита скважины вида:

$$\begin{cases} q^{*}(t_{i}) = q(t_{i}) + \xi(t_{i}) = f_{1}(t_{i}, \alpha(t_{i}), P_{3}^{*}(t_{i})) + \xi(t_{i}), \\ q_{j}(t_{i}) = f_{2j}(q(t_{i})) + \eta_{j}(t_{i}), j = \overline{1, m}, \\ \overline{\alpha}_{k}(t_{i}) = f_{3k}(\alpha_{k}(t_{i})) + V_{k}(t_{i}), k = \overline{1, l}, i = \overline{1, n}, \end{cases}$$
(1)

где $q^*(t_i)$, $P_3^*(t_i)$ — измеренные значения дебита и забойного давления исследуемой скважины в момент времени t_i ; $\bar{q}_i(t_i)$, $j=1,\overline{m}$ — значения дебитов либо приемистости (для нагнетательных) скважин окружения, взаимодействующих с исследуемой скважиной; $\bar{\alpha}_k(t_i)$, $k=\overline{1,l}$ — дополнительные априорные сведения о неизвестных значениях параметров $\alpha(t_i) = (\alpha_1(t_i), \alpha_2(t_i), ..., \alpha_k(t_i))$ дебита исследуемой скважины к моменту времени t_i ; f_1 . f_{2j} , $j=1,m,f_{3k}$, k=1,l-1модели дебита исследуемой скважины, дебитов (приемистости) скважин окружения и дополнительных априорных сведений; $\xi(t_i), \eta_i(t_i), \nu(t_i)$ — случайные величины, представляющие погрешности измерений притока жидкости, забойных давлений, ошибки, связанные с выбором модели дебита скважины и дополнительных априорных сведений.

Следует отметить, что модель дебита исследуемой скважины f_1 выбирается из физических закономерностей процесса нефтегазодобычи [1, 2]. Это, как правило, известные функции, заданные с точностью до параметров $\alpha(t_i)$, которые представляют фильтрационные свойства и энергетическое состояние нефтяных пластов, призабойной зоны скважины и т. п.

Зависимости f_{2j} , $j=\overline{1,m}$ и f_{3k} , $k=\overline{1,l}$ — это неизвестные однозначные функции, априорная информация о которых отсутствует. Можно предполагать об их ограниченности, непрерывности, существовании производных и т. д. Возможно наиболее простое их представление в виде

$$f_{2i}(q(t_i)) \approx q(t_i), \tag{2}$$

$$f_{3k}(\alpha_k(t_i)) \approx \alpha_k(t_i) \tag{3}$$

в окрестности некоторых заданных значений $q^0(t_i)$ и $\alpha_i^0(t_i)$ [5].

Процедура идентификации интегрированной системы моделей (1) с учетом приближений (2, 3) заключается в решении двух оптимизационных задач:

$$\alpha^*(t,h) = \arg\min_{\alpha(t)} (\Phi(\alpha(t)) =$$

$$= J_0(\alpha(t)) + J_1(\alpha(t)) + J_2(\alpha(t)), \tag{4}$$

$$h^* = \arg\min_h J_0(h) =$$

$$= \sum_{i=n-\tau}^{n} (q^*(t_i) - f_1(t_i, \alpha^*(t_i, h), P_3^*(t_i)))^2,$$
 (5)

где $\underset{\stackrel{.}{}}{\operatorname{argmin}} f(x)$ обозначает точку минимума x^* функции f; $\alpha^*(t,h)$, h^* — оценки вектора параметров моде-

ли дебита скважины в момент времени и управляющих параметров

$$h = (h_1, h_2, h_3); \quad J_0(\alpha(t)) = \|q^* - f_1(\alpha(t), P_3)\|_{K_t}^2$$
$$J_1(\alpha(t)) = \sum_{j=1}^m \|\overline{q}_j - f_1(\alpha(t), P_3)\|_{W_{1j}}^2$$
$$J_2(\alpha(t)) = \sum_{j=1}^l \|\overline{\alpha}(t_i) - \alpha(t)\|_{W_{2j}}^2$$

 частные квадратичные функционалы качества моделей дебита скважины, дебитов (приемистости) скважин окружения, дополнительных априорных

сведений
$$\overline{\alpha}_i, i = \overline{1,n}, K_i = diag(K\left(\frac{t-t_i}{h_1}\right), i = \overline{1,n}) -$$

диагональная матрица весовых функций, определяющая значимость значений дебитов скважин в различные моменты времени истории разработки относительно значений дебитов в текущий момент времени t;

