известия

ТОМСКОГО ОРДЕНА ОКТЯБРЬСКОЙ РЕВОЛЮЦИИ И ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА ИМ. С. М. КИРОВА

Том 277

РЕШЕНИЕ ПО СПОСОБУ НАИМЕНЬШИХ КВАДРАТОВ СПЕКТРАЛЬНОЙ ЗАДАЧИ ДЛЯ ДВУМЕРНОГО УРАВНЕНИЯ ГЕЛЬМГОЛЬЦА С КРАЕВЫМ УСЛОВИЕМ

Б. Ф. КРУТОИ

(Представлена научным семинаром кафедры инженерной и вычислительной математики)

Предположим, что в двумерной, многосвязной вообще, замкнутой области $D^{(2)} = D^{(2)} + \Gamma$ задано уравнение Гельмгольца

$$[\Delta + k^2]u(x,y) = \left[\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + k^2\right]u(x,y) = f(x,y). \tag{1}$$

с краевым условием смешанного вида

$$\left[p(x,y) + q(x,y) \frac{\partial}{\partial n} \right] u(x,y) |_{\Gamma} = h(x,y). \tag{2}$$

на границе Γ (рис. 1 в [1]). Здесь k^2 — постоянная, $\frac{\partial}{\partial n} u(x, y)$ — производная по единичной нормали \overline{n} к границе Γ , а f(x, y) и h(x, y) — заданные функции, причем так как $|\overline{n}|=1$, то

1)
$$\frac{\partial u}{\partial n} = \frac{\partial u}{\partial x} \frac{\partial x}{\partial n} + \frac{\partial u}{\partial y} \frac{\partial y}{\partial n}$$
; 2) $\frac{\partial x}{\partial n} = \cos(x, n) = \frac{\partial u}{\partial x}$: N, (3)

3)
$$\frac{\partial y}{\partial n} = \cos(y,n) = \frac{\partial u}{\partial y} : N;$$
 4) $N^2 = \left(\frac{\partial u}{\partial x^2}\right)^2 + \left(\frac{\partial u}{\partial y}\right)^2$.

Тогда ввиду линейности оператора $[\Delta = k^2]$ для уравнения Гельмгольца (1) с краевым условием (2) может быть поставлена соответствующая спектральная задача:

определить наборы (спектр) собственных значений и собственных функций w(x, y) оператора $[\Delta + k^2]$, удовлетворяющие в области $\overline{D}^{(2)} = D^{(2)} + \Gamma$ требованию

$$[\Delta + k^2] w(x, y) = \lambda w(x, y)$$
(4)

и однородному краевому условию

$$\left[p(x,y) + q(x,y) \frac{\partial}{\partial n} \right] w(x,y) \Big|_{\Gamma} = 0, \tag{5}$$

на границе Γ . Решение указанной задачи способом Фурье, изложенным в [2], невозможно, так как коэффициенты p(x, y) и q(x, y) краевого условия (5) зависят и от x, и от y. Поэтому мы решим данную задачу по способу наименьших квадратов, который позволяет, кроме того, оценить точность полученного решения в любой точке области $\overline{D}^{(2)} = D^{(2)} + \Gamma$. Сущность предлагаемого решения, которое мы разобьем на несколько последовательных ступеней, заключается в следующем.

1. Представим искомую функцию w(x, y) ее приближенным выражением $\phi(x, y)$ — конечным разложением по r опорным взаимонезави-

симым функциям $\phi_{\nu}(x, y)$, так что

$$w(x, y) \approx \varphi(x, y) = \sum_{\nu=1}^{r} c_{\nu} \varphi_{\nu}(x, y), \tag{6}$$

где c, — неизвестные коэффициенты.

Зададим теперь на границе Γ некоторое число γ равномерно расположенных точек $M_{\Gamma} = M(x_{\Gamma}, y_{\Gamma})$. а в области $D^{(2)}$ зададим равномерно некоторое число σ точек $M_s = M(x_s, y_s)$ (рис. 1 в [1]). Затем для γ точек M_{Γ} подсчитаем краевое условие (5), а для σ точек M_s подсчитаем равенство (4), исходя при этом из приближенного представления (6) для искомой функции w(x, y) и взяв $\gamma + \sigma = \omega > r$. Мы получим в итоге свод из $\omega > r$ уравнений

$$\begin{cases}
1) \sum_{\nu=1}^{r} \left[p(x_{\Gamma}, y_{\Gamma}) + q(x_{\Gamma}, y_{\Gamma}) \frac{\partial}{\partial n} \right] \varphi_{\nu}(x_{\Gamma}, y_{\Gamma}) c_{\nu} = \varepsilon_{\Gamma} \\
(\Gamma = 1, 2, ..., \gamma) \\
2) \sum_{\nu=1}^{r} \left[\left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + k^{2} \right) \varphi_{\nu}(x_{s}, y_{s}) - \lambda \varphi_{\nu}(x_{s}, y_{s}) \right] c_{\nu} = \varepsilon_{s}, \\
(s = 1, 2, ..., \sigma)
\end{cases}$$
(7)

в котором ε_{Γ} , ε_{s} — некоторые ошибки, вызванные неточностью представления (6) для искомой функции w(x, y).

