ИЗВЕСТИЯ

ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА им. С. М. КИРОВА

Том 276

УДК 541.13

ВЛИЯНИЕ ДОБАВОК ПРОПАНОЛА НА ЭЛЕКТРОПРОВОДНОСТЬ РАСТВОРОВ

И. А. ТИХОМИРОВ, Г. С. ТИХОНОВ, Э. Р. ГОФМАН, М. И. БОКОР

(Представлена научным семинаром физико-технического факультета)

Измерена электропроводность хлористых солей лития, натрия и калия в воднопропаноловых растворах с различным содержанием пропанола (10, 30, 50, 70, 85 вес. %). Показано, что с уменьшением диэлектрической проницаемости, электропроводность уменьшается в связи с образованием ионных пар.

Иллюстраций 2, таблиц 1, библиографий 6.

В настоящее время большое внимание уделяется разработке непрерывных методов разделения ионов с помощью ионоообменной технологии.

Одним из основных способов, позволяющих проводить непрерывный процесс разделения, является ионный обмен с наложением электрического поля [1—3]. Для выбора оптимальных условий таких процессов необходимо знание электропроводности системы ионит — раствор, которая в основном лимитируется электропроводностью раствора. Так как применение водно-органических растворов увеличивает эффективность обмена [4], появляется необходимость изучения электропроводности водно-органических растворов.

В данной работе была измерена электропроводность хлористых солей лития, натрия и калия в водно-пропаноловых растворах с различным содержанием спирта.

Экспериментальная часть

Электропроводность растворов измерялась нами в ячейке с платинированными электродами при $t=25\pm0$,1°C с помощью установки, приведенной на рис. 1. Для измерения электропроводности использовались две ячейки: одна для измерения электропроводности хорошо проводящих электролитов (постоянная ячейки — 8,725), другая — для измерения плохо проводящих электролитов (постоянная ячейки — 0,968). Постоянные ячейки определялись с помощью фиксаналов КС1 различной концентрации. В качестве растворителя использовался пропиловый спирт марки х. ч. Определив постоянную ячейки, удельную электропроводность раствора χ вычисляли по формуле

$$x = K/R, \tag{1}$$

где K — постоянная ячейки, R — сопротивление электролита.

Зная удельную электропроводность, можно вычислить эквивалентную электропроводность:

$$\lambda = \frac{\kappa \cdot 1000}{C} \,. \tag{2}$$

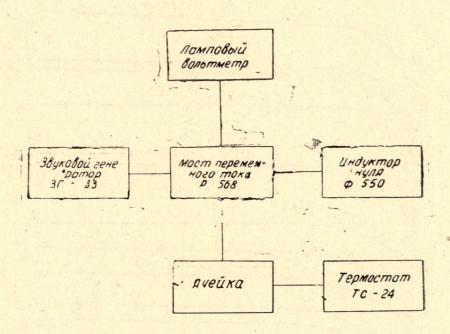


Рис. 1. Схема экспериментальной установки.

Здесь C— концентрация раствора, мг. экв/мл. Результаты измерения электропроводности хлористых солей лития, натрия и калия в водно-пропаноловых растворах с концентрацией спирта 10, 30, 50, 70 и 85% приведены на рис. 2.

Из зависимости $1/\lambda = f(c\lambda)$ были определены величены предельной эквивалентной электропроводности λ_0 , значения которой в зависимости от диэлектрической постоянной (ϵ) раствора приведены в табл. 1.

Из данных, приведенных на рис. 2, видно, что с увеличением разбавления V=1/C эквивалентная электропроводность увеличивается, это согласуется с теоретическими положениями о зависимости электропроводности растворов электролитов от концентрации.