Тельно значении деоитов в текущии момент времени
$$H_{1,j} = diag(K(\frac{t-t_i}{h_1})w_1(\frac{f(\alpha^0(t),P_3(t))-q_j(t_i)}{h_2}), i=\overline{1,n}),$$

$$W_{2i} = diag(K_i(\frac{t-t_i}{h_1})w_2(\frac{\alpha_j^0(t)-\overline{\alpha_j}(t_i)}{h_3}), j=\overline{1,m})$$

— матрицы, в которых весовые функции w_1 , w_2 определяют значимость дебита скважин окружения и дополнительных априорных сведений; $\alpha_j^0(t)$, $j=\overline{1,m}$ — начальные приближения параметров модели дебита скважины в момент времени t; $h=(h_1,h_2,h_3)$ — управляющие параметры;

$$q^* = (q^*(t_i), \quad i = 1, n),$$

$$f_1(\alpha(t), P_s) = (f_1(\alpha(t), P_s(t_i), \quad i = \overline{1, n}),$$

$$\overline{q}_i = (\overline{q}_i(t_i), \quad i = \overline{1, n}), \quad j = \overline{1, m}$$

— векторы значений дебитов жидкости исследуемой скважины (фактические и вычисленные на основе модели f_1) и дебитов (приемистости) скважин окружения; $\|X\|$ — норма вектора X;

Весовые функции (ядра) K, w_1, w_2 обладают следующими свойствами [6]:

$$w(x-u)/h \rightarrow 1, h \rightarrow \infty; w(x-u)/h \rightarrow 0, h \rightarrow 0.$$
 (6)

Для получения оценок управляющих параметров $h^*(5)$ используется контрольный участок истории разработки длительностью $t_{n-\tau}, t_{n-\tau+1}, ..., t_n$ с объемом выборки τ .

Анализ точности оценок продуктивности скважины и пластового давления

Анализ точности оценок продуктивности скважины и пластового давления проводился методом статистического моделирования с использованием линейной стохастической интегрированной системы моделей

$$\begin{cases} q^{*}(t_{i}) = q(t_{i})(1 + c_{1}\xi(t_{i})) = \\ = (\alpha_{1}(t_{i}) + \alpha_{2} \cdot P_{3}(t_{i})) \cdot (1 + c_{1}\xi(t_{i})), \\ q(t_{i}) = k \cdot q(t_{i})(1 + c_{2}\eta(t_{i})), \\ a_{1}(t_{i}) = \alpha_{1}(t_{i})(1 + c_{3}v_{1}(t_{i})), \\ a_{2}(t_{i}) = \alpha_{2}(1 + c_{4}v_{2}(t_{i})), \quad i = \overline{1, n}, \end{cases}$$
(7)

дебита центрального ряда трехрядной схемы расположения добывающих скважин, где коэффициент взаимодействия k нагнетательной скважины с приемистостью $\overline{q}(t)$ и добывающей с дебитом q(t) рассчитывался для однородного пласта при поршневом вытеснении из него нефти водой по формуле [7. С. 172]

$$k = (2C/B+1)/n_{_{H}} \approx 1,3$$

при C/B=1,42 и числе нагнетательных скважин $n_{\mu}=3$.

В (7) дебит скважины q(t) представлен линейной зависимостью (модель линейной фильтрации жидкости), в которой параметр $\alpha_1(t_i) = P_{ni}(t_i) \cdot \alpha_2$, где $P_{nl}(t_i)$ — пластовое давление, в течении 10 мес. разработки, изменялось по линейному закону $(P_{ni}(t_i)=a+b\cdot i,\ i=\overline{1,n},\ a=20,\ b=1,\ n=10),\ \alpha_2=4-$ коэффициент продуктивности скважины постоянен, $t_i = i$ — номер месяца разработки; $q^*(t_i)$, i = 1, n, $\overline{q}(t_i)$, $i=\overline{1,n}$ — имитируемые значения дебитов исследуемой и приемистости нагнетательной скважины; $\overline{\alpha}_1(t_i), \ \overline{\alpha}_2(t_i), \ i=1,n$ – имитируемые значения дополнительных априорных сведений о параметре $\alpha_1(t_i)$ и коэффициенте продуктивности скважины α_2 ; $\xi(t_i), \eta(t_i), v_i(t_i), j=1,2$ — случайные величины, полученные с использованием датчика псевдослучайных чисел, распределенных по нормальному закону с нулевыми средними значениями и единичной дисперсией; c_i , $j=\overline{1,4}$ — некоторые константы, представляющие относительный уровень ошибок. Забойное давление скважины задавалось постоянным: $P_3(t_i)=P_3=13$ МПа.