Введем обозначения

1)
$$\left[p(x_{\Gamma}, y_{\Gamma}) + q(x_{\Gamma}, y_{\Gamma}) \frac{\partial}{\partial n} \right] \varphi_{\nu}(x_{\Gamma}, y_{\Gamma}) = a_{\Gamma\nu} = a_{\nu\Gamma}^{*},$$

$$2) \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + k^{2} \right) \varphi_{\nu}(x_{s}, y_{s}) = b_{s\nu} = b_{\nu s}^{*},$$

$$3) \varphi_{\nu}(x_{s}, y_{s}) = \varphi_{s\nu} = \varphi_{\nu s}^{*}.$$

$$(8)$$

Тогда мы приведем свод (7) из $\gamma + \sigma = \omega$ уравнений к более сжатому виду

$$\begin{cases} 1) \sum_{\gamma=1}^{r} a_{\Gamma\gamma} c_{\gamma} = \varepsilon_{\Gamma}, & (r = 1, 2, ..., \gamma) \\ 2) \sum_{\gamma=1}^{r} (b_{S\gamma} c_{\gamma}) + c_{\gamma} (c_{\gamma}) = \varepsilon_{S}, & (s = 1, 2, ..., \sigma). \end{cases}$$

$$(9)$$

Частный свод (9.1) состоит из γ алгебраических уравнений первой степени. Частный же свод (9.2) состоит из σ алгебраических уравнений второй степени, так как содержит члены $\lambda \varphi_{sv} c_v$, где λ и c_v — неизвестные. Поэтому, имея в виду решение свода (9) из $\gamma + \sigma = \omega > r$ уравнений по способу наименьших квадратов, мы должны предварительно найти приближенные значения λ^0 , c_v^0 для указанных неизвестных λ , c_v . Одновременно можно подсчитать соответствующие приближенные значения $\omega^0(x, y)$ для собственных функций $\omega(x, y)$ оператора $[\Delta + k^2]$.

2. Предполагая, что $\sigma > r$, выполним расчет λ^0 , c^0 , следующим образом. Выделим из частного свода (9.2) какие-нибудь r уравнений, в итоге чего у нас образуется свод

$$\sum_{\nu=1}^{r} (b_{x\nu} - \lambda \varphi_{x\nu}) c_{\nu} = 0, \qquad (x = 1, 2, ..., r),$$
 (10)

из r алгебраических уравнений второй степени без свободных членов и с r+1 неизвестными λ , c_1 , c_2 , ..., c_r . Имея в виду приближенное представление (6) для w(x, y), мы ставим задачей найти из свода (10) такие значения для r коэффициентов c_v в (6), чтобы

$$|C_1| + |C_2| + \dots + |C_r| \neq 0.$$
 (11)

Так как свод из r уравнений (10) однороден относительно r неизвестных c_v , то требование (11) будет выполнено, если определитель

 $b_{xy} - \lambda \phi_{xy} |_1^r$ свода (10) равен нулю

$$|b_{xy} - \lambda \varphi_{xy}|_{1}^{r} = 0, \ (x, y = 1, 2, ..., r).$$
 (12)

Но определитель $|b_{xy}-\lambda \phi_{xy}|_1^r$ после его раскрытия есть многочлен r-й степени относительно λ . Следовательно, условие (12) может быть записано еще так

$$|b_{xy} - \lambda \varphi_{xy}|_1^r = \sum_{s=0}^r g_s \lambda^s = 0,$$
 (13)

то есть условие дает алгебраическое уравнение r-й степени относительно неизвестного λ .

Решая уравнение (13), найдем r его корней λ_s , некоторые из которых могут быть кратными. Поэтому число n различных корней λ_β может быть и меньше, чем $r:n \le r$. Так как эти различные значения λ_β неизвестного λ получены из частичного свода уравнений (10), то мы будем считать их приближенными и потому обозначим через λ_s^0 .

Вставим далее в свод уравнений (10), не содержащий свободных членов, найденные n различных корней λ_{β} уравнения (13). Обозначая через $c_{\nu\beta}^0 = c_{1\beta}^0$, $c_{2\beta}^0$,..., $c_{r\beta}^0$ значения неизвестных c_{ν} , соответствующих заданному $\lambda_{0\beta}$, запишем итог подстановки n различных корней λ_{β} в свод (10) следующим образом:

$$a) \sum_{\nu=1}^{r} (b_{x\nu} - \lambda_{\beta}^{0} \, \phi_{x\nu}) \, c_{\nu\beta}^{0} = 0 \text{ или } \delta) \sum_{\nu=1}^{r} b_{x\nu} \, c_{\nu\beta}^{0} = \lambda_{\beta}^{0} \sum_{\nu=1}^{r} \phi_{x\nu} c_{\nu\beta}^{0} , \qquad (14)$$

$$(\varkappa = 1, 2, ..., r; \quad \beta = 1, 2, n \leqslant r)$$

что представим также в матричном виде

а)
$$(b_{(rr)}-\lambda_{\beta}^{0}\varphi_{(rr)})c_{(r1)\cdot\beta}^{0}=0_{(r1)}$$
 или б) $b_{(rr)}c_{(r1)\cdot\beta}^{0}=\lambda_{\beta}^{0}\varphi_{(rr)}c_{(r1)\cdot\beta}^{0}$. (14*) $(\beta=1,2...,n\leqslant r)$.

Отсюда видно, что в итоге указанной подстановки мы получили связку из $n \le r$ сводов уравнений вида (10), причем в каждом из этих сводов вместо неизвестного λ подставлено одно из его различных при-

ближенных значений $\lambda_{\beta}^{0} \in \lambda_{1}^{0}, \lambda_{2}^{0}, ..., \lambda_{H}^{0}$.

