К ТЕХНИКО-ЭКОНОМИЧЕСКОМУ ОПРЕДЕЛЕНИЮ ОПТИМАЛЬНЫХ РАЗМЕРОВ ОДНОФАЗНЫХ ДВУХОБМОТОЧНЫХ ТРАНСФОРМАТОРОВ

Доктор техн. наук И. Д. КУТЯВИН, аспирант Г. В. ДЕЛЬ, аспирант В. П. КРАСНОВ.

Методика технико-экономического определения оптимальных размеров трехфазных двухобмоточных трансформаторов, указанная в [1 и 2], может быть применена и для однофазных трансформаторов.

В данной статье приводятся результаты расчетов, полученные при применении вышеуказанной методики для подстанционных однофазных двухобмоточных трансформаторов напряжением $110/10~\kappa e$, мощностью 10.5; 20; 30; 40 и 50 mea, без устройства для регулирования напряжения.

На рис. 1 показано расположение обмоток, размеры и изоляционные расстояния для трансформатора с сердечником броневого типа (обозначения в скобках относятся к трансформатору с сердечником стержневого типа) [3].

Обмотка высшего напряжения может быть выполнена непрерывной катушечной, а обмотка низшего напряжения — винтовой [3].

Основные соотношения, связывающие размеры трансформатора, представлены в следующем виде (все размеры в см).

Высота окна сердечника

$$H = h + 2l_{11} \tag{1}$$

где h — высота обмотки;

 l_{u} — изоляционное расстояние от обмотки до ярма.

Шиоина окна сердечника для трансформатора с броневым сердечником

$$a = x_1 + x_2 + \delta_{02} + \delta_{12} + \delta_{10}, \tag{2}$$

для трансформатора со стержневым сердечником

$$a = 2(x_1 + x_2 + \delta_{02} + \delta_{12} + 0.5\delta_{11}), \tag{2a}$$

где x_1 и x_2 — ширина катушек обмотки фазы;

∂ ₀₂ — изоляционное расстояние от стержня до вторичной обмотки;

 δ_{12} — изоляционное расстояние между первичной и вторичной обмоткой;

δ₁₀ — изоляционное расстояние от первичной обмотки до стержня;

∂₁₁ — изоляционное расстояние межу первичными обмотками. Средняя длина витка первичной обмотки $l_{\text{M1}} = \pi(d + x_1 + 2x_2 + 2\delta_{02} + 2\delta_{12}) \ . \tag{3}$ Средняя длина витка вторичной обмотки $l_{\text{M2}} = \pi(d + x_2 + 2\delta_{02}) \ , \tag{4}$ где d— диаметр стержня.

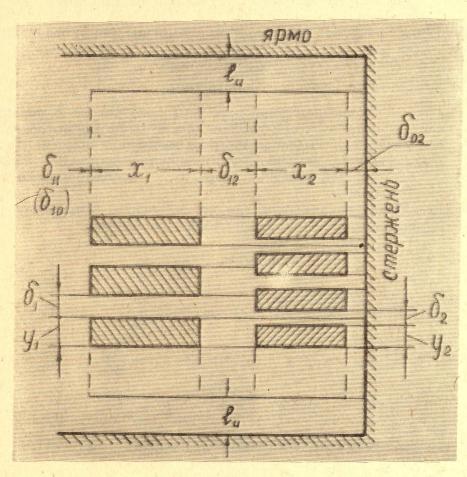


Рис. 1.

Длина стали сердечника, приведенная к площади сечения стерж-

для трансформаторов с броневым сердечником

$$l_{c} = (h+2l_{u})(1+k_{\pi})+k_{\pi}[2(x_{1}+x_{2}+\delta_{02}+\delta_{12}+\delta_{10})+1,8d]$$
 (5)

и для трансформаторов со стержневым сердечником

$$l_{c} = 2h + 4l_{u} + k_{\pi} \left[4(x_{1} + x_{2} + \delta_{02} + \delta_{12} + 0.5\delta_{11}) + 3.6d \right], \tag{5a}$$

где κ_{π} — коэффициент увеличения площади сечения ярем. Площадь сечения материала обмоток фазы

$$q_{M1} = k_1 x_1 y_1 \frac{h}{y_1 + \delta_1}; \ q_{M2} = k_2 x_2 y_2 \frac{d}{y_2 + \delta_2} \ , \tag{6}$$

где κ_1 и κ_2 — коэффициенты заполнения проводниковым материалом площадей сечений катушек первичной и вторичной обмоток;

 y_1 и y_2 — высота катушек обмоток;

 δ_1 и δ_2 — высота радиальных охлаждающих каналов между катушками первичной и вторичной обмоток.