Таблица 1

Концентрация пропанола вес %	ε [5]	Вязкость раствора η [6]	λ ₀		
			LiC1	NaC1	KC1
0	78,5	0,0089	115,0	126,0	
10	71,8	0,0136	87,5	100,7	109,5
30	57,7	0,0216	59,0	65,3	72,4
50	43,0	0,0257	43,2	48,7	51,5
70	30,7	0,0253	28,3	33,0	36,2
85	24,4	0,0228	21,0	24,2	26,4

Уменьшение электропроводности с увеличением содержания пропанола в растворе можно объяснить с точки зрения ассоциации ионов

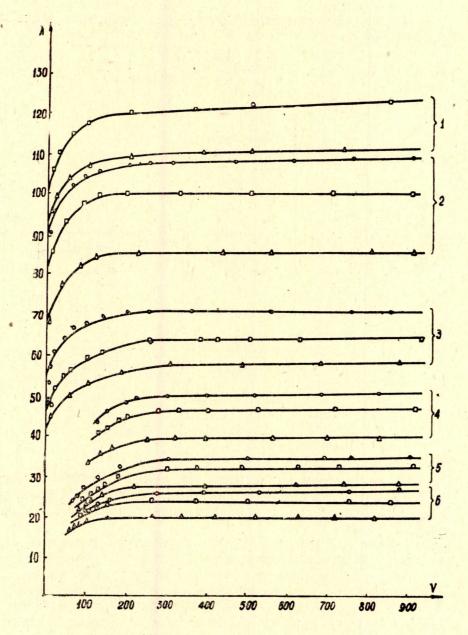


Рис. 2. Зависимость эквивалентной электропроводности от разбавления: Δ — литий, \square — натрий, \bigcirc — калий. 1 — водный раствор, 2-10, 3-30, 4-50, 5-70, 6-85% пропанола

в ионные пары. Для ионов с одним зарядом можно представить себе их ассоциацию следующим образом:

$$C^{+} + A^{+} \iff [CA]^{0} \iff CA, \tag{3}$$

тде через $[CA]^{\circ}$ обозначена ионная пара, а через CA — недиссоциированная молекула. Первая образуется только благодаря действию кулоновских сил, а последняя — в результате возникновения электронной связи. С уменьшением диэлектрической постоянной сила взаимодействия между ионами согласно формуле (4) увеличивается, вероятность образования ассоциатов увеличивается, что приводит к уменьшению электропроводности

$$F = \frac{z^2 e^2}{\varepsilon r} \,, \tag{4}$$

где F — сила взаимодействия между ионами; e — заряд иона, z — ва-

лентность иона, r — расстояние наибольшего сближения ионов.

В работе [6] также показано, что с увеличением доли пропанола в растворе радиусы сольватированных ионов уменьшаются, что влияет на увеличение образования ассоциатов. Образование ионных пар приводит к уменьшению частиц, несущих заряд, а следовательно, и к уменьшению электропроводности.

Электропроводность растворов зависит также от вязкости раство-

ров (п).

С увеличением вязкости раствора электропроводность уменьшает-

ся (см. табл. 2).

Уменьшение электропроводности в ряду $\lambda_{KGI} > \lambda_{NaCI} > \lambda_{LiCI}$ объясняется уменьшением в этой же последовательности подвижности ионов.

Таким образом, добавки органического растворителя (пропанола) к водным растворам солей LiCl, NaCl и KCl уменьшают электропроводность этих растворов, причем тем заметнее, чем больше концентрация спирта в растворе. Отсюда следует, что добавки спиртов будут влиять на эффективность электрохроматографических процессов разделения.

ЛИТЕРАТУРА

1. Б. Н. Ласкорин. Н. М. Смирнова, М. Н. Гантман. Ионообменные мембраны и их применение. М., Госатомиздат, 1961.

2. И. А. Тихомиров, Г. С. Тихонов. ЖФХ, 44, 1504 (1970). 3. И. А. Тихомиров, Г. С. Тихонов. Электрохимия, 6, 1817 (1970). 4. В. И. Горшков, Ю. З. Королев. Вестник МГУ, Химия (серия II), № 1, 16 (1966).

5. G. Akerlof. J. Amer. Chem. Soc., 54, 4125 (1932).
6. M. Goffredi, T. Shedlovsky. J. Phys. Chem., 71, 2176 (1967).