Так как каждый из n сводов уравнений, входящих в связку (14), состоит из r однородных уравнений относительно соответствующих r неизвестных $c_{\gamma\beta}^0 = c_{1\beta}^0$, $c_{2\beta}^0$,..., $c_{r\beta}^0$, то одно из этих неизвестных остается произвольным. Поэтому мы примем, что в каждом своде однородных уравнений из связки (14) и при заданном λ_{β}^0 последнее неизвестное $c_{r\beta}^0 = 1$. Тогда остальные r-1 неизвестных $c_{1\beta}^0$, $c_{2\beta}^0$,..., $c_{r-1,\beta}^0$ для заданного λ_{β}^0 определяется вполне однозначно своим β -м сводом из r-1 уравнений, так что вместо (14) мы будем иметь

$$\sum_{\nu=1}^{r-1} (\boldsymbol{b}_{x\nu} - \lambda_{\beta}^{0} \varphi_{x\nu}) c_{\nu\beta}^{0} + (\boldsymbol{b}_{xr} - \lambda_{\beta}^{0} \varphi_{xr}) = 0, c_{r\beta}^{0} = 1;$$
(15)

$$(x=1, 2, ..., r-1; \beta=1, 2, ..., n \le r)$$
.

Полученный описанным выше способом набор из $r \times n$ чисел $c_{\nu\beta}^0$ образует вообще разнобокую матрицу $c_{(rn)}^0$.

$$c_{(rn)}^{0} = \begin{bmatrix} c_{11}^{0} c_{12}^{0} \cdots c_{1\beta}^{0} \cdots c_{1n}^{0} \\ c_{21}^{0} c_{22}^{0} \cdots c_{2\beta}^{0} \cdots c_{2n}^{0} \\ \vdots & \vdots & \vdots \\ c_{\nu_{1}}^{0} c_{\nu_{2}}^{0} \cdots c_{\nu_{\beta}}^{0} \cdots c_{\nu_{n}}^{0} \\ \vdots & \vdots & \vdots \\ c_{r_{1}}^{0} c_{r_{2}}^{0} \cdots c_{r_{\beta}}^{0} \cdots c_{r_{n}}^{0} \end{bmatrix}, c_{r_{\beta}}^{0} = 1,$$

$$(16)$$

которая обращается в равнобокую матрицу $c_{(rr)}^0$, когда n=r. Если каждый столбец $c_{1\beta}^0$, $c_{2\beta}^0$,..., $c_{\gamma\beta}^0$,..., $c_{r\beta}^0$ матрицы $c_{(rn)}^0$ считать вектором $\overline{c_{\beta}^0}$, то эта матрица запишется более сжато так:

$$1) \ \overline{c}_{\beta}^{0} = \begin{bmatrix} c_{1\beta}^{0} \\ c_{2\beta}^{0} \\ \vdots \\ c_{\nu\beta}^{0} \end{bmatrix} = c_{(r1)\cdot\beta}^{0}, \ 2) \ c_{(rn)}^{0} = (\overline{c}_{1}^{0}, \overline{c}_{2}^{0}, \dots, \overline{c}_{\beta}^{0}, \dots, \overline{c}_{n}^{0}). \tag{16a}$$

На этом основании связку (14) из $n \le r$ сводов уравнений (10) можно представить еще в следующем векторном виде:

a)
$$(B - \lambda_{\beta} \Phi) \bar{c}_{\beta}^{0} = \bar{0}_{\beta}$$
, 6) $B\bar{c}_{\beta}^{0} = \lambda_{\beta} \Phi \bar{c}_{\beta}^{0}$, (14**)
 $(\beta = 1, 2, ..., n \leq r)$

где B и Φ — линейные операторы, соответствующие матрицам $b_{(rr)}$ в некоторой отсчетной опоре,

3. Предположим далее, что из решения уравнения (13) мы получили ровно r приближенных собственных значений $\lambda_x^0 \in \lambda^0_1, \, \lambda^0_2, \, ..., \, \lambda_r^0$ оператора $[\Delta + k^2]$. Вставляя затем найденные r различных λ_x^0 в связку (14), определим из нее r векторов $\overline{c}_x^0 \in \overline{c}_1^0, \, \overline{c}_2^0, \, ..., \, \overline{c}_r^0$, принадлежащих этим λ_x^0 . Тогда равенство (6) даст нам ровно r приближенных представлений w_x^0 (x, y) для собственных функций w(x, y) оператора $[\Delta + k^2]$, так что вместо (6) мы получим следующее уточненное выражение:

$$w(x,y) \in w_{x}(x,y) \approx w_{x}^{0}(x,y) = \sum_{y=1}^{r} \tilde{c}_{xy}^{0} \psi_{y}(x,y). \tag{17}$$

$$(\chi = 1, 2, ..., r).$$

4. Предположим теперь, что из уравнения (13) мы получили только n < r различных приближенных собственных значений $\lambda_{\beta}^{0} \in \lambda_{1}^{0}$, λ_{2}^{0} , ..., λ_{n}^{0} оператора $(\Delta + k^{2})$. Если мы вставим найденные n различных λ_{β}^{0} в связку (14), то мы определим из нее только n соответствующих векторов $\overline{c}_{\beta}^{0} = \overline{c}_{1}^{0}$, c_{2}^{0} , ..., \overline{c}_{n}^{0} . Для подстановки же в представление (6) для собственных функций w(x, y) нам нужно ровно r независимых векторов \overline{c}_{x}^{0} . Следовательно, не хватает еще r-n каких-то независимых векторов \overline{g}_{i}^{0} , которые мы назовем присоединенными и образуем следующим образом.