Пломадь сечения стали стержня

$$q_{\rm c} = k_{\rm c} \frac{\pi d^2}{4} , \qquad (7)$$

где $\kappa_{\rm c}$ — коэффициент заполнения сталью площади круга с диаметром d

Уравнение теплового баланса катушки обмотки (на погонный *см* среднего витка)

 $2\sigma_{1}(\kappa_{x1}x_{1} + \kappa_{y1}y_{1}) = \rho \Delta^{2}_{1}\kappa_{1}x_{1}y_{1}$ $2\sigma_{2}(\kappa_{x2}x_{2} + \kappa_{y2}y_{2}) = \rho \Delta^{2}_{2}\kappa_{2}x_{2}y_{2}$ (8)

где σ_1 и σ_2 — расчетная плотность теплового потока с поверхности катушки первичной и вторичной обмоток, $\frac{\partial T}{\partial x}$; ρ — удельное сопротивление материала обмоток $\frac{\partial T}{\partial x}$; $k_{x\,1}$, $k_{x\,2}$, $k_{y\,1}$, $k_{y\,2}$ — коэффициенты. учитывающие закрытие поверхностей катушек x_1 , y_1 , x_2 , y_2 изоляционными деталями.

На основании уравнений (8) можно написать выражение для плотности тока первичной Δ_1 и вторичной Δ_2 обмоток

$$\Delta_{1} = \sqrt{\frac{2\sigma_{1}(k_{x1}x_{1} + k_{y1}y_{1})}{\rho k_{1}x_{1}y_{1}}} = \alpha_{1} \sqrt{\frac{z_{1}}{x_{1}y_{1}}}$$

$$\Delta_{2} = \sqrt{\frac{2\sigma_{2}(k_{x2}x_{2} + k_{y2}y_{2})}{\rho k_{2}x_{2}y_{2}}} = \alpha_{2} \sqrt{\frac{z_{2}}{x_{2}y_{2}}}$$
(9)

де
$$z_1 = k_{\pi 1} x_1 + y_1; \quad z_2 = k_{\pi 2} x_2 + y_2; \quad k_{\pi 1} = \frac{k_{x 1}}{k_{y 1}}$$
 $\alpha_1 = \sqrt{\frac{2\sigma_1 k_{y 1}}{\rho k_1}}; \quad \alpha_2 = \sqrt{\frac{2\sigma_2 k_{y 2}}{\rho k_2}}; \quad k_{\pi 2} = \frac{k_{x 2}}{k_{y 2}}$ (10)

Выражение для мощности трансформатора в ква

$$S = K \Delta_1 q_{M1} q_c \ n_c = K \Delta_2 q_{M2} q_c \ n_c \quad . \tag{11}$$

Подставив в (11) значения $\Delta_1, q_{\text{м1}}$ и $q_{\text{с}}$ из (9), (6) и (7), найдем выражение для высоты обмотки

$$h = \frac{N_2(y_2 + \delta_2)}{d^2 \sqrt{z_2 x_2 y_2}} = \frac{N_1(y_1 + \delta_1)}{d^2 \sqrt{z_1 x_1 y_1}}.$$
 (12)

Для трансформаторов с броневым сердечником

$$N_2 = \frac{4S}{Kk_c \ k_2\pi\alpha_2} \ ; \quad N_1 = \frac{4S}{Kk_c \ k_1\pi\alpha_1}$$
 (129)

и для трансформаторов со стержневым сердечником

$$N_2 = \frac{2S}{Kk_c \ k_2\pi\alpha_2} \ ; \quad N_1 = \frac{2S}{Kk_c \ k_1\pi\alpha_1} \ , \tag{13a}$$

здесь $K = 4,44fB \cdot 10^{-11}$

где / — частота ги;

В — индукция в стержне гс;

 $n_{\rm c}$ — число стержней трансформатора, имеющих обмотку.