Для модели (7) процедура определения оценок параметров $\alpha^*(t,h)=(\alpha_1^*(t,h),\alpha_2^*(t,h))$ (4) сводится к решению системы линейных уравнений:

$$(F_1^T K_t F_1 + k \cdot F_1^T W_1 F_1 + \sum_{i=1}^n W_{2i}) \cdot \alpha^*(t, h) =$$

$$= (F_1^T K_t q^* + F_2^T W_1 q + \sum_{i=1}^n W_{2i} \alpha_i),$$
(8)

где $F_1=(f_{ij},\ i=\overline{1,n},\ j=1,2)$ — матрица размерности $(n\times 2)$ с элементами $f_{i1}=1,f_{i2}=P_3(t_i),\ i=\overline{1,n};\ K_i,W_1,W_{2i}$ — диагональные матрицы (4),(5) с весовыми функциями вида $\underline{(6)}$: $K(u)=\exp(-u^2/2);\ q^*=(q^*(t_i),\ i=\overline{1,n}),\ \overline{\alpha}_i=(\overline{a}_j(t_i),\ j=1,2),\ i=\overline{1,n}$ — векторы имитируемых дополнительных априорных данных и экспертных оценок параметров дебита скважины; $P_3=(1,P_3)^T$ — вектор-столбец.

Следует отметить, что при значениях управляющих параметров h_2 , h_2 =0 дополнительная априорная информация не учитывается, и процедура оценивания параметров (8) совпадает с взвешенным методом наименьших квадратов

$$(F_1^T K_t F_1) \cdot \alpha^*(t, h_1) = F_1^T K_t q^*. \tag{9}$$

Для определения оптимальных значений управляющих параметров h^* (5) использовался метод деформированного многогранника [8]. Начальные приближения параметров $\alpha^0(t)$ в (8) рассчитывались по регуляризированному методу наименьших квадратов [9]

$$(F_1^T K_t F_1 + \gamma \cdot I) \cdot \alpha^*(t, h_1) = F_1^T K_t q^*.$$

Параметр регуляризации γ выбирался путем решения оптимизационной задачи

$$\gamma^* = \arg\min_{\gamma} \sum_{i=n-\tau}^{n} (q^*(t_i) - \alpha_1^*(t_i, \gamma) - \alpha_2^*(t_i, \gamma) \cdot P_3^*(t_i)))^2$$

методом дихотомии [8] (n=3). При n<3 параметр γ выбирался равным 0,01.

Относительные ошибки оценок пластового давления и продуктивности скважины определялись по формулам:

$$\delta_{n}(P_{nn}^{*}(t_{i})) = \operatorname{abs}((P_{nn}^{*}(t_{i}) - P_{nn}(t_{i})) / P_{nn}(t_{i})),$$

$$\delta_{n}(\alpha_{2}^{*}(t_{i}, h^{*})) = \operatorname{abs}((\alpha_{2}^{*}(t_{i}, h^{*}) - \alpha_{2}) / \alpha_{2}), i = \overline{1, n},$$

где $P_{nl}^*(t) = \alpha_1^*(t,h^*)/\alpha_2^*(t,h^*)$, $\alpha_2^*(t,h^*)$ — оценки пластового давления и продуктивности скважины, $P_{nl}(t)$, α_2 — заданные (точные) значения пластового давления и продуктивности скважины (7).

В качестве примера, в табл. 1, 2 приведены результаты расчета относительных ошибок оценок пластового давления и продуктивности скважины в зависимости от вида интегрированной модели (7) и объема измерений дебита скважины *n*.

Для указания вида модели (7) введены следующие обозначения: $\{q^*\}$ — априорная информация отсутствует; $\{q^*, \overline{q}\}, \{q^*, \overline{\alpha}\}, \{q^*, \overline{q}, \overline{\alpha}\}$ — учет промысловых данных о приемистости нагнетательной скважины, априорных данных и экспертных оценок продуктивности скважины, промысловых данных о приемистости и экспертных оценок продуктивности.

Уровень ошибок дебита скважины составлял порядка 10%, что соответствует точности наиболее распространенной измерительной системы типа «Спутник» [10]. Для имитации дебита скважины с относительным уровнем ошибок 10% параметр c_1 выбирался равным 0,1. Для имитации дополнительных априорных сведений о пластовом давлении и продуктивности скважины с относительным уровнем ошибок 5% параметры c_3 , c_4 в модели (7) выбирались равными 0,05. Данный уровень ошибок соответствует приемлемому в практике нефтегазодобычи уровню погрешностей оценок гидродинамических параметров нефтяных пластов [10].