Прежде всего, ясно, что для каждого ∂_{β} -кратного корня λ_{β} уравнения (13) мы можем построить описанным выше путем только один вектор \overline{c}_{β}^{0} вместо ∂_{β} необходимых независимых векторов, которые мы обозначим через $\overline{c}_{\beta\alpha}^{0} \subset \overline{c}_{\beta1}^{0}$, $\overline{c}_{\beta2}^{0}$,..., $c_{\beta.\partial_{\beta}}^{0}$. Если положить $\overline{c}_{\beta1}^{0} = c_{\beta}^{0}$ то все ∂_{β} независимых векторов $c_{\beta\alpha}^{0}$ для заданного λ_{β} можно построить многими способами. Например, решением свода из ∂_{β} независи-

мых векторных уравнений следующего частного вида:

$$\begin{cases}
Bc_{\beta 1}^{0} = \lambda_{\beta}^{0} \Phi \overline{c}_{\beta 1}^{0} + 0 \overline{c}_{\beta 2}^{0} + 0 \overline{c}_{\beta 3}^{0} + \dots + 0 \overline{c}_{\beta}^{0} \cdot \partial_{\beta - 1} + 0 \overline{c}_{\beta}^{0} \cdot \partial_{\beta}^{\beta} \\
B\overline{c}_{\beta 2}^{0} = 1 \overline{c}_{\beta 1}^{0} + \lambda_{\beta}^{0} \Phi \overline{c}_{\beta 2}^{0} + 0 \overline{c}_{\beta 3}^{0} + \dots + 0 \overline{c}_{\beta}^{0} \cdot \partial_{\beta - 1} + 0 \overline{c}_{\beta}^{0} \cdot \partial_{\beta}^{\beta} \\
B\overline{c}_{\beta 3}^{0} = 0 c_{\beta 1}^{0} + 1 c_{\beta 2}^{0} + \lambda_{\beta}^{0} \Phi c_{\beta 3}^{0} + \dots + 0 c_{\beta}^{0} \cdot \partial_{\beta - 1} + 0 c_{\beta}^{0} \cdot \partial_{\beta} \\
\vdots \\
B\overline{c}_{\beta}^{0} \cdot \partial_{\beta} = 0 \overline{c}_{\beta 1}^{0} + 0 \overline{c}_{\beta 2}^{0} + 0 \overline{c}_{\beta 3}^{0} + \dots + 1 \overline{c}_{\beta}^{0} \cdot \partial_{\beta - 1} + \lambda_{\beta}^{0} \Phi \overline{c}_{\beta}^{0} \cdot \partial_{\beta},
\end{cases} (18)$$

где B и Φ — линейные операторы, соответствующие матрицам $b_{(rr)}$ и $\phi_{(rr)}$ и $\phi_{(rr)}$ и $\phi_{(rr)}$ Решение первого из векторных уравнений (19) довольно затруднительно при большом числе составляющих $c_{\beta 1...}^0$, v=1, 2, ..., r, может быть выполнено обобщенным способом вращения и будет изложено в отдельной статье. Но если вектор $\overline{c_{\beta 1}}$ найден, то остальные ∂_{β} —1 векторов $\overline{c_{\beta \alpha}}$ определятся, очевидно, так:

$$\overline{c}_{\beta\alpha}^{0} = (B - \lambda_{\beta}^{0} \Phi)^{\alpha - 1} \overline{c}_{\beta 1}^{0} = (B - \lambda_{\beta} \Phi)^{\alpha - 1} \overline{c}_{\beta}^{0} .$$

$$(\alpha = 2, 3, ..., \partial_{\beta}).$$
(19)

Выполнив определение согласно (18) и (19) всех $r = \partial_1 + \partial_2 + ...$, $\partial_\beta + ...$, основных $c^0_\beta = c^0_{\beta 1}$ и присоединенных $c^0_{\beta \alpha} = c^0_{\beta 2}$, $c^0_{\beta 3}$,..., $c^0_{\beta \cdot \partial_\beta}$

векторов и вставив их в представление (6) для собственных функций w(x, y) оператора $[\Delta + k^2]$, получим расчетное выражение для конечного набора $w_{\star}^{0}(x, y) \approx w(x, y)$ того же вида (17), что и ранее. Однако если выражение (17) записать в матричном виде

$$w_{(r1)}(x,y) = c_{(rr)}^{*0} \varphi_{(r1)}(x,y)$$
(17*)

и учесть, что

$$c_{(rr)}^{0} = \left[c_{(rn)}^{0} c_{(r.r-n)}^{0} \right] = \left[c_{(rn)}^{0} f_{(r.r-n)}^{0} \right],$$

где $c_{(rn)}^0$ и $c_{(r,r-n)}^0=f_{(r,r-n)}^0$ — матрицы основных $c_{\nu\beta}^0$ и присоединенных $c_{\nu\gamma}^0=f_{\nu\gamma}^0$, ($\gamma=n+1,\,n+2,\,...,\,r$) коэффициентов, то равенство (17) запишется более развернуто так:

$$w_{(r1)}(x,y) = \begin{bmatrix} \mathring{c}^{0}_{(nr)} \\ \mathring{c}^{0}_{(r-n,r)} \end{bmatrix} \varphi_{(r1)}(x,y) = \begin{bmatrix} c^{0}_{(nr)} \varphi_{(r1)} \\ \mathring{c}^{0}_{(r-n,r)} \varphi_{(r1)} \end{bmatrix}.$$
(17*.1)

Отсюда вытекает следующее уточненное представление для $w_{x}(x, y)$:

$$\begin{cases} w_{\beta}(x,y) = \sum_{\nu=1}^{r} c_{\beta\nu}^{*0} \varphi_{\nu}(x,y), \\ (\varkappa = 1,2,...,\beta,...,n) \\ w_{\gamma}(x,y) = \sum_{\nu=1}^{r} f_{\gamma\nu}^{*0} \varphi_{\nu}(x,y) \\ (\varkappa = n+1, n+2,...,\gamma,...,r). \end{cases}$$
(17.1)

5. Перепишем теперь свод уравнений ошибок (9) в более развернутом виде, вытекающем из уточненных представлений