Реактивная составляющая напряжения короткого замыкания [3] (в относительных единицах) приводится к следующему виду.

$$u_{\rm p} = \frac{7.92k_{\rm r} \ \Delta_2 q_{\rm M} 2\pi (d + 2x_2 + 2\delta_{\rm e2} + \delta_{\rm 12}) (x_1 + x_2 + 3\delta_{\rm 12})}{13.32Bq_{\rm c} \ h} , \tag{15}$$

где к - коэффициент Роговского.

После подставки в (15) переменных, найдем выражение для диаметра стержня

$$d = \frac{U\sqrt{U^2 + 4 PUV(y_2 + \delta_2)}}{2 P(y_2 + \delta_2)} , \qquad (16)$$

где

$$U = (x_1 + x_2 + 3\delta_{12}) \sqrt{z_2 y_2 x_2}$$

$$V = 2x_2 + 2\delta_{02} + \delta_{12}$$

$$P = \frac{13,32Bk_c}{7,92k_r} \frac{u_2}{k_2 a_2} .$$
(17)

Вес стали сердечника кг

$$Q_{\rm c} = \gamma_{\rm c} \ q_{\rm c} \ l_{\rm c} \ 10^{-3} \tag{18}$$

для трансформаторов с броневым сердечником

$$Q_{c} = \frac{k_{c} \pi \gamma_{c} 10^{-3}}{4} \left\{ \frac{N_{2}(y_{2} + \delta_{2}) (1 + k_{\pi})}{\sqrt{z_{2} x_{2} y_{2}}} + 2l_{u} (1 + k_{\pi}) d^{2} + k_{\pi} d^{2} [2(x_{1} + x_{2} + \delta_{02} + \delta_{12} + \delta_{10}) + 1,8d] \right\}$$

$$(19)$$

для трансформаторов со стержневым сердечником

$$Q_{c} = \frac{K_{c} \pi \gamma_{c} 10^{-3}}{4} \left\{ \frac{2N_{2}(y_{2} + \delta_{2})}{\sqrt{z_{2}x_{2}y_{2}}} + d^{2}[4k_{\pi} (x_{1} + x_{2} + \delta_{02} + \delta_{12} + 0.5\delta_{11}) + 3.6k_{\pi} d + 4l_{u}] \right\}$$

$$(20)$$

Вес проводикового материала обмоток трансформатора кг

$$Q_{\rm M} = \gamma_{\rm M} \, 10^{-3} \, (q_{\rm M} \, l_{\rm M} + q_{\rm M} \, 2l_{\rm M} \, 2) \, . \tag{21}$$

Подставив в (21) значение переменных, найдем:

$$Q_{\rm M} = \frac{3{,}33\gamma_{\rm M} u_{\rm p} Bk_{\rm c} \pi 10^{-3}}{7{,}92k_{\rm f} (d+2x_{2}+\delta_{02}+\delta_{12})(x_{1}+x_{2}+3\delta_{12})} \cdot \left[\frac{N_{1}(y_{1}+\delta_{1})(d+x_{1}+2x_{2}+2\delta_{02}+2_{12})}{\alpha_{1}z_{1}} + \frac{N_{2}(y_{2}+\delta_{2})(d+x_{2}-2\delta_{02})}{\alpha_{2}z_{2}} \right]$$
(22)

Выражения (21) и (22) содержат четыре переменных (x_1, y_1, x_2, y_2) . Одну из переменных можно исключить, воспользовавшись равенством намагничивающих сил обмоток, имеющих следующий вид:

$$\frac{k_1 x_1 y_1 \Delta_1}{y_1 + \delta_1} = \frac{k_2 x_2 y_2 \Delta_2}{y_2 + \delta_2} . \tag{23}$$

В результате остается три переменных.

Выражение для расчетных затрат, представленное в виде [1]

$$3 = (A_1 + DB^2)Q_c + (\beta A_2 + E\Delta^2_1)Q_{M1} + (\beta A_2 + E\Delta^2_2)Q_{M2}$$
, (24)

где A_1 , A_2 , D, E, β — постоянные [1], является функцией трех независимых переменных.

Исследование уравнения (24) на минимум расчетных затрат довольно сложно. В данной статье рассматривается частный случай, когда $\Delta_1 = \Delta_2 = \Delta$.

