Том 288

О ФИЗИЧЕСКИХ СВОЙСТВАХ НЕФТИ НИКОЛЬСКОГО МЕСТОРОЖДЕНИЯ ТОМСКОЙ ОБЛАСТИ

Г. Н. ЧЕРТЕНКОВА

(Представлена профессором А. В. Аксариным)

Нефтеносным на Никольском месторождении является пласт Ю-1 (васюганская свита), который представлен переслаиванием песчаников, алевролитов и аргиллитов. Среди песчаников встречаются самые разнообразные — от мелкозернистых до крупнозернистых. Песчаники крепкие, слоистые. Нефтяная залежь данного месторождения вскрыта скважиной Р-1 в интервале 2380 — 2400 м.

Для исследования физических свойств пластовой нефти из скважины было отобрано две пробы. Исследование проводилось в лаборатории физики нефтяного пласта Томского политехнического института на

Таблица 1 Основные физические свойства пластовой нефти Никольского месторождения (скважина Р-1, пласт Ю-1, пластовое давление 240,5 ати, пластовая температура 86°C)

П араметры	Единицы изме- рения	Проба первая	Проба втора я	Среднее значение
Дата отбора пробы Интервал перфорации Давление насыщения Коэффициент сжимаемости неф	м ати отн 10 ⁻⁵ 1/ат	7.04.71. 2380 — — 2400 59 16,06	7.04.71. 2380 — 2400 — 58 15,43	58 15,74
Газосодержание, отнесенное единице объема Газосодержание, отнесенное	К м ³ /м ³ К	50,50	51,30	50,90
единице веса Объемный коэффициент Усадка	м ³ /т	60,37 1,198 16,53	61,36 1,202 16,81	60,86 1,200 16,66
Плотность сепарированной нети Плотность пластовой нефти Плотность газа	г/см ³ г/см ³ г/литр	0,836 0,750 1,230	0,836 0,748 1,231	0,836 0,749 1,230
Средний коэффициент раствор мости газа Вязкость неразгазированной не	см3/см3ат	0,847	0,884	0,865
ти в пластовых условиях Вязкость сепарированной не	сантипуазы	0,70		0,70
ти в поверхностных условиях Конечное давление сепарации	сантипуазы мм рт. ст.	5,02 760	5,48 755	5,25
Конечная температура Дата завершения анализа	° C	20° C 26.04.71	20°-C 10.05.71	
Add Subspillenin analisa		20.01.11	10.00.71	101

101

установке УИПН-2М. Работа проводилась по методике, изложенной

В. Н. Мамуной и др. [1].

Основные физические свойства пластовой нефти Никольского месторождения приведены в табл. 1. Нефть эта характеризуется относительно невысоким давлением насыщения $58~a\tau u$ и невысоким же газосодержанием— $50.9~m^3/m^3$. Вместе с тем ее объемный коэффициент сравнительно высокий—1,200. Вязкость нефти в пластовых условиях 0,70 сантипуаза, в поверхностных после дегазации—5,25 сантипуаза. По своим физическим свойствам нефть Никольского месторождения мало отли-

чается от нефтей других месторождений Томской области.

Отдельные из этих свойств исследовались более подробно. Последнее относится прежде всего к вязкости нефти. Вязкость определялась у нефти как в неразгазированном, так и в частично разгазированном состоянии. Исследование велось при нескольких температурах и давлениях. При этом температуры были одинаковыми в обоих случаях, а именно 20, 40, 60 и 86° С (пластовая температура). Что касается давлений, то они были отчасти одинаковыми, а отчасти разными. Так, и в неразгазированном и в частично разгазированном состояниях нефть исследовалась при давлениях 240,5 ати (пластовое давление) и 100 ати. А кроме того, в неразгазированном состоянии нефть исследовалась при давлениях 200 ати и 150 ати, а в частично разгазированном — при 50 ати. Разгазирование производилось при давлении 30 ати.

