#### ИЗВЕСТИЯ ТОМСКОГО ОРДЕНА ТРУДОВОГО КРАСНОГО ЗНАМЕНИ ПОЛИТЕХНИЧЕСКОГО ИНСТИТУТА имени С. М. КИРОВА

Том 131

1965

# ОБЩИЕ СПОСОБЫ РЕШЕНИЯ ОСНОВНЫХ РАСЧЕТНЫХ ЗАДАЧ НА ЗЕМНОМ СФЕРОИДЕ

#### Б. Ф. КРУТОЙ

## (Представлена маркшейдерско-геодезической секцией Юбилейной конференции ТПИ в феврале 1961 г.)

Главной целью настоящей статьи является изложение общих, преимущественно новых способов решения в геодезических координатах основных расчетных задач на земном сфероиде: вычисление положений точек, кратчайших расстояний, направлений по кратчайшему пути, прямых лучевых засечек, площадей координатных трапеций и некоторых других задач.

#### Дел. 1. Постановка вопроса

1. Введем прежде всего новые, уточненные наименования для некоторых понятий, возникающих при изучении поверхностей.

Назовем поверхностной нитью непрерывное одномерное множество точек поверхности.

Среди поверхностных нитей выделим в силу их особых качеств те нити  $\Gamma$ , в каждой точке которых главная нормаль совпадает с нормалью к поверхности. Такие нити  $\Gamma$  принято называть геодезическими, так как они широко применяются при решении различных задач геодезии. Однако подобное наименование этих нитей является чисто случайным, ибо оно не отражает ряда их замечательных внутренних свойств:

а) Если дуга  $\Delta \Gamma_{ij}$  геодезической нити  $\Gamma_{ij}$  на поверхности S, проведенная между некоторыми двумя точками i, j этой поверхности, не содержит вершин нити  $O_{ij}$ , то эта дуга  $\Delta \Gamma_{ij}$  является кратчайшей на поверхности S между указанными точками i, j;

б) Если на гладкой поверхности S один конец i гибкой вещественной нити закрепить, а другой конец пропустить через малое колечко во второй точке j поверхности S, то под действием натяжения, приложенного к ее свободному концу, гибкая вещественная нить между указанными точками i, j поверхности S расположится по геодезической.
кривой и в то же время будет наиболее вы равненной нитью между этими точками;

в) Если в каждой точке геодезической нити  $\Gamma_{ij}$  на поверхности S провести касательную плоскость к поверхности S и затем построить огибающую поверхность  $\mathcal{A}$  для этих плоскостей, то геодезическая нить  $\Gamma_{ii}$  поверхности S будет геодезической и для поверхности  $\mathcal{A}$ . Поэтому при развертывании поверхности  $\mathcal{A}$  на плоскость геодезическая нить поверхности  $S(\mathcal{A})$  перейдет в геодезическую нить плоскости, т. е. превратится в прямую.

Приведенные соображения говорят достаточно убедительно о том, что поверхностные нити с совпадающими главной и поверхностной нормалями более обосновано будет называть не геодезическими, а вы равненными нитями поверхности. Такого наименования для поверхностных нитей подобного рода мы и будем придерживаться в дальнейшем.

2. Заметим также, что геодезические координаты В, L поверхностных точек земного сфероида являются частным случаем поверхностных координат и, v, в качестве которых здесь взяты две угловые величины: широта В и долгота L. В указанной отсчетной опоре положения поверхностных точек і земного сфероида определяются пересечением двух семейств координатных нитей: меридианов L=L<sub>i</sub> и параллелей B=B<sub>i</sub>. Легко установить, что нити первого семейства L=L<sub>i</sub> являются выравненными на сфероиде, а нити второго семейства  $B = B_i$ не будут выравненными, причем всякие две нити  $L = L_i$  и  $B = B_j$  этих семейств пересекаются под прямым углом. Поэтому геодезическая отсчетная опора В, L на сфероиде может быть отнесена к разряду прямоугольных полувыравненных отсчетных опор.