1)
$$\lambda \in \lambda_1, \lambda_2, ..., \lambda_\beta, ..., \lambda_n, 2$$
 $c_v = c_{vx}, (v, x = 1, 2, ..., r)$ (20)

для неизвестных λ и c_{ν} . Тогда свод (9) более полно запишется так:

$$\begin{cases}
1) \sum_{\nu=1}^{r} a_{\Gamma\nu} c_{\nu\beta} = \varepsilon_{\Gamma\beta} \\
 c_{\nu} = 1, 2, ..., \gamma \\
 c_{\nu} = 1, 2, ..., \gamma
\end{cases} (21)$$

$$\begin{cases}
2) \sum_{\nu=1}^{r} (b_{s\nu} c_{\nu\beta} - \varphi_{s\nu} c_{\nu\beta} \lambda_{\beta}) = \varepsilon_{s\beta}, \\
 (\beta = 1, 2, ..., n \leqslant r; \sigma > r, \gamma + \sigma = \omega > r + 1)
\end{cases}$$

или в матричном виде

$$\begin{cases}
1) \ a_{(\gamma r)} c_{(rn)} = \varepsilon_{(\gamma n)} \\
2) \ b_{(\sigma r)} c_{(rn)} - \varphi_{(\sigma r)} c_{(rn)} \lambda_{(nn)} = \varepsilon_{(\sigma n)} \\
(n \leqslant r; \ \sigma > n, \ \gamma + \sigma = \omega > r + 1).
\end{cases} (21*)$$

Таким образом, свод уравнений ошибок (9) является в действительности связкой (21*) из 2n сводов уравнений, причем для заданного λ_{β} в своде (21*.1) содержится γ уравнений, а в своде (21*.2) содержится $\sigma > r$ уравнений. Следовательно, $\gamma + \sigma > r + 1$, то есть для каждого λ_{β} число уравнений (21*), равное $\gamma + \sigma = \omega$, будет больше числа m+1 со-

ответствующих неизвестных λ_{β} , $c_{\gamma\beta}$. Поэтому решение связки (21*) из 2n сводов уравнений нужно выполнять по способу наименьших квадратов, что дает также возможность оценить надежно точность определяемых из этих уравнений собственных значений λ_{β} и собственных векторов $c_{\beta} = c_{\beta 1}$ оператора $[\Delta + k^2]$. Кроме того, мы сможем оценить тогда и точность определяемых согласно (19) присоединенных векторов $c_{\beta\alpha}$, $\alpha=2$, β , ..., β_{β} для собственных значений λ_{β} кратности δ^{β} . В заключение оценим по способу наименьших квадратов точность определяемого согласно (17) конечного набора $w_{\mathbf{x}}(x, y)$ собственных функций w(x, y) оператора $[\Delta + k^2]$.

6. Приступая к решению по способу наименьших квадратов связки (21) из 2n сводов уравнений, представим неизвестные λ_{β} , $c_{\nu\beta}$ в (21) следующим образом:

1)
$$\lambda_{\beta} = \lambda_{\beta}^{0} + \delta \lambda_{\beta}$$
, 2) $c_{\nu\beta} = c_{\nu\beta}^{0} + \delta c_{\nu\beta}$, (22)

где λ_{β}^{0} , $c_{\nu\beta}^{0}$ — ранее найденные приближенные, но достаточно точные значения для λ_{β} , $c_{\nu\beta}$. Поэтому поправки $\delta\lambda_{\beta}$, δc будем считать настолько малыми, что их квадратами $(\delta\lambda_{\beta})^{2}$, $(\delta c_{\nu\beta}^{})^{2}$ и произведениями $\delta\lambda_{\beta}$, $\delta c_{\nu\beta}$ можно пренебречь. Вставляя тогда представления (22) для λ_{β} , $c_{\nu\beta}$ в уравнения (21) и учитывая только что сделанные замечания, получим

$$\begin{cases}
1) \sum_{\nu=1}^{r} a_{\Gamma\nu} \delta c_{\nu\beta} + \mathcal{H}_{\Gamma\beta} = \varepsilon_{\Gamma\beta} \\
2) \sum_{\nu=1}^{r} [b_{s\nu} \delta c_{\nu\beta} - (\varphi_{s\nu} c_{\nu\beta}^{0}) \delta \lambda_{\beta} - (\lambda_{\beta}^{0} \varphi_{s\nu}) \delta c_{\nu\beta}] + u_{s\beta} = \varepsilon_{s\beta}, \\
(r = 1, 2, ..., \gamma; s = 1, 2, ..., \sigma) \\
(\beta = 1, 2, ..., n \leqslant r; \sigma > r, \gamma + \sigma > m + 1)
\end{cases}$$
(23)

где обозначено

1)
$$\sum_{\nu=1}^{r} a_{\Gamma\nu} c_{\nu\beta}^{0} = \mathcal{H} c_{\Gamma\beta}$$
, 2) $\sum_{\nu=1}^{r} [b_{s\nu} c_{\nu\beta}^{0} - (\varphi_{s\nu} c_{\nu\beta}^{0}) \lambda_{\beta}^{0}] = u_{s\beta}$. (24)

Введем дополнительные обозначения

1)
$$\delta \lambda_{\beta} = \eta_{\beta}$$
, 2) $\delta c_{\nu\beta} = \xi_{\nu\beta}$, 3) $\sum_{\nu=1}^{r} \varphi_{s\nu} c_{\nu\beta}^{0} = -p_{s\beta}$, (25)
4) $\lambda_{\beta}^{0} \varphi_{s\nu} = q_{s\nu}^{(\beta)}$, 5) $b_{s\nu} - q_{s\nu}^{(\beta)} = g_{s\nu}^{(\beta)}$.