Имея в виду, что коэффициент заполнения проводниковым материалом сечения катушки вторичной обмотки κ_2 практически не зависит от мощности трансформатора, в качестве независимых переменных удобно взять x_2 и y_2 . Из (23) имеем

$$x_1 = \frac{k_2 x_2 y_2 (y_1 + \delta_1)}{(y_2 + \delta_2) k_1 y_1}. \tag{25}$$

Решив совместно (8) и (25), найдем выражение для y_1 :

$$\mathbf{y}_{1} = \frac{(kx_{2}y_{2} - \sigma z_{2}\delta_{1}) + \sqrt{(kx_{2}y_{2} + \sigma z_{2}\delta_{1})^{2} - 4kk_{y} \delta_{1}x_{2}y_{2}(y_{2} + \delta_{2})}}{2\left[\sigma z_{2} - k_{y} \cdot (y_{2} + \delta_{2})\right]}, \quad (26)$$

$$\mathbf{r}_{A}e \qquad k = k_{x1} - \frac{k_{2}}{k_{1}}; \qquad \sigma = \frac{\sigma_{2}}{\sigma_{1}}.$$

Выражение расчетных затрат (24) при принятых условиях имеет вид:

$$3 = (A_1 + DB^2)Q_c + (\beta A_2 + E\Delta^2)Q_M = \frac{k_c \pi \gamma_c \cdot 10^{-3}}{4} (A_1 + DB^2)\varphi_1(x_2 y_2)$$
 (28)

Для трансформаторов с броневым сердечником

$$\varphi_{1}(x_{2}y_{2}) = N_{2}(y_{2} + \delta_{2}) \left[\frac{2}{\sqrt{z_{2}x_{2}y_{2}}} + \frac{M(2d + x_{1} + 3x_{2} + 4\delta_{02} + 2\delta_{12})(n + m \frac{z_{2}}{x_{2}y_{2}})}{z_{2}(d + 2x_{2} + 2\delta_{02} + \delta_{12})(x_{1} + x_{2} + 3\delta_{12})} \right] + d^{2} \left\{ k_{s} \left[2(x_{1} + x_{2} + \delta_{02} + \delta_{12} + \delta_{12} + \delta_{12}) + 1, 8d \right] + 2l_{11} (1 + k_{s}) \right\}$$

$$(29)$$

и для трансформаторов со стержневым сердечником

где

$$\varphi_{1}(x_{2}y_{2}) = N_{2}(y_{2} + \delta_{2}) \left[\frac{1 + k_{g}}{\sqrt{z_{2}x_{2}y_{2}}} + \frac{M(2d + x_{1} + 3x_{2} + 4\delta_{02} + 2\delta_{12}) \left(n + m \frac{z_{2}}{x_{2}y_{2}} \right)}{z_{2}(d + 2x_{2} + 2\delta_{02} + \delta_{12}) (x_{1} + x_{2} + 3\delta_{12})} \right] + d^{2} \left[4k_{g} (x_{1} + x_{2} + \delta_{02} + \delta_{12} + 0.5\delta_{11}) + 3.6k_{g} d + 4l_{u} \right], \quad (29a)$$

$$M = \frac{P\gamma_{M} k_{2}}{k_{c} j_{c}}; \quad n = \frac{\beta A_{2}}{A_{1} + DB^{2}}; \quad m = \frac{E\alpha^{2}_{2}}{A_{1} + DB^{2}}. \quad (30)$$

Поскольку общее аналитическое исследование на минимум функций (29) и (29а) сложно, приводится численное определение оп-

тимальных значений x_2 и y_2 для трансформаторов с сердечником из холоднокатанной стали.

