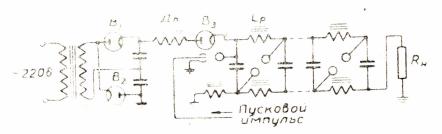
ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

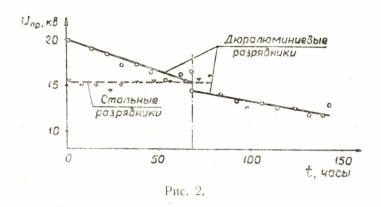
Tom 122 1962

ИССЛЕДОВАНИЕ РАБОТЫ МАЛОГАБАРИТНОГО ИМПУЛЬСНОГО ГЕНЕРАТОРА ДЛЯ ПИТАНИЯ НЕЙТРОННОЙ ТРУБКИ

Г. А. ВОРОБЬЕВ, А. И. ГОЛЫНСКИЙ, Н. С. РУДЕНКО

Был разработан и создан малогабаритный генератор импульсного напряжения (ГИН) для питания ускорительной трубки скважинного генератора нейтронов. ГИН дает импульсы отрицательной полярности с амплитудой 120 кв и частотой посылок 50 гц. Исходя из таких условий работы, выбиралась электрическая схема ГИН'а. При зарядке через активные сопротивления получились бы большие потери энергии в них. Поэтому все сопротивления были заменены индуктивно-




Рис. 1.

стями. Электрическая схема ГИН'а показана на рис. 1. Разделительные индуктивности выбирались из такого условия, чтобы в них терялось не более 10 % тока нагрузки. Величина получилась равной 22 мгн. Эти индуктивности наматывались тонким проводом на плексигласовых каркасах и имели железные незамкнутые сердечники. При определении величины индуктивности зарядного дросселя исходили из того, чтобы после срабатывания ГИН'а в первом его искровом промежутке

гасла дуга.

Если величину индуктивности дросселя брать большой, то и размеры самого дросселя будут большими. Учитывая это, величина индуктивности дросселя была взята равной 4 гн. При разработке ГИН'а были проведены исследования по выбору материала разрядников. Обторание электродов ведет к изменению пробивного напряжения, а это может привести к тому, что ГИН через некоторое время перестанет работать. Была испытана пара дюралюминиевых и пара стальных электродов. Испытания велись в воздухе при атмосферном давлении; частота разрядов бралась такой же, на какую рассчитана работа ГИН'а, т. е. 50 гц; разрядная емкость бралась равной ёмкости ступени ГИН'а

 $(1000~n\phi)$, а нагрузка— равная эквивалентной нагрузке одной ступени ГИН'а. На рис. 2 приведены результаты испытаний в виде графиков. Как видно из результатов испытаний, разрядное напряжение сталь-

ных электродов за 78 часов работы совсем не снизилось, а разрядное напряжение дюралюминиевых электродов на протяжение всей работы их снижалось. На основании этих опытов, материалом электродов вы-

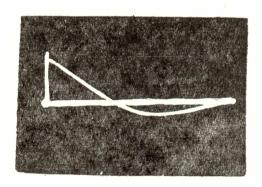


Рис. 3.

брана сталь. Разрядники ГИН'а помещены в герметическую камеру. ГИН имеет семь ступеней, в каждой два конденсатора типа КОБ-2 ($U_{pa6}=20~\kappa s,~c=500~n\phi$). Конденсаторы и разделительные индуктивности крепятся на плексигласовых планках, которые придают жесткость всей конструкции.

ГИН при разряде на активную нагрузку ($R_{\rm H}=12~\kappa o {\it M}$) дает импульс, форма которого приведена на рис. 3. При обработке осциллограммы определили, что длина фронта этой волны равна $\tau_{\it p}=1,3~\kappa c e {\it K}$ и длина волны (без отрицательного выброса) равна $\tau_{\it b}=6~\kappa c {\it K}$