СПИСОК ЛИТЕРАТУРЫ

- Осипов В.М. Основы метода изображающих векторов и линейное преобразование сигналов // В сб.: Вопросы программирования и автоматизации проектирования. – Вып. 1. – Томск: Изд-во Томского ун-та, 1971. – С. 1–13.
- Осипов В.М., Шалаев Ю.Н. Решение линейных дифференциальных уравнений с переменными коэффициентами на

АВМ методом изображающих векторов // Известия вузов. Приборостроение. – 1977. – № 12. – С. 43–47.

- Шалаев Ю.Н. Применение метода изображающих векторов к решению краевых задач для обыкновенных дифференциальных уравнений // В сб.: Автоматизация управления и АСУ ТП. – Томск: Изд-во ТПУ, 1977. – С. 101–105.
- Бесекерский В.А., Попов Е.П. Теория систем автоматического регулирования. – М.: Наука, 1972. – 768 с.

УДК 539.12.01

МЕДЛЕННОЕ ВРАЩЕНИЕ МАССИВНЫХ ТЕЛ В ТЕОРИИ ТЯГОТЕНИЯ ИОРДАНА-БРАНСА-ДИККЕ

В.И. Рейзлин

Институт «Кибернетический центр» ТПУ E-mail: valera@ad.cctpu.edu.ru

Рассматривается задача о медленном вращении релятивистских тел в скалярно-тензорной теории тяготения. В первом приближении по угловой скорости получено уравнение, описывающее вращение, его внешнее решение и выражение для момента импульса. Приведены результаты численного интегрирования этих уравнений. В расчетах применялось уравнение состояния нейтронно-звездной материи в модели однобозонного обмена. Полученные результаты сравниваются с данными наблюдений пульсаров.

Проблеме вращающихся тел в рамках общей теории относительности (ОТО) посвящен ряд работ [1–5]. В [1] было найдено точное решение уравнений Эйнштейна для стационарного аксиально-симметричного гравитационного поля в вакууме. В [2–5] рассматривалось приближенное общее решение, описывающее поле медленно вращающегося тела.

Представляет интерес рассмотрение данного вопроса с точки зрения альтернативных теорий гравитации. Одной из них является скалярно-тензорная теория Иордана-Бранса-Дикке [6–8]. Задача вращения тел в этой теории рассмотрена в работе [9]. Настоящая статья посвящена данному вопросу и ограничивается моделью медленного вращения, при котором угловая скорость ω удовлетворяет условиям:

$$\omega r \ll 1, \quad \omega^2 \ll M / r^3. \tag{1}$$

Первое из них означает, что линейная скорость любого элемента тела много меньше скорости света c, а второе — малость центробежных сил по сравнению с силами тяготения. В (1) M — масса тела, r — радиальная координата; здесь и далее используются единицы c=G=1, G — гравитационная постоянная.

Уравнения поля в скалярно-тензорной теории тяготения имеют следующий вид [6–8]:

$$G_{\mu\nu} = -8\pi\psi^{-1}T_{\mu\nu} - \sigma\psi^{-2}(\psi_{;\mu}\psi_{;\nu} - 1/2 \cdot g_{\mu\nu}\psi_{;\rho}\psi^{;\rho}) - \psi^{-1}(\psi_{;\mu;\nu} - g_{\mu\nu}\psi^{;\rho}_{;\rho}), \qquad (2)$$

$$\psi^{;\rho}_{;\rho} = 8\pi (3+2\sigma)^{-1} T^{\mu}_{\mu},$$
 (3)

где ψ – дальнодействующее скалярное поле; σ – безразмерная константа связи ψ -поля; $g_{\mu\nu}$ – метрический тензор; $G_{\mu\nu}$ – тензор Эйнштейна; $T_{\mu\nu}$ – тен-

зор энергии-импульса материи, выражающийся через давление P и плотность вещества ρ следующим образом:

$$T_{\mu\nu} = (P + \rho)u_{\mu}u_{\nu} - Pg_{\mu\nu}.$$
 (4)

Здесь $u_{\mu} = ds/dx^{\mu}$ – четырёхскорость, ds – интервал, $u_{\mu}u^{\mu} = 1$.

Теория Иордана-Бранса-Дикке переходит в ОТО в предельном случае $\sigma \rightarrow \infty$, $\psi=1$. Радиоастрономические измерения устанавливают ограничение $\sigma>15$ [10].