В расчете приняты следующие исходные данные:

 $k_{\rm c}=0.82;\;\kappa_{\rm x1}=\kappa_{\rm x2}=0.7;\;\kappa_{\rm y1}=\kappa_{\rm y2}=0.9;\;\kappa_{\rm g}=1.05;\;\kappa_{\rm g}=0.82;k_{\rm m}=0.7;\;\kappa_{\rm H}=0.8;\;\kappa_{\rm f}=0.95;\;\kappa_{\rm T}=0.7\;py6/\kappa z;\;\delta_{\rm 1}=0.75\;{\rm cm};\;\delta_{\rm 2}=0.6\;cm;\;\delta_{\rm 02}=1.5\;cm;\;\delta_{\rm 12}=5\;cm;\;\delta_{\rm 11}=6\;cm;\;\delta_{\rm 10}=9\;cm;\;l_{\rm H}=9\;cm;\;u_{\rm p}=0.105;\;B=16500\;zc;\;\alpha_{\rm c}=0.8\cdot10^{-11};\;\gamma_{\rm c}=7.65\;\kappa z/cm^3;\;P_{\rm H}=0.125;\;P_{\rm a}=0.06;\;C_{\rm 1}=124\;py6/\kappa g t;\;C_{\rm 2}=0.007\;py6/\kappa g t-u;\;C_{\rm 2}=0.009\;py6/\kappa g t-u;\;$ $t=8700\;uac.\;\left(\frac{k_{\rm H}\;S_{\rm m}}{S}\right)^2=0.4;\;S_{\rm p}=1.5\;py6/\kappa g a p t-u;\;$ $\alpha_{\rm 1}=0.046\;\kappa g a/\kappa z;\;\rho_{\rm m}=2.14\cdot10^{-6}\;cm.\;cm;\;\alpha_{\rm m}=2.4\cdot10^{17}\;,\;\gamma_{\rm m}=8.9\;\kappa z/cm^3;\;$ $\beta=3.2;\;\sigma_{\rm 1}=\sigma_{\rm 2}=0.15\;g t/cm;\;\kappa_{\rm 1}=0.64\;{\rm для}\;{\rm трансформаторов}\;{\rm мощностью}\;10.5\;u\;20\;mg a\;u\;\kappa_{\rm 1}=0.52\;\;{\rm для}\;{\rm трансформаторов}\;{\rm мощностью}\;30,\;40\;u\;50\;mg a.$

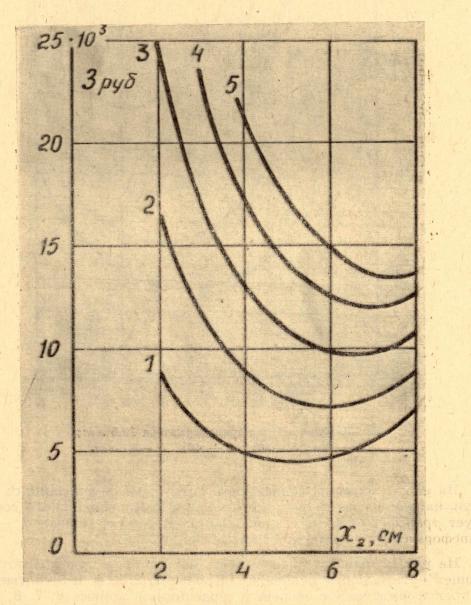


Рис. 2. Кривая 1 для трансформатора 10,5 мва; 2-20; 3-30; 4-40; 5-50 мва.

Исследование уравнения (28) проводилось при $x_2 = 2 + 8$ с шагом. 1 и при $y_2 = 0.5 + 6$ с шагом 0.5.

На рис. 2 показана зависимость $3=f_2(x_2y_2)$ при $y_2=1,5$ см для трансформаторов с броневым сердечником, а на рис. 3—для трансформаторов со стержневым сердечником.

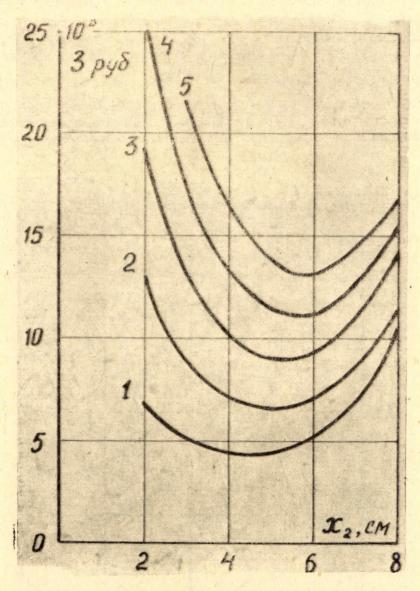


Рис. 3. Кривая 1 для трансформатора 10,5 мва; 2 — 20; 3 —30; 4 — 40; 5 —50 мва.