Из табл. 1, 2 видно, что предложенные оценки параметров моделей дебита скважин с учетом дополнительной информации о приемистости нагнетательной скважины, дополнительных априорных сведений о пластовом давлении и продуктивности скважины (8) более точны по сравнению с оценками метода наименьших квадратов (9). Значитель-

ный выигрыш в точности наблюдается при небольшом объеме данных истории разработки, порядка 3-6 значений дебита и забойного давления скважины. Например, для получения оценок пластового давления с относительными ошибками в пределах 3% достаточно пяти измерений дебита и забойного давления скважины (табл. 1). Для модели $\{q^*\}$, не учитывающей дополнительные априорные данные, относительная ошибка составляет 9%.

Таблица 1. Относительная ошибка оценок пластового давления, %

Модель дебита	Объем измерений дебита и забойного давления скважины									
скважины	1	2	3	4	5	6	7	8	9	10
$\{q^*\}$	-	49	41	21	9	7,1	5,4	4,7	4,1	3,3
$\{q^*, \overline{q}\}$	41	28	18	5,5	5,3	4,7	4,1	3,81	3,4	2,6
$\{q^*, \bar{\alpha}\}$	39	27	16	6,3	4,8	4,2	3,6	3,1	2,9	2,4
$\{q^*, \overline{q}, \overline{\alpha}\}$	27	19	5,7	3,8	2,9	2,51	2,34	2,27	2,16	2,12

В заключение отметим, что предложенные интегрированные модели, метод и алгоритмы идентификации дебита скважин (1), (4), (5), (8) позволяют:

СПИСОК ЛИТЕРАТУРЫ

- 1. Мирзаджанзаде А.Х., Шахвердиев А.Х. Динамические процессы в нефтегазодобыче. М.: Наука, 1997. 210 с.
- 2. Мирзаджанзаде А.Х., Хасанов М.М., Бахтизин Р.Н. Этюды о моделировании сложных систем нефтегазодобычи. Нелинейность, неравновесность, неоднородность. — Уфа: Гилем, 1999. — 462 с.
- 3. Севостьянов Д.В., Сергеев В.Л. Интегрированные системы идентификации показателей разработки нефтяных месторождений // Доклады ТУСУР. 2004. № 2 (10). С. 87–93.
- 4. Сергеев В.Л. Интегрированные системы идентификации. Томск: Изд-во НТЛ, 2004. 240 с.
- Сергеев В.Л. Идентификация систем с учетом априорной информации. Томск: Изд-во НТЛ, 1999. 146 с.

Таблица 2. Относительная ошибка оценок продуктивности скважины, %

Модель дебита	Объем измерений дебита и забойного давления скважины									
скважины	1	2	3	4	5	6	7	8	9	10
$\{q^*\}$	-	45	32	18	11	7,3	5,3	4,8	4,6	4,12
$\{q^*, \overline{q}\}$	32	23	14	8,3	6,4	5,9	5,3	4,7	4,1	3,6
$\{q^*, \bar{\alpha}\}$	28	23	9	7,5	5,3	4,7	4,3	4,1	3,6	3,4
$\{q^*, \overline{q}, \overline{\alpha}\}$	21	15	4,9	3,2	2,9	2,43	2,12	2,05	2,01	1,85

- 1. Учитывать данные о дебитах (приемистости) скважин окружения, дополнительные априорные сведения и экспертные оценки гидродинамических параметров (пластовое давление, продуктивность скважин и т. д.).
- 2. Получать оценки в условиях априорной неопределенности о моделях зависимости дебита исследуемой скважины от дебита (приемистости) соседних скважин окружения, моделях дополнительных априорных сведений и экспертных гидродинамических параметров.
- 3. Значительно, более, чем в два раза, повысить точность оценок пластового давления и продуктивности скважины.
- 6. Тарасенко Ф.П. Непараметрическая статистика. Томск: Изд-во Томского гос. ун-та, 1975. 292 с.
- Желтов Ю.П. Разработка нефтяных месторождений. М.: Недра, 1986. 332 с.
- 8. Пантелеев А.В., Летова Т.А. Методы оптимизации в примерах и задачах. М.: Высшая школа, 2002. 544 с.
- 9. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1979. 288 с.
- Хисамов Э.И., Сулейманов Р.Г., Фахруллин Р.Г. и др. Гидродинамические исследования скважин и методы обработки результатов измерений. – М.: ВНИИОЭНГ, 1999. – 227 с.