Отметим еще, что две пары координатных нитей  $L = L_i$ ,  $L = L_h$  и *B*=*B*<sub>*i*</sub>, *B*=*B*<sub>*k*</sub> сфероида, взятых парами из каждого семейства, образуют при своем пересечении сфероидическую координатную трапецию *ihkj* с четырьмя прямыми углами. Определение площади S<sub>i</sub> такой координатной трапеции входит в число основных расчетных задач на сфероиде.

3. Введем теперь для поверхности земного сфероида ряд обозначений:

*B<sub>i</sub>*, *L<sub>i</sub>* — геодезическая широта и долгота точки *i* земного сфероида:  $A_{ij}$  — геодезический азимут в точке i выравненной нити  $\Gamma_{ij}$ , проведенной на сфероиде через точку i и соседнюю точку j;  $s_{ij}$  — длина дуги  $\Delta \Gamma_{ij}$  выравненной нити  $\Gamma_{ij}$  между точками i, j

сфероида;

 $\Delta L_{ij}$  — разность долгот  $L_i$ ,  $L_j$  точек *i*, *j* сфероида;  $x_{ij}$  — длина дуги  $\Delta X_{ij}$  меридиана  $X_{ij}$  между точками *i*, *j* сфероида с широтами  $B_i, B_j;$ 

 $\Pi_{ij}$  — длина дуги  $\Delta \Pi_{ij}$  параллели  $\Pi_{ij}$  между точками i, j сфероида с широтами  $B_i$ ,  $B_j$  и разностью долгот  $\Delta L_{ij}$ ;

Sii — площадь сфероидической трапеции, ограниченной двумя меридианами  $X_{ih}$ ,  $X_{i\kappa}$  с разностью долгот  $\Delta L_{ij} = \Delta L_{h\kappa}$  и двумя параллелями  $\Pi_{ij}$ ,  $\Pi_{h\kappa}$  с широтами  $B_i = B_j$ ,  $B_h = B_{\kappa}$ .

Приведенные здесь обозначения и связанные с ними понятия требуют некоторых уточнений и дополнений, которые вызваны в основном тем, что выравненные кривые Гіј сфероида не являются вообще замкнутыми и касаются своими последовательными вершинами двух граничных параллелей: северной  $\Pi^{(ij)}$  и южной  $\overline{\Pi}^{(ij)}$ , равноудаленных от плоскости экватора. На этих уточнениях и дополнениях мы сейчас и остановимся.

а) Так как между двумя точками *i*, *j* сфероида можно провести две выравненные дуги: кратчайшую  $\Delta\Gamma_{ij}$  и более длинную  $\Delta\Gamma_{ij}$ , то расстояние по дуге  $\Delta \Gamma_{ij}$  обозначим через  $s_{ij}$ , а по дуге  $\Delta \Gamma_{ij}$  — через  $s_{ij}$ , причем s<sub>ij</sub> и s<sub>ij</sub> будем считать положительными. В соответствии с этим геодезические азимуты в точке *i* дуг  $\Delta \Gamma_{ij}$ ,  $\Delta \Gamma_{ij}$  обозначим через  $A_i$ и  $A_{ij}$ ; как правило,  $A_{ij} \neq A_{ij} \pm 180^\circ$ , что будет установлено ниже [Дел. 7]. 32

б) Геодезические широты точек *i* сфероида отсчитываем в обе стороны от плоскости экватора, от 0 до  $\pm \frac{\pi}{2}$ . Для северной половины сфероида широты точек *i* обозначим через  $B_i$  и примем положительными; для южной половины широты точек *i* обозначим через  $\overline{B_i}$  и примем отрицательными. Таким образом, широты  $B_i$ ,  $\overline{B_i}$  изменяются в следующих пределах:

1) 
$$0 \leqslant B_i \leqslant +\frac{\pi}{2}$$
; 2)  $0 \gg \overline{B}_i \gg -\frac{\pi}{2}$ .

