И З В Е С Т И Я ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО-ИНСТИТУТА имени С. М. КИРОВА

Том 122

1962

МИКРОТРОН на 5 Мэв

Б. З. КАНТЕР, В. В. ЛЕРМОНТОВ, Д. А. НОСКОВ, Ю. Г. ЮШКОВ

Принцип действия микротрона был предложен в 1944 году советским ученым В. И. Векслером. Микротрон представляет собой циклический резонансный ускоритель с постоянным магнитным управляющим полем и постоянной частотой ускоряющего электрического поля. Электроны, получающие энергию от электрического поля при прохождении зазора резонатора, свободно движутся в постоянном магнитном поле по круговым орбитам и попадают снова в зазор резонатора. В этом ускорителе возрастание периода обращения электронов с увеличением их энергии равно или кратно периоду ускоряющего высокочастотного электрического поля резонатора.

Устойчивость движения электронов обеспечивается, как и в других резонансных ускорителях, действием принципа автофазировки.

В отличие от линейных ускорителей и синхротронов величина фазостабильной области микротрона составляет 20÷30°.

Микротрон имеет ряд достоинств, выгодно выделяющих его перед другими ускорителями. Это, во-первых, простота конструкции ускорителя и необходимого оборудования, во-вторых, высокая моноэнергетичность спектра ускоренных электронов. Большое расстояние между биортами значительно упрощает задачу вывода электронов из ускорительной камеры микротрона.

Основными узлами микротрона являются: электромагнит со схемой питания, вакуумная камера, резонатор с высокочасто-

Рис. 1. Блок-схема микротрона м. г.—магнетронный генератор, ф. в.— фазовращатель, С. Н.—согласованная нагрузка, в. к.—вакуумная камера.

тным трактом, генератор сверхвысокой частоты и система управления. Блок-схема микротрона показана на рис. 1. В межполюсном пространстве помещается вакуумная камера (рис. 2), изготовленная из нержавеющей стали. Необходимый для нормального ускорения электронов вакуум создается в камере с помощью форвакуумного насоса PBH-20 и диффузионного насоса H-5. В качестве ускоряющего элемента в микротроне используется тороидальный резонатор, между полыми конусами которого развивается ускоряющее напряжение.

Для нормальной работы микротрона необходимо в зазоре резонатора получить напряжение около 600 кв.

Резонатор, применяемый в микротроне, изготовлен из латуни (рис. 2). После серебрения и хромирования он имеет добротность Q=2000, при диаметре отверстия связи 2,2 см. При этом коэффициент отражения по мощности $\kappa=19,5$ % (КСВ=2,6). Возбуждение резонатора осуществляется через круглое отверстие связи от волноводного высокочастотного тракта, подключенного к магнетронному генератору (рис. 1).

Для обеспечения устойчивой работы магнетрона мощность, поступающая от генератора, делится между резонатором и согласован-

Рис. 2. Вакуумная камера микротрона со снятой верхней крышкой и резонатор.

ной нагрузкой (CH). С целью изменения электрической длины участка волновода между тройником и резонатором используется фазовращатель (ФВ).

Перед тройником в высокочастотном тракте также помещен фазовращатель, изменяющий электрическую длину участка тройник—магнетрон, что позволяет обеспечить более благоприятный режим работы для магнетрона.

Зазор между полюсами принят 12,5 см с учетом размеров резонатора, толщины стенок камеры и зазоров между стенами камеры и полюсами.

Диаметр полюсов определяется радиусом последней орбиты (r=17,43 см) с учетом спадания поля на краях полюсов и принят равным 55 см.

Сечение магнитопровода микротрона определяется величиной магнитного потока с учетом рассеяния и равно $30 \times 12 \ cm^2$.

Коэффициент рассеяния и распределение поля в межполюсном пространстве проверены на модели электромагнита, выполненного в масштабе 1:2,5.

Основные детали микротрона были изготовлены к 1959 году, и сразу начались работы по наладке отдельных узлов и их испытание.

46

Измерение параметров резонатора и согласование В. Ч. тракта проводились в непрерывном режиме на малой мощности. После этого тракт испытывался на большой мощности в импульсном режиме.

Параллельно проводились работы по наладке вакуумной системы и устранению течи в вакуумной камере микротрона. Одновременно проводились измерения энергии электронов, ускоренных в зазоре резонатора. Для этого была изготовлена вспомогательная вакуумная камера и электростатический анализатор скоростей электронов. Измерения показали, что с существующей конструкцией резонатора и В. Ч. системы можно получить напряжение в ускоряющем зазоре 250÷300 кв.

На основании измерений и анализа недостатков конструкции резонатора был разработан и изготовлен новый резонатор, позволяющий получить напряжения до 400 кв.

С этим резонатором микротрон был запущен на энергию 2,5 Мэв. Был зарегистрирован ток на 9 орбитах, и наблюдалось свечение на экране, перемещающемся внутри камеры.