В первом порядке разложения метрических коэффициентов по степеням *ω* квадрат интервала можно записать в виде [3, 9]:

$$ds^{2} = B(r)dt^{2} - A(r)dr^{2} - r^{2}[d\theta^{2} + \sin^{2}\theta(d\varphi - \Omega(r,\theta)dt)^{2}],$$
 (5)

где B(r), A(r) — метрические коэффициенты, θ долгота, φ — широта; функция Ω описывает «увлечение» инерциальной системы отсчета телом и возникает вследствие вращения конфигурации. В работе [9] показано, что в рассматриваемом приближении функция Ω не зависит от долготы θ . Уравнения (2-4) являются тогда уравнениями гидростатического равновесия [11], которые определяют в требуемом приближении функции A, B, ρ, P, ψ и другие четные по ω параметры системы. После нахождения этих параметров для определения линейной по ω функции Ω достаточно решить единственное неисчезающее недиагональное ($t\varphi$)-уравнение в системе (2), записанное в первом порядке по ω [9]:

$$\frac{d}{dr}\left(\frac{\psi r^4}{\sqrt{AB}} \cdot \frac{d\Omega}{dr}\right) = 16\pi (P+\rho)(\Omega-\omega)\sqrt{\frac{A}{B}}r^4.$$
 (6)

Это уравнение описывает медленное вращение системы в скалярно-тензорной теории гравитации. В пределе ОТО $\psi=1$, поэтому (6) переходит в известное уравнение теории Эйнштейна [3].

Граничными условиями для (6) являются $\Omega(0)$ =const, $\Omega(\infty) \sim r^{-3}$.

Воспользовавшись решением Гекмана [6] для функций A, B, ψ в пустоте, найдем внешнее решение уравнения (6):

$$\Omega = \frac{3J}{16h^2(KM)^3} \times \left[\tau^p \left(\frac{2}{p} - \frac{\tau^{-2h}}{p-2h} - \frac{\tau^{2h}}{p+2h}\right) + \frac{8h^2}{p(p^2 - 4h^2)}\right], \quad (7)$$
$$r = 4hKM(\tau^{1/2-h} - \tau^{1/2+h})^{-1}$$

$$h^2 = \frac{1}{4} - \frac{C(1 - \sigma C)}{2K^2}, \ K = 1 + 2C, \ p = 1 + 1/K.$$
 (8)

Здесь *С* – константа интегрирования, определяемая при решении уравнений гидростатического равновесия с учетом непрерывности внутреннего и внешнего решения на границе конфигурации P(R)=0, где R – радиус тела [9]; τ – параметр, причем $0 < \tau < 1$. Значение τ на поверхности тела определяется одновременно с константой *C* [10].

В формуле (7) *J* – момент импульса, который, как можно показать [9], в скалярно-тензорной теории приобретает следующий вид:

$$J = \left[-\frac{1}{6} \frac{\psi r^4}{\sqrt{AB}} \cdot \frac{d\Omega}{dr} \right]_{r=R} =$$

$$= \frac{8\pi}{3} \int_0^R r^4 (P + \rho)(\omega - \Omega) \frac{\sqrt{A}}{\psi \sqrt{B}} dr +$$

$$+ \frac{1}{6} \int_0^\infty \frac{r^4}{\psi \sqrt{AB}} \cdot \frac{d\psi}{dr} \cdot \frac{d\Omega}{dr} dr.$$
(9)

Последний член в (9) можно интерпретировать как вклад ψ -поля в момент импульса системы. Момент инерции конфигурации относительно оси вращения $I=J/\omega$ также можно выразить через сумму двух членов $I=I_{\rho}+I_{\psi}$, которая отражает вклады вещественной и полевой компоненты в момент инерции системы.

Приведем результаты численного интегрирования уравнений гидростатического равновесия и уравнения (6), описывающего вращение.

При расчетах в области подъядерных плотностей использовалось уравнение состояния из [13]. При плотностях выше ядерной применялись уравнения состояния, полученные в модели однобозонного обмена. Ядерная материя рассматривалась в приближении Хартри-Фока, и в модели учитывался обмен псевдоскалярными мезонами π , η , векторными мезонами ω , ρ , φ и гипотетическими скалярными мезонами σ (изоскаляр) и δ (изовектор) [14, 15]. На рис. 1 представлено уравнение состояния нейтронно-звездной материи. Сплошная кривая отвечает модели однобозонного обмена при массах гипотетических мезонов 540 МэВ, штрихпунктирная кривая приведена для сравнения и взята из работы [16].

Рис. 1. Зависимость давления ядерной материи от плотности массы: сплошная кривая – модель однобозонного обмена [14], штрихпунктирная – из работы [16]

На рис. 2 изображена зависимость относительных вкладов ψ -поля в нормированные момент инерции и массу от логарифма плотности ρ_0 в центре конфигурации. Сплошные кривые соответствуют распределению M_{ψ}/M , штрихпунктирные – I_{ψ}/I . Числа у кривых указывают значения параметра связи ψ -поля σ .

Рис. 2. Относительные вклады скалярного поля в нормированные момент инерции и массу, ρ,=1 кг/м³

Для пульсара PSR 0532 измерено гравитационное красное смещение линии аннигиляции e^+e^- у его поверхности; параметр смещения $Z=B^{-1/2}-1=\Delta\lambda/\lambda=0,28$ [17], где λ – длина волны излучения. Кроме того, анализ энергетического баланса в Крабовидной туманности позволяет установить ограничения на момент инерции пульсара PSR 0532. При различных предположениях получаются оценки [18]: a) $I > 1,0 \cdot 10^{36}$ кгм²; b) $I > 1,8 \cdot 10^{36}$ кгм².