в) Геодезические долготы точек *i* сфероида отсчитываем двояко: к востоку и к западу от Гринича, от 0 до $\pm 2\pi$ , и обозначим соответственно через  $L_i$  и  $\mathring{L}_i$ , полагая при этом, что  $L_i > 0$ , а  $\mathring{L}_i < 0$ . Отсюда будем иметь для точки *i* две разности долгот:

1) 
$$\Delta L_{ij} = L_j - L_i$$
, 2)  $\Delta \mathring{L}_{ij} = \mathring{L}_j - \mathring{L}_i = \mathring{L}_{ij}$ .

Такой двойной способ счета долгот и их разностей удобен при решении прямых засечек на сфероиде, а также в некоторых других случаях.

г) Северные и южные вершины выравненной кривой  $\Gamma_{ij}$ , т. е. точки на этой кривой с наименьшим абсолютным значением широты, обозначим: к востоку от начала *i*—через  $O_{ij}^{(s)}$ ,  $\overline{O}_{ij}^{(s)}$ , к западу от начала *i*—через  $O_{ij}^{(s)}$ ,  $\overline{O}_{ij}^{(s)}$ , к западу от начала ла—через  $O_{ij}^{(s)}$ ,  $\overline{O}_{ij}^{(s)}$ , где s=1,2,... есть порядок удаленности вершины данного вида относительно начальной точки *i*. Соответственно этому широту северных вершин  $O_{ij}^{(s)}$ ,  $\overline{O}_{ij}^{(s)}$  обозначим через  $B_0^{(lj)}$ , а широту южных вершин  $\overline{O}_{ij}^{(s)}$ ,  $\overline{O}_{ij}^{(s)}$ —через  $\overline{B}_{0}^{(lj)}$ , причем очевидно  $B_0^{(ij)} = -\overline{B}_{0}^{(lj)}$ . Долготы L точек  $O_{ij}^{(s)}$  и  $\overline{O}_{ij}^{(s)}$  будем обозначать  $L_0^{(lj.s)}$  и  $\overline{L}_{0}^{(lj.s)}$ , долготы  $\hat{L}$  точек  $\overline{O}_{ij}^{(s)}$ ,  $\overline{O}_{ij}^{(s)}$  обозначим через  $\hat{L}_0^{(lj.s)}$ .

д) Точки пересечения выравненной кривой  $\Gamma_{ij}$  с экватором обозначим: к востоку от начала i — через  $\hat{\mathcal{I}}_{ij}^{(s)}$ , а к западу от i — через  $\hat{\mathcal{I}}_{ij}^{(s)}$ , где s = 1, 2, ... есть порядок удаленности точки пересечения относительно начальной точки i. Соответственно этому долготы L восточных точек  $\hat{\mathcal{I}}_{ij}^{(s)}$  обозначим через  $L_{\mathfrak{s}}^{(ij,s)}$ , а долготы  $\hat{L}$  западных точек  $\hat{\mathcal{I}}_{\mathfrak{s}}^{(s)}$ . Постоянный же азимут выравненной кривой  $\Gamma_{ij}$  в точках  $\hat{\mathcal{I}}_{ij}^{(s)}$ ,  $\hat{\mathcal{I}}_{ij}^{(s)}$  обозначим через  $A_{\mathfrak{s}}^{(ij)}$ .

е) Иногда для точек *i*, *j* северной и южной частей сфероида мы будем вводить особые обозначения: точки северной части обозначим через *i*, *j*, точки южной части—через  $\overline{i}$ ,  $\overline{j}$ . Эти и все приведенные выше обозначения различных точек на выравненной кривой  $\Gamma_{ij}$  показаны на рис. 1.

Используя указанные выше обозначения, запишем теперь кратко условия шести расчетных задач, которые можно считать основными для поверхности земного сфероида:

Прямая задача для дуги ΔΓ<sub>ij</sub> выравненной нити Γ<sub>ij</sub>.
 Даны B<sub>1</sub>, L<sub>1</sub>, A<sub>1,2</sub>, s<sub>1.2</sub>; найти B<sub>2</sub>, L<sub>2</sub>, s<sub>1.2</sub>.
 2. Обратная задачадля дуги ΔΓ<sub>ij</sub> выравненной нити Γ<sub>ij</sub>.

