ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА ИМ. С. М. КИРОВА

1977

Том 277

РАСЧЕТ ХАРАКТЕРИСТИК ПЕРЕНОСА ПОЗИТРОНОВ ЧЕРЕЗ ВЕЩЕСТВО

А. А. ВОРОБЬЕВ, О. Б. ЕВДОКИМОВ, В. А. КУЗЬМИНЫХ, С. А. ВОРОБЬЕВ, И. А. ЦЕХАНОВСКИЙ

(Представлена научным семинаром сектора ядерных реакций НИИ ЯФЭА)

В работе выполнен расчет распределений остановившихся позитронов и поглощенной энергии при прохождении позитронов с энергией (0,23÷1,0) *Мэв* через поглотители с различным атомным номером. Проведено сравнение полученных пространственных распределений с аналогичными распределениями для электронов.

Введение

При практическом использовании позитронных пучков необходимо в некоторых случаях точное знание характеристик распределения потока заряженных частиц в поглотителе. Часто в таких случаях приближенно полагают, что позитроны и электроны равной энергии поглощаются в веществе одинаково. Однако известно, что параметры взаимодействия позитронов и электронов с веществом имеют некоторое различие, обусловленное разницей в знаках их заряда [1]. Влияние этих различий исследовалось во многих работах, например [2, 3], но не было сделано оценок степени отличия в поглощении энергии и распределении потока позитронов по глубине поглотителя от аналогичных характеристик для электронов.

Целью данной работы являлся расчет остановившихся позитронов и потерянной ими энергии в различных поглотителях. В отличие от ранее проводившихся другими авторами работ нами были использованы корректные сечения процессов взаимодействия позитронов с веществом. Расчет характеристик потока позитронов в поглотителе выполнен по теории переноса через вещество быстрых бета-частиц в приближении непрерывного замедления без учета аннигиляции позитронов на лету.

Метод расчета и основные соотношения

Уравнение переноса частиц через вещество в одномерном случае в рамках модели отрезков имеет вид [4]:

$$I(x, s_j, \varepsilon_{j+i}) = \int I(x - \lambda_j \varepsilon_j, s_{j-1}, \varepsilon_j) q(x, \lambda_j, s_j, \omega_j) d\Omega, \qquad (1)$$

здесь $q(x, \lambda_j, s_j, \omega_j)$ — угловое распределение на (j+1) отрезке относительно направления на *j*-м отрезке траектории,

х — пространственная координата,

λ_j — длина отрезка траектории,

s ; — остаточный пробег частицы в веществе,

 $\varepsilon_j \equiv \cos \theta_j$, где $\theta_j = n_j n_x$, $\omega_j = n_j n_{j+1}$, а n_j — указывает направление движения частиц на *j*-м отрезке траектории.

Кинетическую энергию частиц в начале *j*-го отрезка определяем как

$$T_j = T_{j-1} - \left(\frac{dT}{ds}\right) \lambda_j,$$

где ионизационные потери энергии позитронов с учетом эффекта плотности рассчитываются по известным соотношениям [5, 6]. Угловое распределение позитронов рассчитывается, с использованием дифференциального сечения рассеяния во втором борновском приближении с учетом эффекта экранирования кулоновского поля ядра [7].

Уравнение (1) сводится в этом случае к рекуррентному соотношению для угловых моментов гармонических коэффициентов дифференциального потока $I(x, s_i, \varepsilon_i)$ [8, 9].

$$J_{lk}^{j} = \sum_{k'=-\infty}^{\infty} \psi_{kk'}^{lj} \sum_{l'=0}^{\infty} J_{l'k'}^{j-1} (2l+1) E_{l\,l'k'}^{*j} , \qquad (2)$$

где

$$E_{ll'k'}^{*j} = \frac{1}{2} \int_{-1}^{1} P_l(\varepsilon) P_{l'}(\varepsilon) e^{-i \omega' \lambda_j \varepsilon} d\varepsilon, \qquad (3)$$

 $\mu = \frac{2\pi k}{L}$, L — период функции, описывающей дифференциальный поток. Выражение для $\Psi_{kk'}^{lj}$ в зависимости от геометрии задачи приобретает вид