Тогда совокупность уравнений (23) запишется в следующем сжатом виде:

$$\begin{cases}
1) \sum_{\nu=1}^{r} a_{\Gamma\nu} \xi_{\nu\beta} + \mathcal{K}_{\Gamma\beta} = \varepsilon_{\Gamma\beta}, \\
2) \sum_{\nu=1}^{r} g_{s\nu}^{(\beta)} \xi_{\nu\beta} + p_{s\beta} \eta_{\beta} + u_{s\beta} = \varepsilon_{s\beta}, \\
(r=1,2,...,\gamma; s=1,2,...,\sigma) \\
(\beta=1,2,...,n \leqslant r; \sigma \leqslant r, \gamma + \sigma = \omega \geqslant r+1)
\end{cases} (26)$$

или матрично

1)
$$a_{(\gamma r)} \xi_{(rn)} + \mathcal{H}_{(\gamma n)} = \hat{\varepsilon}_{(\Gamma n)},$$
 (26*)
2) $g_{(\sigma r)} \xi_{(rn)} + p_{(\sigma n)} \gamma_{(nn)} + u_{(\sigma n)} = \varepsilon_{(\sigma n)},$ ($n \leqslant r; \ \sigma < r, \ \gamma + \sigma = \omega > r + 1),$

где $\eta_{(nn)}$ — диагональная матрица. Если теперь в (26*) введем обозначения

1)
$$\begin{bmatrix} a_{(\gamma r)} \\ g_{(\sigma r)} \end{bmatrix} = A_{(\gamma + \sigma \cdot r)} = A_{(\omega, r)}, \ 2$$
 $\begin{bmatrix} 0_{(\gamma n)} \\ p_{(\sigma n)} \end{bmatrix} = B_{(\gamma + \sigma, n)} = B_{(\omega, n)},$
3) $\begin{bmatrix} \mathcal{H}_{(\gamma n)} \\ u_{(\sigma n)} \end{bmatrix} = K_{(\gamma + \sigma, n)} = K_{(\omega, n)}, \ 4$ $\begin{bmatrix} \varepsilon_{(\gamma n)} \\ \varepsilon_{(\sigma n)} \end{bmatrix} = \varepsilon_{(\gamma + \sigma, n)} = \varepsilon_{(\omega, n)}, \ (27)$

то связка (21) из 2n сводов уравнений примет следующий окончательный вид:

$$A_{(\omega r)}\xi_{(rn)} + B_{(\omega n)}\eta_{(nn)} + K_{(\omega n)} = \varepsilon_{(\omega n)}, (\omega > n). \tag{21-28}$$

Так как в матричном уравнении (21—28) предполагается, что $\omega \cdot r > r \cdot n$ и $\omega \cdot n > n \cdot n$, следовательно, $\omega > n$, то это матричное уравнение решаем под условием Гаусса

$$\sum_{\beta=1}^{r} \stackrel{*}{\varepsilon_{(1\omega)}} \stackrel{(\beta)}{\varepsilon_{(\omega 1)}} = Q^2 = \text{наим.}, \tag{29}$$

откуда вытекают два матричные уравнения [3];

$$A_{(r\omega)}^* A_{(\omega r)} \xi_{(rn)} + A_{(r\omega)}^* B_{(\omega n)} \eta_{(nn)} + A_{(r\omega)}^* K_{(\omega n)} = 0_{(rn)},$$

$$B_{(n\omega)}^* A_{(\omega r)} \xi_{(rn)} + B_{(n\omega)}^* B_{(\omega n)} \eta_{(nn)} + B_{(n\omega)}^* K_{(\omega n)} = 0_{(nn)}.$$
(30)

для определения двух неизвестных матриц $\xi_{(rn)}$ и $\eta_{(nn)}$. Если ввести обозначения

1)
$$A_{(r\omega)}^* A_{(\omega r)} = P_{(rr)}$$
, 2) $A_{(r\omega)}^* B_{(\omega n)} = (B_{(n\omega)}^* A_{(\omega r)})^* = D_{(nr)}$, (31)
3) $B_{(n\omega)}^* B_{(\omega n)} = R_{(nn)}$, 4) $A_{(r\omega)}^* K_{(\omega n)} = S_{(rn)}$, 5) $B_{(n\omega)}^* K_{(\omega n)} = T_{(nn)}$,

то матричные уравнения (30) запишутся более сжато

$$\begin{cases}
P_{(rr)} \xi_{(rn)} + D_{(rn)} \eta_{(nn)} + S_{(rn)} = 0_{(rn)} \\
D_{(nr)}^* \xi_{(rn)} + R_{(nn)} \eta_{(nn)} + T_{(nn)} = 0_{(nn)}.
\end{cases}$$
(32)

Найдя отсюда матрицы-поправки $\xi_{(rn)}$ и $\eta_{(nn)}$, подсчитаем затем согласно (25) и (22) нужные нам основные матрицы $\lambda_{(nn)}$ и $c_{(rn)}$.

1)
$$\lambda_{(nn)} = \lambda_{(nn)}^0 + \gamma_{(nn)} = \lambda_{(nn)}^0 + \delta \lambda_{(nn)}$$
, 2) $c_{(rn)} = c_{(rn)}^0 + \xi_{(rn)} = c_{(rn)}^0 + \delta c_{(rn)}$.

На этом определение по способу наименьших квадратов основных матриц $\lambda_{(nn)}$ и $c_{(rn)}$ заканчивается.