2. Обратная задачадля дуги  $\Delta \Gamma_{ij}$  выравненной нити  $\Gamma_{ij}$ . Даны  $B_1, L_1$  и  $B_2, L_2$ ; найти  $A_{1,2}, A_{2,1}$  и  $s_{1,2}$ .

3. Прямая выравненнолучевая засечка(i = 1, 2; j = 3). Даны  $B_1$ ,  $L_1$ ,  $A_{1.3}$  и  $B_2$ ,  $L_2$ ,  $A_{2.3}$ ; найти  $B_3$ ,  $L_3$ , а также  $A_{3.1}$ ,  $s_{1.3}$  и  $A_{3.2}$ ,  $s_{2.3}$ . 4. Прямая задача для дуги  $\Delta \Pi_{ij}$  параллели  $\Pi_{ij}$  (i = 1, j = 2). Даны  $B_1 = B_2$  и  $\Delta L_{1.2}$ ; найти  $\Pi_{1.2}$ .

З. Заказ 5717.

б) Геодезические широты точек *i* сфероида отсчитываем в обе стороны от плоскости экватора, от 0 до  $\pm \frac{\pi}{2}$ . Для северной половины сфероида широты точек *i* обозначим через  $B_i$  и примем положительными; для южной половины широты точек *i* обозначим через  $\overline{B_i}$  и примем отрицательными. Таким образом, широты  $B_i$ ,  $\overline{B_i}$  изменяются в следующих пределах:

1) 
$$0 \leqslant B_i \leqslant +\frac{\pi}{2}$$
; 2)  $0 \gg \overline{B}_i \gg -\frac{\pi}{2}$ .

в) Геодезические долготы точек *i* сфероида отсчитываем двояко: к востоку и к западу от Гринича, от 0 до $\pm 2\pi$ , и обозначим соответственно через  $L_i$  и  $\mathring{L}_i$ , полагая при этом, что  $L_i > 0$ , а  $\mathring{L}_i < 0$ . Отсюда будем иметь для точки *i* две разности долгот:

1) 
$$\Delta L_{ij} = L_j - L_i$$
, 2)  $\Delta \mathring{L}_{ij} = \mathring{L}_j - \mathring{L}_i = \mathring{L}_{ij}$ .

Такой двойной способ счета долгот и их разностей удобен при решении прямых засечек на сфероиде, а также в некоторых других случаях.

г) Северные и южные вершины выравненной кривой  $\Gamma_{ij}$ , т. е. точки на этой кривой с наименьшим абсолютным значением широты, обозначим: к востоку от начала *i*—через  $O_{ij}^{(s)}$ ,  $\overline{O}_{ij}^{(s)}$ , к западу от начала *i*—через  $O_{ij}^{(s)}$ ,  $\overline{O}_{ij}^{(s)}$ , к западу от начала ла—через  $O_{ij}^{(s)}$ ,  $\overline{O}_{ij}^{(s)}$ , где s=1,2,... есть порядок удаленности вершины данного вида относительно начальной точки *i*. Соответственно этому широту северных вершин  $O_{ij}^{(s)}$ ,  $\overline{O}_{ij}^{(s)}$  обозначим через  $B_0^{(lj)}$ , а широту южных вершин  $\overline{O}_{ij}^{(s)}$ ,  $\overline{O}_{ij}^{(s)}$ —через  $\overline{B}_{0}^{(lj)}$ , причем очевидно  $B_0^{(ij)} = -\overline{B}_{0}^{(lj)}$ . Долготы L точек  $O_{ij}^{(s)}$  и  $\overline{O}_{ij}^{(s)}$  будем обозначать  $L_0^{(lj.s)}$  и  $\overline{L}_{0}^{(lj.s)}$ , долготы  $\hat{L}$  точек  $\overline{O}_{ij}^{(s)}$ ,  $\overline{O}_{ij}^{(s)}$  обозначим через  $\hat{L}_0^{(lj.s)}$ .