На рис. 4 показана зависимость оптимального значения от мощности, найденная по кривым рисунков 2 и 3. Кривая 1 рис. 4 соответствует трансформаторам с броневым сердечником, кривая 2 — для трансформаторов со стержневым сердечником.

На рис. 5 приведена зависимость затрат от y_2 при x_2 , соответствующем оптимальным значениям. Кривые 1, 2, 3, 4 и 5 соответствуют трансформаторам с броневым сердечником, кривые 6, 7, 8, 9 и 10 — трансформаторам со стержневым сердечником, соответственно для мощностей 10.5; 20; 30; 40 и 50 мва.

Из кривых рис. 2, 3 и 5 видно, что расчетные значения x_2 и y_2 можно принимать значительно отличающимися от оптимальных значений, что не приведет к существенному увеличению затрат.

В таблице 1 приведены основные размеры трансформаторов с броневым сердечником, подсчитанные для различных значений переменных x_2 и y_2 , в таблице 2 — для трансформаторов со стержневым сердечником.

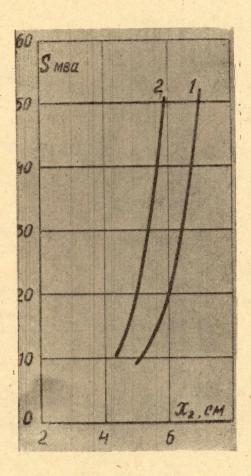


Рис. 4. Кривая 1 для трансформатора с броневым сердечником; 2 — со стержневым.

В пункте 8 таблиц 1 и 2 приведена высота h'=1,05 h. Увеличение высоты обмотки сделано для размещения транспозиции обмотки низшего напряжения и для усиления изоляции и снижения плотности тока в крайних катушках обмотки высшего напряжения.

В пункте 17 указано механическое напряжение в материале обмотки, обусловленное радиальными усилиями, возникающими при коротком замыкании за трансформатором.

Выражение для определения механических усилий [3] может быть приведено к следующему виду

$$\sigma_{\rm p} = C \frac{\Delta_1^2 q_{\rm M1} \pi (d + 2x_2 + 2\delta_{0.2} = \delta_{1.2})}{h} , \qquad (31)$$

где $C \cong 5,7 \cdot 10^{-6}$ — постоянная.

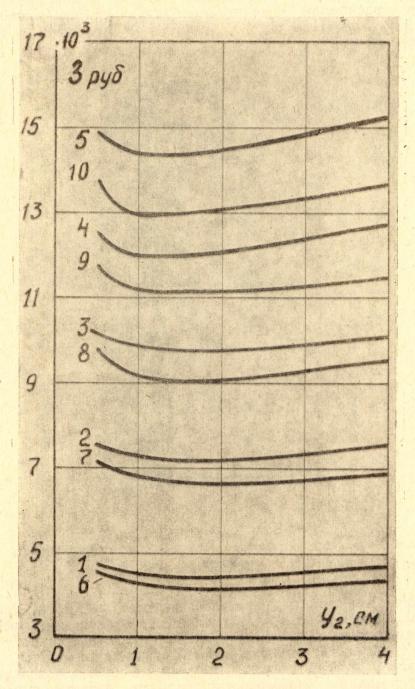


Рис. 5. Кривые 1, 2, 3, 4 и 5 для трансформаторов с броневым сердечником; 6, 7, 8, 9 и 10 — со стержневым