7. Рассчитав матрицу $c_{(rn)}$ собственных векторов $\overline{c_{\beta}} = c_{(r1)}^{(\beta)}$ для связки уравнений (21^*) , вычислим затем согласно (19) соответствующие присоединенные векторы $\overline{c_{\beta\alpha}}$, $\alpha = 2$, 3, ..., ∂_{β} для тех собственных значений λ_{β} оператора $[\Delta + k^2]$, которые имеют кратность ∂_{β} . Теперь мы можем написать уже уточненный по способу наименьших квадра-

тов полный набор $w_x(x,y)$, (k=1,2,...,r), значений для собственных функций w(x,y) оператора $(\Delta+k^2)$, который получится при замене в (17) приближенных $\overset{*}{c}_{(x\nu)}^0$ на уравненные $\overset{*}{c}_{x\nu}$.

$$w(x,y) \in w_{x}(x,y) = \sum_{y=1}^{r} c_{xy}^{*} \varphi_{y}(x,y). \tag{17a}$$

Ясно, что в том случае, когда все r корней λ_{β} уравнения $|b_{(rr)}-\lambda_{\phi_{(rr)}}|=0$ простые, то расчет согласно (19) всех r-n присоединенных векторов $c_{\beta\alpha}$ отпадает, и мы сразу после решения связки уравнений (21) переходим к расчету набора собственных функций w(x, y) согласно (17a).

8. В заключение определим средне-квадратические разбросы $m^2(\lambda_\beta)$ и $m^2[w_x(x,y)]$, найденных по способу наименьших квадратов собственных значений λ_β и собственных функций $w_x(x,y)$ оператора

 $[\Delta + k^2]$.

Обобщая известные правила оценки точности в способе наименьших квадратов ([1], [3]), вычислим прежде всего средне-квадратический разброс μ^2 для совокупности из $n \le r$ величин λ_μ и $r \cdot n \le r \cdot r$ величин $c_{\gamma\beta}$, задаваемых посредством $\gamma + \sigma = \omega$ уравнений ошибок (21). Мы найдем, что

$$\mu^{2} = \frac{Q^{2}}{\omega.n - (r.n+n)} = \frac{\sum_{\beta=1}^{n} \hat{\epsilon}_{(1\omega)}^{(\beta)} \epsilon_{(\omega 1)}^{(\beta)}}{\omega.n - (r+1)n} = \frac{\sum_{\beta=1}^{r} \left(\sum_{\Gamma=1}^{\gamma} \epsilon_{\Gamma\beta}^{2} + \sum_{s=1}^{\sigma} \epsilon_{s\beta}^{2}\right)}{[\omega - (r+1)]n}.$$
 (33)

Далее вычислим средне-квадратические разбросы $m^2(\lambda_\beta)$ и $m^2(c_{\nu\beta})$, $(\nu=1, 2, ..., r; \beta=1, 2, ..., n\leqslant r)$. С этой целью перепишем пару матричных уравнений (32) в виде связки из n пар уравнений, соответствующих различным $\beta=1, 2, ..., n\leqslant r$:

$$\begin{bmatrix}
P_{(rr)}^{(\beta)} D_{(rn)}^{(\beta)} \\
\tilde{D}_{(nr)}^{(\beta)} R_{(nn)}^{(\beta)}
\end{bmatrix}
\begin{bmatrix}
\xi_{(r1)}^{(\beta)} \\
\gamma_{(n1)}^{(\beta)}
\end{bmatrix} +
\begin{bmatrix}
S_{(r1)}^{(\beta)} \\
T_{(n1)}^{(\beta)}
\end{bmatrix} =
\begin{bmatrix}
0_{(r1)}^{(\beta)} \\
0_{(n1)}^{(\beta)}
\end{bmatrix},$$
(32)

откуда следует, что

$$\begin{bmatrix} \xi_{(r1)}^{(\beta)} \\ \gamma_{(n1)}^{(\beta)} \end{bmatrix} = - \begin{bmatrix} P_{(rr)}^{(\beta)} & D_{(rn)}^{(\beta)} \\ \mathring{D}_{(nr)}^{(\beta)} & R_{(nn)}^{(\beta)} \end{bmatrix}^{-1} \begin{bmatrix} S_{(r1)}^{(\beta)} \\ T_{(n1)}^{(\beta)} \end{bmatrix} = - \begin{bmatrix} \pi_{(rr)}^{(\beta)} & \delta_{(rn)}^{(\beta)} \\ \mathring{\delta}_{(rn)}^{(\beta)} & \rho_{(nn)}^{(\beta)} \end{bmatrix} \begin{bmatrix} S_{(r1)}^{(\beta)} \\ T_{(n1)}^{(\beta)} \end{bmatrix}.$$
(33)

Тогда

1)
$$m^{2}(c_{\nu\beta}) = \mu^{2} \pi_{\nu\nu}^{(\beta)}$$
, 2) $m^{2}(\lambda_{\beta}) = \mu^{2} \rho_{r+\beta,r+\beta}^{(\beta)}$. (34)
 $(\nu=1,2,...,r; \beta=1,2,...,n \leqslant r)$

Теперь мы должны подсчитать средне-квадратические разбросы $m^2(c_{\beta\alpha,\delta}), \quad (\delta=1,\ 2,\ ...,\ r),$ составляющих $c_{\beta\alpha,\delta}, \quad$ для присоединенных векторов $c_{\beta\alpha}, \quad$ принадлежащих некоторому собственному значению λ_β кратности ∂_β . Согласно (19)

$$\overline{c}_{\beta\alpha} = (B - \lambda_{\beta} \Phi)^{\alpha - 1} \overline{c}_{\beta 1}, \overline{c}_{\beta 1}, \overline{c}_{\beta 1}, = \overline{c}_{\beta}, (\alpha = 2, 3, ..., \partial_{\beta}), \tag{19}$$