д) Точки пересечения выравненной кривой  $\Gamma_{ij}$  с экватором обозначим: к востоку от начала i — через  $\mathcal{P}_{ij}^{(s)}$ , а к западу от i — через  $\hat{\mathcal{P}}_{ij}^{(s)}$ , где s = 1, 2, ... есть порядок удаленности точки пересечения относительно начальной точки i. Соответственно этому долготы L восточных точек  $\mathcal{P}_{ij}^{(s)}$  обозначим через  $L_{\mathfrak{s}}^{(ij,s)}$ , а долготы  $\hat{L}$  западных точек  $\hat{\mathcal{P}}_{ij}^{(s)}$ . Постоянный же азимут выравненной кривой  $\Gamma_{ij}$  в точках  $\mathcal{P}_{ij}^{(s)}$ ,  $\hat{\mathcal{P}}_{ij}^{(s)}$  обозначим через  $A_{\mathfrak{s}}^{(ij)}$ .

е) Иногда для точек *i*, *j* северной и южной частей сфероида мы будем вводить особые обозначения: точки северной части обозначим через *i*, *j*, точки южной части—через  $\overline{i}$ ,  $\overline{j}$ . Эти и все приведенные выше обозначения различных точек на выравненной кривой  $\Gamma_{ij}$  показаны на рис. 1.

Используя указанные выше обозначения, запишем теперь кратко условия шести расчетных задач, которые можно считать основными для поверхности земного сфероида:

Прямая задача для дуги ΔΓ<sub>ij</sub> выравненной нити Γ<sub>ij</sub>.
 Даны B<sub>1</sub>, L<sub>1</sub>, A<sub>1,2</sub>, s<sub>1.2</sub>; найти B<sub>2</sub>, L<sub>2</sub>, s<sub>1.2</sub>.
 2. Обратная задачадля дуги ΔΓ<sub>ij</sub> выравненной нити Γ<sub>ij</sub>.

2. Обратная задачадля дуги  $\Delta \Gamma_{ij}$  выравненной нити  $\Gamma_{ij}$ . Даны  $B_1, L_1$  и  $B_2, L_2$ ; найти  $A_{1,2}, A_{2,1}$  и  $s_{1,2}$ .

3. Прямая выравненнолучевая засечка(i = 1, 2; j = 3). Даны  $B_1$ ,  $L_1$ ,  $A_{1.3}$  и  $B_2$ ,  $L_2$ ,  $A_{2.3}$ ; найти  $B_3$ ,  $L_3$ , а также  $A_{3.1}$ ,  $s_{1.3}$  и  $A_{3.2}$ ,  $s_{2.3}$ . 4. Прямая задача для дуги  $\Delta \Pi_{ij}$  параллели  $\Pi_{ij}$  (i = 1, j = 2). Даны  $B_1 = B_2$  и  $\Delta L_{1.2}$ ; найти  $\Pi_{1.2}$ .

З. Заказ 5717.

а) конечное

- -

$$S_{ij}^{h\kappa} = b^2 \cdot \Delta L_{ij} \int_{B_i}^{B_h} \frac{\cos B \, dB}{(1 - e^2 \sin^2 B)^2} = \frac{b^2}{2} \cdot \Delta L_{ij} \left[ \frac{\sin B}{1 - e^2 \sin^2 B} + \frac{1}{2e} \ln \frac{1 + e \sin B}{1 - e \sin B} \right]_{B_i}^{B_h}.$$

б) в виде сходящегося ряда

$$S_{ij}^{h\kappa} = b^2 \cdot \Delta L_{ij} \int_{B_i}^{B_h} \sum_{\lambda=0}^n \left( \frac{-2}{\lambda} \right) (-e^2 \sin^2 B)^{\lambda} \cos B dB =$$

$$= b^{2} \cdot \Delta L_{ij} \sum_{\lambda=0}^{n} (-1)^{\lambda} \frac{\begin{pmatrix} -2\\ \lambda \end{pmatrix}}{\lambda+1} e^{2\lambda} \sin^{2\lambda+1} B \bigg|_{B_{l}}^{n}$$
(4)

где *а* и *b* — большая и малая полуоси земного сфероида, а

1) 
$$e^2 = \frac{a^2 - b^2}{a^2}$$
, 2)  $\binom{m}{\lambda} = \frac{m (m - 1) \dots [m - (\lambda - 1)]}{1.2 \dots, \lambda}$ ,  
 $\binom{m}{0} = \binom{m}{m} = 1.$  (5)

Отсюда видно, что основное внимание должно быть уделено первым трем задачам (1)—(3), над усовершенствованием и обобщением решения которых трудится немало геодезистов во всех странах.