Для исследования возможности увеличения мощности, отдаваемой генератором резонатору, был проведен ряд опытов, одним из которых явилось исследование влияния диаметра отверстия связи резонатора с волноводом на величину высокочастотной мощности, проходящей в резонатор.

Диаметр отверстия связи менялся от 16 до 26 мм через 2 мм и в каждом случае измерялся КСВ около резонатора.

Проведенный опыт позволяет сделать следующие выводы.

1. С увеличением диаметра отверстия связи мощность, поступающая в резонатор, увеличивается.

2. С увеличением диаметра отверстия связи ухудшается добротность связанного резонатора.

3. С увеличением диаметра отверстия связи улучшается согласование резонатора с волноводом, т. е. увеличивается доля мощности, идущая к резонатору.

Суммарное действие этих факторов приводит к тому, что с увеличением диаметра отверстия связи напряжение в резонаторе вначале увеличивается, достигает максимума и затем уменьшается.

После этих опытов диаметр отверстия связи был увеличен до 2,2 см, и напряжение на зазоре резонатора удалось повысить до 650 кв, что позволило запустить микротрон в основном режиме на энергию 5 Мэв. Прибором ЭППВ записан ток на 9 орбитах (рис. 3), орбиты наблюдались и визуально на экране через окно в ускорительной камере.

В основном режиме, как и в "половинном" (2,5 Мэв), наблюдается быстрый спад тока и на 9 орбите ток в импульсе составляет несколько мка.

В процессе запуска на микротроне проводилась работа, направленная на увеличение тока путем применения холодных и накаленных като- Рис. 3. Распределение дов в резонаторе.

тока на орбитах микротрона.

В большинстве микротронов ввод электронов в

ускорение инжекция осуществляется за счет автоэлектронной эмиссии с поверхности электродов ускоряющего резонатора. Расчет показывает, что длительность импульсов тока инжекции составляет около 1/10 периода высокочастотного напряжения, а по фазе эти импульсы совпадают с высокочастотным напряжением. Описанный метод инжекции обладает существенными недостатками: во-первых, эмиссионные свойства холодной поверхности электродов резонатора почти не поддаются регулировке и сильно изменяются со временем; во-вторых, из за большой ширины энергетического спектра лишь относительно небольшая часть электронов входит на вторую и последующие орбиты, т. е. велика бесполезная электронная нагрузка резонатора.

Известно, что путем использования термоавтоэлектронной эмиссии с накаленного катода можно добиться расширения импульса тока инжекции, что должно привести к сужению энергетического спектра и сдвигу максимума его в сторону больших энергий.

Результаты измерений показывают, что энергетический спектр в случае инжекции с холодного катода отличается тупым максимумом, соответствующим энергии около 70 % от наибольшей, и пологим спадом в сторону верхнего края спектра (рис. 4).

Характерным отличием энергетического спектра ускоренных электронов при инжекции с накаленного катода является острый максимум вблизи верхней границы спектра. Этот максимум приходится на энергию около 90 % от наибольшей и переходит к резкому спаду

Рис. 4. Энергетические спектры электронов: 1-с холодного катода, 2-температура катода 2500°К, 3-температура катода 3000°К.

Рис. 5. Изменение тока на орбитах с увеличением температуры катода: 1—ток на шестой орбите, 2—ток на пятой орбите.

в сторону верхнего края спектра. Характерная форма его сохраняется в большом диапазоне температур 2500÷3000°К. Сравнение кривых 1 и 2 на рис. 4 показывает, что электронный ток, который может выйти на вторую и последующие орбиты при инжекции с накаленного катода, в несколько раз больше, чем при инжекции с холодного катода при неизменной электронной нагрузке.

Работа накаленного катода была проверена в режиме ускорения до 2,5 Мэв.

Зависимость тока на пятой и шестой орбитах от температуры катода показана на рис. 5. Из графика видно, что применение накаленного катода первой конструкции позволило регулировать ток ускоренных электронов в широких пределах. Даже при несогласованном

48

резонаторе были получены средние токи на шестой орбите около 2.10⁻⁹ а.

Так как мощность, вводимая в резонатор во время эксперимента, была небольшой, то увеличение электронной нагрузки приводило к уменьшению напряжения на резонаторе и нарушению режима ускорения, что видно по максимуму на графиках.

Из камеры данного микротрона предполагается вывести пучок ускоренных электронов. Так как расстояние между двумя соседними электронными орбитами в микротроне составляет около 3 *см*, то вывод пучка электронов можно осуществить с помощью магнитного шунта.

Для вывода пучка с различных орбит разработано устройство, позволяющее вводить железную трубу, выполняющую роль шунта, в камеру и поворачивать ее по азимуту в необходимых пределах.

В настоящее время проводятся работы по выяснению причин спада тока на орбитах и увеличению тока ускоряемых электронов.