Исследованием было установлено, что с повышением температуры вязкость нефти Никольского месторождения плавно уменьшается, а с повышением давления — увеличивается, причем при одних и тех же температурах и давлениях вязкость частично разгазированной нефти мало отличается от вязкости неразгазированной нефти (табл. 2 и 3). Следо-

Таблица2 Результаты исследования вязкости нефти первой пробы Никольского месторождения (скважина Р-1, пласт Ю-1) в неразгазированном состоянии

Давление, прикотором опре		гь в сантип	уазах при	различных температурах и да	авления
делялась вяз- кость, ати		40°C	60°C	86°С (пластовая t).	
240,5	1,48	1,05	0,88	0,70	
200	1,43	1,02	0,76	0,68	
150	1,34	0,99	0,74	0,66	
100	1,26	0,85	0,73	0,64	

Таблица З Результаты исследования вязкости нефти Никольского месторождения (скважина Р-1, пласт Ю-1, первая проба) в частично разгазированном состоянии

Давле- ние раз-	Давление, при кото-	Вязкость в сантипуазах при различных температурах и давлениях					
газиро- вания, <i>ати</i>	ром определялась вязкость, ати	20°C	40°C	60°C	86°C		
	240,5	1,26	1,14	0,92	073		
30	100	1,17	1,01	0,80	0,70		
	50	1,11	0,92	0,78	0,69		
100							

Результаты ступенчатого разгазирования первой пробы нефти Никольского месторождения (скважина Р-1, пласт Ю-1, интервал перфорации 2380—2400 м)

	71	Томпора		тво газов	Коэффициент	Плотность	Объемный	Плотность
Показатели	Дав ление ата	Темпера-	в раство-	свобод-	растворимости газа	газа	коэффи-	нефти
	ama	°C	M3/M3	M^3/M^3	M^3/M^3am .	г/литр		г/см3
Пластовое давление	241,5	86°C	50,50	0,0	-	_	1,198	0,750
Давление насыщения	60	86°C	50,50	0,0	0,842		1,240	0,727
1-я ступень	41	86°C	49,48	1,02	1,151	1,100	1,234	0,729
2-я ступень	33	86°C	42,85	7,65	1,224	1,020	1,227	0,728
3-я ступень	21	86°C	36,66	13,84	1,591	0,958	1,223	0,726
4-я ступень	13	86°C	30,05	20,45	2,003	0,943	1,217	0,724
5-я ступень	8.	86°C	24,38	26,12	2,709	1,058	1,211	0,722
6-я ступень	4	86°C	13,27	37,23	2,211	1,180	1,153	0,725
7-я ступень	1	86°C	0,0	50,50		1,930	1,139	0,734
8-я ступень	1	20°C	0,0	50,50		_	1,000	0,836

вательно, основное увеличение вязкости нефти происходит в процессе

разгазирования ее в интервале давлений 30 ати 1 ата.

Интересными являются изменения коэффициента сжимаемости нефти. Оказывается, этот параметр увеличивается по мере снижения давления (табл. 5).

Таблица 5 Коэффициент сжимаемости нефти Никольского месторождения при различных давлениях

Паплонию дени	Значение коэффициентов сжимаемости в 1/ат					
Давление, ати	первая проба	вторая проба				
240,5—120	$12,04 \cdot 10^{-5}$	11,07 · 10-5				
120 —100	19,14 • 10-5	14,02 · 10-5				
100 — 80	20,18 • 10-5	13,98 · 10-5				
80 — 60	29,85 • 10-5	17,51 · 10-5				
Средние значения в интервале 240,5—60	16,06 • 10-5	15,43 · 10-5				

Ниже приводятся также и результаты ступенчатого разгазирования нефти Никольского месторождения, правда, только по первой пробе (табл. 4). Результаты ступенчатого разгазирования второй пробы являются аналогичными и потому в настоящей статье не приводятся.

Некоторое внимание необходимо уделить составу попутных газов нефти Никольского месторождения. Они мало отличаются от состава

Таблица 6

Состав попутного газа нефти Никольского месторождения (скважина Р-1, пласт Ю-1)

Наименование газов	Первая проба в объемных процентах	Вторая проба в объемных процентах		
Метан	74,13	51,78		
Этан	7,53	8,79		
Пропан	8,55	13,43		
Бутан	3,76	11,41		
Пентан	1,21	3,37		
Гексан	0,70	1,25		
Гептан	0.77	0,47		
Углекислый газ	1,32	1,15		
Водород				
Азот	2,03	8,35		

попутных газов нефтей других месторождений Томской области. В частности, здесь на первом месте стоит метан (более 50 объемных процентов), на втором месте — пропан (от 8,55 до 13,43 объемных процента) и только на третьем месте — этан (от 7,53 до 8,79 объемных процента). Велика доля бутана. У второй пробы содержание его даже превышает содержание этана. Содержание прочих газов незначительно (табл. 6).

По физическим свойствам нефть Никольского месторождения мало отличается от нефтей других месторождений Томской области.

ЛИТЕРАТУРА

1. В. Н. Мамуна, Г. Ф. Требин, Б. В. Ульянинский. Экспериментальное исследование пластовых нефтей. ГОСИНТИ, 1960.