Рис. 3. Зависимость момент инерции – параметр красного смещения на поверхности пульсара

На рис. 3 изображены кривые, представляющие зависимость параметра смещения Z от момента инерции для рассчитанных конфигураций. Сплошные кривые соответствуют расчетам по уравнению состояния в модели однобозонного обмена

СПИСОК ЛИТЕРАТУРЫ

- Kerr R.P. Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics // Phys. Rev. Lett. – 1963. – V. 11. – № 5. – P. 237–238.
- Дорошкевич А.Г., Зельдович Я.Б., Новиков И.Д. Гравитационный коллапс несимметричных и вращающихся масс // Журнал экспериментальной и теоретической физики. 1965. Т. 49. № 4. С. 170–181.
- Hartle J.B. Slowly Rotating Relativistic Stars. I // Astrophysical Journal. – 1967. – V. 150. – P. 1005–1029.
- Седракян Д.М., Чубарян Э.В. Стационарные аксиально-симметрические гравитационные поля // Астрофизика. – 1968. – № 4. – С. 239–255.
- Cohen J.M., Brill D.R. Slowly rotating neutron stars // Nuovo Cim. - 1968. - V. 56B. - P. 209-215.
- Jordan P. Schwerkraft und Weltall. Braunschweig: Verlagsgesellshaft, 1955. – 214 S.
- Brans C., Dicke R.H. Mach's Principle and a Relativistic Theory of Gravitation // Phys. Rev. – 1961. – V. 124. – № 3. – P. 925–935.
- Brans C. Mach's Principle and a Relativistic Theory of Gravitation. II // Phys. Rev. – 1962. – V. 125. – № 6. – P. 2194–2201.
- Рейзлин В.И. Медленно вращающиеся тела в скалярно-тензорной теории тяготения // Известия вузов. Физика. – 1981. – Т. 24. – № 5. – С. 22–26.

[14], штрихпунктирные линии получены из уравнения состояния [16]. Прямые а), b) отвечают оценкам а) и b) соответственно. Вертикальная линия отмечает значение Z=0,28.

Уравнение состояния в модели однобозонного обмена является более «жестким» по сравнению с [16] (рис. 1). Поэтому рассчитанные по [14] конфигурации удовлетворяют обеим оценкам а), b) при любых значениях σ (рис. 3).

Как видно из рис. 3, уравнения состояния из [16] приводят к конфигурациям, удовлетворяющим оценке а) при любых значениях σ . Оценке b) удается удовлетворить лишь при σ <16,2.

Поскольку экспериментально полученное значение Z фиксирует величину момента инерции, оказывается, что ни один из рассмотренных вариантов, соответствующих уравнению состояния [16], не удовлетворяет одновременно оценке b) момента инерции и оценке параметра красного смещения. В то же время модель однобозонного обмена по-прежнему удовлетворяет обеим оценкам Z=0,28 и b) при любых σ . Видимо, уравнение состояния [16] следует считать недостаточно жестким для объяснения астрофизических данных.

Знание параметра красного смещения и момента инерции пульсара позволяет наложить ограничения на допустимые уравнения состояния. С другой стороны, эти параметры при достаточно надежном уравнении состояния могут быть использованы для проверки теории тяготения.

- Рейзлин В.И. Модель медленного вращения в скалярно-тензорной теории тяготения // В сб.: Математическое и программное обеспечение САПР. – Вып. 1. – Томск: Изд-во Том. политехн. ун-та, 1997. – С. 178–186.
- Fomalont E.B., Sramek R.A. Measurements of the Solar Gravitational Deflection of Radio Waves in Agreement With General Relativity // Phys. Rev. Lett. – 1976. – V. 36. – P. 1475–1478.
- Саакян Г.С. Равновесные конфигурации вырожденных газовых масс. – М.: Наука, 1972. – 220 с.
- Ferrini F. The Equation of State for Neutron Stars // Astrophysical Space Sci. – 1975. – V. 32. – № 1. – P. 231–247.
- 14. Филимонов В.А. Ядерное и гиперядерное вещество в модели однобозонного обмена // Ядерная физика. – 1985. – Т. 22. – № 5. – С. 494–502.
- Рейзлин В.И., Филимонов В.А. Уравнение состояния нейтронной материи в модели однобозонного обмена // В сб.: Нейтронная физика. – Ч. 3. – М.: Наука, 1986. – С. 128–132.
- 16. Бете Г. Теория ядерной материи. М.: Мир, 1974. 184 с.
- Leventhal M., MacCallum C.J., Watts A.C. Possible γ-Ray Line from the Crab Nebula // Nature. – 1977. – V. 266. – P. 696–698.
- Bôrner G., Cohen J.M. Rotating Neutron Star Models and Pulsars // Astrophysical Journal. – 1973. – V. 185. – P. 959–974.