а) для бесконечной среды

б) для полубесконечной среды $\psi_{kk'}^{lj} = q_l^j \delta_{kk'};$

$$\psi_{kk'}^{ij} \frac{1+q_l^j}{2} \delta_{kk'} + i \frac{1-q_l^j}{2\pi} \cdot \frac{[(-1)^{k'-k}-1]}{k'-k} (1-\delta_{kk'}), \qquad (4)$$

где

$$q_l^j = 2\pi \int_{-1}^{1} q^j(x,\lambda,s,\omega) P_l(\cos\omega) d\cos\omega.$$
 (5)

Дифференциальный поток частиц в поглотителе определяется выражением:

$$I(x,s_j,\varepsilon_j) = \sum_{l=0}^{\infty} \frac{2l+1}{4\pi} P_l(\varepsilon) \left[\sum_{k=0}^{\infty} a_{lk}^j \cos \mu \, x + b_{lk}^j \sin \mu \, x \right]. \tag{6}$$

Входящие в (6) коэффициенты a_{lk}^{j} и b_{lk}^{j} рассчитываются по следующим выведенным нами соотношениям:

$$a_{lk}^{j} = \frac{1}{2l+1} \begin{cases} (-1)^{l/2} \varkappa_{lk}^{j}, \ l=2n \\ (-1)^{l+1/2} \chi_{lk}^{j}, \ l=2n+1; \end{cases}$$

$$b_{lk}^{j} = \frac{1}{2l+1} \begin{cases} (-1)^{l/2} \chi_{lk}^{j}, \ l=2n \\ (-1)^{l-1/2} \varkappa_{lk}^{j}, \ l=2n+1, \end{cases}$$

где *n*=0, 1, 2, 3, ...

Значения x_{lk}^{j} и χ_{lk}^{j} для используемой геометрии задачи вычисляются по рекуррентным соотношениям, которые для случая бесконечной среды имеют вид:

$$\begin{aligned} \mathbf{x}_{lk}^{j} &= (2\,l+1)q_{l}^{j}\sum_{l'}\mathbf{x}_{l'k}^{j-1}\dot{E}_{ll'k} ,\\ \chi_{lk}^{j} &= (2l+1)q_{l}^{j}\sum_{l'}\chi_{l'k}^{j-1}\dot{E}_{ll'k} , \end{aligned}$$
(8)

где

$$\dot{E}_{ll'k} = (-i)^{l'-l} E^*_{ll'k}$$
.

Из выражения (6) при интегрировании его по $d\varepsilon$ и при $j=j_{max}$ получается выражение для функции распределения остановившихся частиц в поглотителе:

$$I(x) = \sum_{k=0}^{\infty} a_{0k}^{j_{\max}} \cos \mu x + b_{0k}^{j_{\max}} \sin \mu x.$$
 (9)

Выражение для распределения потерянной энергии с использованием (6) принимает в этом случае вид

$$I_T(x) = \sum_{k=0}^{\infty} \left[\cos \mu x \int \frac{dT}{ds} a_{0k}(s) ds + \sin \mu x \int \frac{dI}{ds} b_{0k}(s) ds \right].$$
(10)

Аналогичным образом получаются и выражения для углового распределения частиц на различных глубинах поглотителя. Начальные условия задачи учитывают положение источника частиц относительно начала координат системы x₀ и первоначальное направление — угол Θ_0 .

$$\begin{aligned} \mathbf{x}_{lk}^{0} &= \frac{2}{L} (2\,l+1) P_{l}(\varepsilon_{0}) \cdot \begin{cases} (-1)^{l/2} \cos \mu \, x_{0}, \ l = 2\,n \\ (-1)^{l=1/2} \sin \mu \, x_{0}, \ l = 2\,n+1; \end{cases} \\ \chi_{lk}^{0} &= \frac{2}{L} (2\,l+1) P_{l}(\varepsilon_{0}) \cdot \begin{cases} (-1)^{l/2} \sin \mu \, x_{0}, \ l = 2\,n \\ (-1)^{l+1/2} \cos \mu \, x_{0}, \ l = 2\,n+1, \end{cases} \end{aligned}$$
(11)

где *n*=0, 1, 2, 3...