#### Дел. 3. Получение общих выражений, лежащих в основе решения первых трех задач

1. Для решения первых двух задач (1), (2) было предложено более десятка частных способов, пригодных для расстояний  $s_{1,2}$  не более 1000 — 3000 км, и один общий способ, принадлежащий Бесселю [1], — для любых расстояний  $s_{1,2}$ . Что касается третьей задачи (3), то пока не было найдено достаточно простых и одновременно совершенно общих способов ее решения.

Учитывая сказанное, мной открыт и разработан еще один общий способ решения первых двух задач (1), (2), в котором вопрос о возможных соотношениях между исходными и определяемыми величинами рассмотрен с предельной полнотой. На основе выведенных при решении этих задач рабочих выражений найдены два независимых способа решения последней задачи—прямой сфероидической засечки. Сущность предлагаемых способов рассматривается ниже, причем вначале мы получим свод исходных замкнутых выражений, из которого выведем затем соответствующие рабочие выражения для решения упомянутых трех основных задач (1) — (3).

2. В основу новых способов положен свод трех обыкновенных дифференциальных уравнений первого порядка с переменными коэффициентами, который определяет выравненную нить  $\Gamma$  земного сфероида, проведенную через точку C(B, L) под азимутом A:

(3)

$$M \, dB + 0 \cdot dL - \cos A \, ds + 0 \cdot dA = 0,$$
  

$$0 \cdot dB + r \, dL - \sin A \, ds + 0 \cdot dA = 0,$$
  

$$0 \cdot dB + \sin A dL + 0 \cdot ds - 1 \cdot dA = 0.$$
(6)

Кроме того, используется вытекающее из этого свода известное уравнение Клеро

$$r\sin A = h = r_0 = \text{пост.} \tag{7}$$

Здесь M и r суть радиусы кривизны меридиана и параллели в переменной точке C заданной выравненной нити  $\Gamma$  сфероида, выходящей из C под азимутом A; постоянная h есть, очевидно, радиус параллели  $r_0$  в вершине O выравненной кривой  $\Gamma$ , т. е. в точке, где азимут  $A = A_0 = 90^\circ$  или 270°.

3. Используя указанную совокупность равенств (6), (7), найдем сначала значения ds, dL и dA в функции широты B. Имеем прежде всего:

1) 
$$\sin A = \frac{h}{r}$$
; 2)  $\cos A = \frac{\cos A}{|\cos A|} \frac{\sqrt{r^2 - h^2}}{r}$ ;  
3)  $\beta = \frac{\cos A}{|\cos A|} = \frac{dB}{|dB|} = \pm 1$ ;  
dB (8)

4) 
$$\beta ds = Mr \frac{dB}{\sqrt{r^2 - h^2}}$$
; 5)  $\beta dL = h \frac{M}{r} \frac{dB}{\sqrt{r^2 - h^2}}$ ;  
6)  $dA = h \frac{M}{r} \frac{\sin B \, dB}{\sqrt{r^2 - h^2}}$ .

Множитель  $\beta = \pm 1$  введен здесь потому, что *ds* принимаем всегда  $\geq 0$ ,  $\sqrt{r^2 - h^2}$  считаем здесь  $\geq 0$ , и, следовательно, при этих условиях имеем:

Таблица 1

| $0 \leq A < \frac{\pi}{2}$         | sin A≥0 | cos A≥0                 | $dB \ge 0$       | $dL \ge 0$       | dA≥0             |
|------------------------------------|---------|-------------------------|------------------|------------------|------------------|
| $\frac{\pi}{2} \leq A < \pi$       | sin A≥0 | cos A≤0                 | $dB \leqslant 0$ | $dL \ge 0$       | $dA \ge 0$       |
| $\pi \leqslant A < \frac{3}{2}\pi$ | sin A≤0 | cos <i>A</i> <b>≤</b> 0 | $dB \leqslant 0$ | $dL \leq 0$      | $dA \leqslant 0$ |
| $\frac{3}{2}\pi \leq A < 2\pi$     | sin A≤0 | $\cos A \ge 0$          | $dB \ge 0$       | $dL \leqslant 0$ | $dA \leq 0$      |