или в матричном виде

$$c_{(r1)}^{\beta\alpha} = (b_{(r,r)} - \lambda\beta\phi_{(rr)})^{\alpha-1}c_{(r1)}^{\beta1} = d_{(rr)}^{\beta\alpha}c_{(r1),\beta}$$
(19*)

$$c_{\beta\alpha.\delta} = c_{\delta}^{(\beta\alpha)} = \sum_{\nu=1}^{r} d_{\delta\nu}^{(\beta\alpha)} c_{\nu\beta}, \ (\delta = 1, 2, ..., r; \ \beta = 1, 2, ..., n \leqslant r).$$
 (19**)

Отсюда по общему правилу расчета средне-квадратического разброса m_F^2 функции $F(x_1, x_2, ..., x_j, ..., x_r)$ от r неизвестных x_j , связанных уравнениями ошибок, получим

$$m^{2}(c_{\beta\alpha\cdot\delta}) = \mu^{2} \sum_{\nu,\tau=1}^{r} (\pi_{\nu\tau} d_{\delta\nu} d_{\delta\tau})_{\beta\alpha}.$$

$$\beta = 1, 2, ..., n \leqslant r; \ \alpha = 2, 3, ..., \partial_{\beta}).$$
(35)

Подсчитаем, наконец, средне-квадратические разбросы $m^2[w_{\varkappa}(x,y)]$, найденных по способу наименьших квадратов значений $w_{\varkappa}(x,y)$ для собственных функций w(x,y) оператора $[\Delta+k^2]$. С этой целью в уточненном представлении (17.1) для собственных функций $w_{\varkappa}(x,y)$ оператора $[\Delta+k^2]$ заменим приближенные $c_{\imath\beta}^0$ и $c_{\beta\alpha,\imath}^0=f_{\imath\gamma}^0$ на их уравненные значения $c_{\imath\beta}$ и $f_{\imath\gamma}$. Кроме того, учтем выражение (19) присоединенных коэффициентов $c_{\beta\alpha,\delta}=f_{\delta\gamma}$ через основные коэффициенты $c_{\imath\beta}$, которые мы запишем в более удобном виде

a)
$$f_{\gamma\gamma} = \sum_{\delta=1}^{r} d_{\gamma\delta} c_{\delta\gamma}$$
, 6) $f_{\gamma\gamma}^* = \sum_{\delta=1}^{r} c_{\gamma\delta}^* d_{\delta\gamma}^*$, (36) $(\gamma = 1, 2, ..., r; \gamma = n + 1, n + 2, ..., r)$.

Здесь $c_{\delta\gamma}$ — составляющие тех основных векторов c_i из полной их совокупности c_{β} , $\beta = 1, 2, ..., n$, которые участвовали в расчете согласно (19) соответствующих присоединенных векторов $c_{\beta\alpha} = f_{\gamma}$.

Теперь мы можем записать представление (17.1) для собственных функций $w_{x}(x, y)$ в следующем развернутом виде:

$$w_{x}(x,y) = \begin{cases} w_{\beta}(x,y) = \sum_{\nu=1}^{r} c_{\beta\nu}^{*} \varphi_{\nu}(x,y) \\ (x=1,2,...,\beta,...,n) \\ w_{\gamma}(x,y) = \sum_{\delta=1}^{r} c_{\gamma\delta}^{*} \left(\sum_{\nu=1}^{r} d_{\delta\nu}^{*} \varphi_{\nu}(x,y) \right) = \sum_{\delta=1}^{r} c_{\gamma\delta}^{*} \psi_{\delta}(x,y), \\ (x=n+1, n+2,...,\gamma,...,r) \end{cases}$$
(17.2)

где при подсчете $w_{\gamma}(x, y)$ изменен порядок суммирования и введено обозначение

$$\psi_{\delta}(x,y) = \sum_{\nu=1}^{r} d_{\delta\nu}^* \varphi_{\nu}(x,y). \tag{37}$$

Из полученного представления (17.2) для $w_{x}(x, y)$ найдем по общему правилу, что

a)
$$m^2[w_{\beta}(x,y)] = \mu^2 \varphi_{(1r)}^*(x,y) \pi_{(rr)}^{\beta} \varphi_{(r1)}(x,y),$$

 $(\beta = 1,2,...,n \leqslant r)$ (38)

9 Заказ 10892

δ)
$$m^2[w_\gamma(x,y)] = \mu^2 \psi^*_{(1r)}(x,y) \pi^{\gamma}_{(rr)} \psi_{(r1)}(x,y).$$

 $(\gamma = n+1, n+2,...,r)$

Здесь $\pi^{\gamma}_{(rr)}$ — значение матрицы $\pi_{(rr)}$ для того собственного значения $\lambda_{\beta} \in \lambda_1, \ \lambda_2, \ ..., \ \lambda_n$, с помощью которого был вычислен согласно (19)

принадлежащий ему присоединенный вектор $\overline{c}_{\beta\alpha} = \overline{f}_{\gamma}$.

На этом заканчивается решение поставленной задачи предложенным способом и оценка точности для полученного таким путем решения. Рассмотренный способ без всякий осложнений может быть применен к решению и оценке точности более общей спектральной задачи

1)
$$L(x, y)u(x, y) = 0, 2) P(x, y)u(x, y)/_{r} = 0$$
 (39)

с произвольными линейными дифференциальными операторами L(x, y), P(x, y) и функцией u(x, y), не зависящими от времени t.

ЛИТЕРАТУРА

1. Б. Ф. Крутой. Решение по способу наименьших квадратов краевой задачи для двумерного уравнения Пуассона. Известия ТПИ, настоящий сборник.

2. В. С. Владимиров. Уравнения математической физики. М., «Наука»; 1971.

3. В. Иордан. Руководство по геодезии. Т. 1. Редбюро ГУГК, М., 1939.