Результаты расчета и их анализ

Расчет распределений остановившихся позитронов и электронов был проведен нами в представлении бесконечной среды на электронновычислительной машине БЭСМ-4 для случая глубокого проникновения частиц с энергией (0,23÷1,0) Мэв в поглотители с различным атомным номером.

Рассчитанный для выбранной энергии и вещества полный пробег бета-частиц [6] разбивался в нашем случае на 50 отрезков ($j_{max} = 50$).

Число членов разложения функции дифференциального потока частиц было принято равным 10, то есть $l_{\max} = k_{\max} = 10$. Как показало про-веденное нами исследование модели расчета, выбранное число гармоник вполне достаточно для описания в интервале (-1÷1) функции распределения остановившихся бета-частиц, но не достаточно для описания распределения поглощенной энергии, имеющей неплавный характер.

Рис. 1. Распределение остановившихся позитронов с начальной энергией 0,23 Мэв и 1,0 Мэв в алюминии.

На рис. 1 приведены полученные нами расчетные кривые для распределения остановившихся позитронов в алюминиевом поглотителе (Z=13) при начальных энергиях 0,23 Мэв (R₀=0,0697 г/см²) и 1,0 Мэв $(R_0 = 0.56 \ z/cm^2)$. Полученные кривые оказались несимметричными по форме, со значительным «хвостом» в области малых глубин, что объясняется энергетической зависимостью сечений рассеяния бета-частии

Рис. 2. Распределение остановившихся электронов и позитронов с начальной энергией 1,0 Мэв в графите, алюминии и меди. 1 — электроны в Си, 2 — позитроны в Си, 3 — электроны в Al, 4 — позитроны в Al, 5 электроны и позитроны в С.

в поглотителе. Видно также, что доля позитронов, обратно отраженных от мишени, с увеличением энергии частиц уменьшается и минимум распределения смещается в сторону больших толщин в согласии с известными представлениями о взаимодействии бета-частиц с веществом. На

Anth :

рис. 2 приведены расчетные кривые для распределений остановившихся позитронов и электронов с энергией 1,0 Мэв в поглотителях из графита (Z=6), алюминия (Z=13) и меди (Z=29). Видно, что кривые для распределений остановившихся электронов и позитронов оказываются довольно близкими по форме, но известные различия во взаимодействии электронов и позитронов с веществом сказываются в положении максимума расчетных кривых. Положения максимума распределений остановившихся позитронов и электронов для графита практически совпадают, в алюминии максимум распределения остановившихся позитронов лежит на 6,3% глубже, чем для электронов, а в меди различие достигает примерно 8,5%. Полученные нами результаты являются следствием более слабого рассеяния позитронов по сравнению с электронами в веществе. С увеличением атомного номера поглотителя различие в форме рассчитанных кривых для распределений остановившихся бета-частиц возрастает, что согласуется с известной зависимостью для различия в упругом рассеянии электронов и позитронов.

Нами были получены также расчетные распределения поглощенной энергии по глубине поглотителя для позитронов и электронов, причем характер различия в кривых для поглощенной энергии оказался аналогичным описанному различию в кривых для распределений остановившихся бета-частиц.

ЛИТЕРАТУРА

1. А. А. Воробьев, Б. А. Кононов. Прохождение электронов через вещество. Томск, изд-во ТГУ, 1966.

2. И. Г. Тарутин, В. И. Пилявец, Г. А. Гуманский, ЖЭТФ, 1971, 60, 901.

3. Е. Г. Вертман, С. А. Воробьев, Ю. А. Тимошников, И. А. Цехановский. Известия вузов, «Физика», № 8, 135, 1971.

4. О. Б. Евдокимов. Диссертация. Томск, ТПИ, 1966.

5. С. В. Стародубцев, А. М. Романов. Прохождение заряженных частиц через вещество. Ташкент. изд-во АН Уз. ССР, 1962.

6. M. J. Berger, S. M. Seltzer. Report NASA 1964, SP-3012.

7. L. V. Spenser. Phys. Rev. 98, 1597, 1955.

8. А. А. Воробьев, О. Б. Евдокимов, Б. А. Кононов. Дозиметрия больших доз. Ташкент, изд-во АН Уз. ССР, 1966.

9. А. А. Воробьев, О. Б. Евдокимов, Б. А. Кононов. Известия ТПИ, эт. 143, 1966, 70.