Учитывая теперь, что

1) 
$$M = \frac{a(1-e^2)}{W^3} = \frac{a(1-e^2)}{(1-e^2\sin^2 B)^{3/2}};$$
 3)  $e^2 = \frac{a^2-b^2}{a^2};$   
2)  $r = \frac{a\cos B}{W} = \frac{a\cos B}{(1-e^2\sin^2 B)^{1/2}};$  4)  $e'^2 = \frac{a^2-b^2}{b^2},$  (9)

подсчитаем отдельно величины

$$Mr, \frac{M}{r}, \sqrt{r^2-h^2},$$

входящие в (8). Мы получим после простых преобразований

1) 
$$Mr = a (1 - e^2) \frac{\cos B}{W^4};$$
 2)  $\frac{M}{r} = \frac{1 - e^2}{W^2 \cos B};$   
3)  $\sqrt{r^2 - h^2} = \frac{a}{W} \sqrt{\cos^2 B - \frac{h^2}{a^2} W^2}.$  (10)

В (10.3) введем обозначение:

$$\frac{r^2}{a^2}\sin^2 A = \frac{h^2}{a^2} = \sin^2 A_{\vartheta} = v^2 \leqslant 1,$$
(11)

где  $A_{\mathfrak{s}}$  есть, очевидно, азимут выравненной кривой  $\Gamma$  в точке  $\mathcal{P}$  ее пересечения с экватором. Тогда вместо (10.3) получим:

$$\sqrt{r^2 - h^2} = \frac{a \sqrt{1 - v^2}}{W} \sqrt{1 - \frac{1 - e^2 v^2}{1 - v^2} \sin^2 B}.$$

Если затем введем новое обозначение

$$\frac{1 - e^2 \,\nu^2}{1 - \nu^2} = \tau^2 \geqslant 1,\tag{12}$$

то для  $\sqrt{r^2 - h^2}$  будем иметь окончательно:

$$V \overline{r^2 - h^2} = \frac{a \sqrt{1 - v^2}}{W} \sqrt{1 - \tau^2 \sin^2 B}.$$
 (13)

Вставим теперь найденные для Mr,  $\frac{M}{r}$  и  $\sqrt{r^2 - h^2}$  выражения (10.1), (10.2) и (13) в исходные равенства (8). Тогда с учетом обозначений (11), (12) получим:

$$\begin{cases} 1)_{e} \beta \, ds = \frac{a \, (1-e^2)}{\sqrt{1-v^2}} \cdot \frac{\cos B \, dB}{(1-e^2 \sin^2 B)^{3/2} \sqrt{1-\tau^2 \sin^2 B}}.\\ 2)_{B} \, dL = \frac{v \, (1-e^2)}{\sqrt{1-v^2}} \cdot \frac{dB}{\cos B \, \sqrt{(1-e^2 \sin^2 B) \, (1-\tau^2 \sin^2 B)}}, \qquad (14)\\ 3) \, dA = \frac{v \, (1-e^2)}{1-v^2} \cdot \frac{\operatorname{tg} B \, dB}{\sqrt{(1-e^2 \sin^2 B) \, (1-\tau^2 \sin^2 B)}}. \end{cases}$$

Равенства (14) являются искомым развернутым представлением дифференциалов ds, dL и dA в функции широты B текущей точки C на выравненной нити  $\Gamma$  сфероида. Входящие в эти равенства величины  $v^2$  и  $\tau^2$  определяются согласно (7), (11) и (12).