Таблица 1

	Мощность	10,5	1	20		30	50	
п. п.	трансформатора мва	1	1	II	III	1_		1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	y_2 принято, c_M x_2 принято, c_M x_1 из (25), c_M y_1 из (26), c_M $\Delta_1 = \Delta_2$ из (9), a/c_M^2 d из (16), c_M h из (12), c_M $h' = 1,05 h$, c_M H из (1), c_M a из (2), c_M l_M из (3), c_M l_{M2} из (4), c_M l_c из (5), c_M $q_{M1} = q_{M2}$ из (6), c_M^2 q_c из (7), c_M^2 Q_M из (21), m Q_c из (18), m c_p из (31), $\kappa e/c_M^2$ p_c (потери в стали), $\kappa e \tau$ p_M (потери в меди), $\kappa e \tau$ g из (28), руб. 10^3	1,5 5,2 6,61 1,93 330 56,7 138,5 145,5 163,5 27,3 272 204 485 842 2070 1,78 7,69 445 16,7 46,5 4,45	29,1 313 239 565 1162 2910 2,85 12,5 579 27,3 72,2	1,4 5,8 7,37 1,8 335 63,6 189,5 199 217 28,7 308 232 588 1196 2730 2,87 12,5 568 27,2 77,5 7,26	1,9 6,1 7,76 2,44 296 67,1 167,5 176 194 29,4 315 240 569 1274 2910 3,14 12,6 523 27,4 66,1 7,2	1,5 6,4 9,37 2,42 322 75,3 187 196 214 30,4 347 266 628 1400 3660 3,84 17,55 668 38,1 95,0 9,84	21,6 705 47,0 118,0	1,5 7,0 10,3 2,42 318 84,7 227 238 258 32,8 383 298 731 1862 4620 5,64 25,8 792 56,1 137,0 14,44

Таблица 2

No	Мощность	10,5	20		30	40	50	
п. п.	трансформатора мва	1	1	II	ш	1	1	1
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	y_2 принято, c_M x_2 принято, c_M x_1 из (25), c_M y_1 из (26), c_M $\Delta_1 = \Delta_2$ из (9), d из (16), c_M h из (12), c_M $h^1 = 1,05 h$, c_M H из (1), c_M a из (2a), c_M l_{M1} из (3), c_M l_{M2} из (4), c_M l_{C} из (5a), c_M $q_{M1} = q_{M2}$ из (6), c_M^2 q_{C} из (7), c_M^2 q_{C} из (7), c_M^2 q_{C} из (18), m q_{D} из (30), $\kappa z/c_M$ q_{D} из (30), $\kappa z/c_M$	1,5 4,4 5,6 1,93 338 47 116 122 140 39 234 171 527 598 1425 2,15 5,75 336 12,5	331 55,4 140,5 147,5 .165 42,2 265 196 615 838 1980 3,44	- 17 - 1 A 1 A 1 A 1 B	2,45 304 56,9 131,5 138 156 43 274 204 604 868 2080 3,68	1,5 5,3 7,81 2,43 329 59,9 174 183 201 45,5 287 214 705 1080 2310 4,81 12,45 472 27,2	326 65,2 184 193 211 47,2 308 232 749 1230 2440 5,91	1,5 6,1 9,0 2,43 324 71 183 192 210 49,2 325 246 772 1302 3250 6,62 19,15 612 41,7
20 21	р _м (потери в меди), кет З из (28), руб. 10 ³	59 4,15	90,5	95,5 6,58	81,7 6,64	125 8,99		167 13,0
						1	1-103-	134216

одечника 1	11	I	II	I.	II	I	II	I	II
					1	The state of the s		1	
100	121	100	121.	100	125	100	121	100	118
100	75	100	74,5	100	71	100	72,8		74,2
100	94	100	93,7	100	93,3	100	93	100	92
100	93,3	100	92	100	91,3	100	90,6	100	90
	100	100 75 100 94	100 75 100 100 94 100	100 75 100 74,5 100 94 100 93,7	100 75 100 74,5 100 100 94 100 93,7 100	100 75 100 74,5 100 71 100 94 100 93,7 100 93,3	100 75 100 74,5 100 71 100 100 94 100 93,7 100 93,3 100	100	100 75 100 74,5 100 71 100 72,8 100 100 94 100 93,7 100 93,3 100 93 100

В таблице 3 приводятся данные для сравнивания трансформаторов с броневым (графа I) и стержневым (графа II) сердечниками.

В заключение можно отметить, что несмотря на сложность, методика [1, 2] может быть применена для технико-экономических исследований однофазных силовых трансформаторов при применении цифровых вычислительных машин.

ЛИТЕРАТУРА

- 4. Кутявин И. Д., К определению оптимальных размеров трехфазных двухобмоточных трансформаторов (см. выше).
- 2. Кутявин И. Д., Дель Г. В., Краснов В. П., К технико-экономическому определению оптимальных размеров подстанционных двухобмоточных трехфазных трансформаторов большой мощности (см. выше).
- 3. Тихомиров П. М., Расчет трансформаторов. Госэнергоиздат, 1963.