определение β-нафтола в воде методом апн

Т. В. ГОМЗА, В. Е. ГОРОДОВЫХ

(Представлена научным семинаром кафедры технологии неорганических веществ и электрохимических производств)

При изучении влияния адсорбции β-нафтола на электрохимические процессы с участием кадмия в условиях метода амальгамной полярогра-

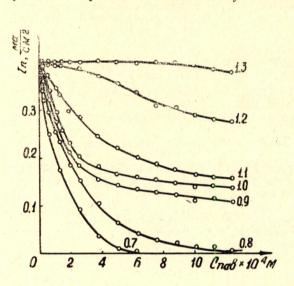


Рис. 1. Понижение плотности тока пика анодного растворения кадмия с ростом концентрации β-нафтола. У кривых указаны потенциалы электролиза

фии с накоплением было обнаружено, что введение в раствор β-нафтола вызывает подавление анодного пика кадмия, зависящее от потенциала электролиза (рис. 1). Этот эффект положен в основу методики косвенного определения β-нафтола в водах.

Необходимые реактивы и растворы

- 1. Вода, трижды перегнанная при добавлении перманганата калия.
- 2. Кадмий сернокислый, особочистый, прокаленный, 10^{-3} М раствор.
- 3. Серная кислота, особочистая, 0,25 н раствор.
 - 4. Исследуемая вода.

Применяемая аппаратура

1. Полярограф ОН-101.

2. Ячейка электрохимическая со вставными стаканчиками [1].

3. Электрод пленочный на серебряной подложке [2] или подложке из посеребренной платины [3].

Ход анализа

В полярографический стаканчик емкостью 12 мл наливается 5 мл анализируемой воды, 1 мл 10^{-3} М раствора сульфата кадмия, 4 мл 0,25 н раствора серной кислоты.

Снимается анодный пик кадмия при потенциале электролиза — 1,4 6 (нас.к.э.) без перемешивания раствора во время накопления; время

электролиза 1—5 минут. Затем снимается анодный пик кадмия при тех же условиях, но при потенциале электролиза— 0,7 в или— 0,8 в.

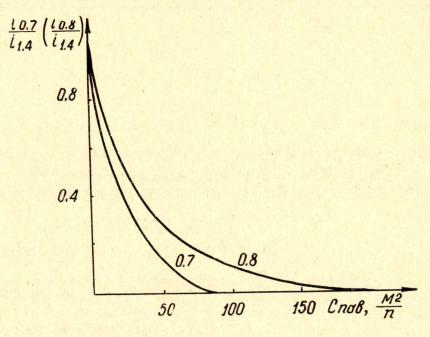


Рис. 2. Калибровочный график для определения содержания β-нафтола в воде

Рассчитывается величина отношения высот пиков

$$rac{i_{0,7}}{i_{1,4}}$$
 $\left($ или $rac{i_{0,8}}{i_{1,4}}
ight)$.

Концентрация β -нафтола в растворе определяется по калибровочному графику (рис. 2), где кривая 1 соответствует потенциалу электролиза —0,8 β , кривая 2 — потенциалу электролиза —0,7 β .

Экспериментальная проверка методики проведена на синтетических пробах. Результаты проверки представлены в таблице.

Таблица

1001114						
Введено, мг/л	φ ₉ , β	Число парал- лельн. измере- ний	Среднее арифмети- ческ., мг/л	Ошибка среднего арифметич., мг/л	Относи- тельн. погреш- ность, %	Результат, мг/л
8,	-0,7 -0,8	10 10	8,45 8,97	0,5 0,35	7,1 3,90	8,5±0,6 8,97±0,35
25,4	-0,7 -0,8	10 10	26,6 26,1	2,35 1,2	8,8 4,6	26,6±2,3 26,1±1,2
127	-0,8	10	119	11,7	9,9	119±11,7

ЛИТЕРАТУРА

1. В. И. Кулешов. Методы анализа химических реактивов и препаратов, ИРЕА, вып. 5—6, 1963, стр. 22.

2. В. А. Иголинский, А. Г. Стромберг. «Заводская лаборатория», 30, 656, 1964.

3. Л. В. Мищенко, В. А. Трухачева, Р. Ю. Бек. ЦНИИолово, 1967, № 1.