4. Выразим еще ds и dL в функции азимута A выравненной нити  $\Gamma$  в той же текущей точке C сфероида. Из (6.1) и (6.2) прежде всего найдем:

1) 
$$ds = \frac{rdL}{\sin A} = a \frac{r}{a} \sin A \frac{dL}{\sin^2 A} = a \vee \operatorname{cosec}^2 A \, dL;$$
  
2)  $dL = \frac{dA}{dL}$ 
(15)

sin B.

Но из того же равенства (11) получим более развернуто:

$$v^2 = \frac{r^2}{a^2} \sin^2 A = \frac{\sin^2 A \cos^2 B}{\sqrt{1 - e^2 \sin^2 B}},$$

откуда обратно

$$\sin B = \sqrt{\frac{\sin^2 A - v^2}{\sin^2 A - e^2 v^2}}.$$
 (16)

Таким образом, окончательно

1) 
$$ds = a \vee \sqrt{\frac{\sin^2 A - e^2 \vee^2}{\sin^2 A - \nu^2}} \operatorname{cosec}^2 A \, dA,$$
  
2)  $dL = \sqrt{\frac{\sin^2 A - e^2 \vee^2}{\sin^2 A - \nu^2}} \, dA.$ 
(17)

Равенства (17) являются искомыми.

5. Равенства (14), выражающие ds, dL и dA в функции широты В, имеют сложный вид и потому перед интегрированием должны быть упрощены путем введения новых переменных.

Упростим сначала равенства (14.1) и (14.2) для ds и dL. Введя вместо широты В новое переменное  $\varphi$  с помощью подстановки

$$\tau \sin B = \sin \varphi, \tag{18}$$

-2

получим отсюда, имея в виду строение равенств (14.1) и (14.2):

1) 
$$\cos B \, dB = \frac{1}{\tau} \cos \varphi \, d\varphi;$$
 4)  $\frac{dB}{\cos B} = \frac{\cos \varphi \, d\varphi}{\tau^2 \cos^2 B};$ 

2) 
$$\sqrt{1 - \tau^2 \sin^2 B} = \sqrt{1 - \sin^2 \varphi} = \cos \varphi;$$
 5)  $\cos^2 B = 1 - \sin^2 B =$  (19)  
3)  $1 - e^2 \sin^2 B = 1 - \frac{e^2}{\tau^2} \sin^2 \varphi.$   $= 1 - \frac{1}{\tau^2} \sin^2 \varphi.$ 

1) 
$$\beta ds = \frac{a(1-e^2)}{\sqrt{1-e^2 \gamma^2}} \cdot \frac{d\varphi}{\left(1-\frac{e^2}{\tau^2}\sin^2\varphi\right)^{3/2}};$$
 (20)  
2)  $\beta dL = \frac{\gamma(1-e^2)}{\sqrt{1-e^2 \gamma^2}} \cdot \frac{d\varphi}{\left(1-\frac{1}{\tau^2}\sin^2\varphi\right)\sqrt{1-\frac{e^2}{\tau^2}\sin^2\varphi}}.$ 

Введем в (20) обозначения:

1) 
$$\frac{1-e^2}{\sqrt{1-e^2 \nu^2}} = \mu;$$
 2)  $\frac{e^2}{\tau^2} = \kappa^2 \leqslant e^2;$  3)  $\frac{1}{\tau^2} = m^2 \leqslant 1.$  (21)

Тогда вместо (20) получим следующие окончательные выражения для ds и dL в функции нового переменного  $\varphi$ , определяемого соотношением (18):

1) 
$$\beta ds = a\varphi \frac{d\varphi}{(1 - \kappa^2 \sin^2 \varphi)^{3/2}};$$
(2) 
$$\beta dL = \gamma \varphi \frac{d\varphi}{(1 - m^2 \sin^2 \varphi)\sqrt{1 - \kappa^2 \sin^2 \varphi}}.$$

6. Упростим теперь найденное выше выражение (14.3) дифференциала dA через широту B. C этой целью введем подстановку

$$\sec^2 B = y. \tag{23}$$

Тогда после простых преобразований равенства (14.3) получим следующее окончательное выражение дифференциала dA в зависимости от нового переменного у:

$$dA = \frac{\nu \left(1 - e^2\right)}{2\sqrt{1 - \nu^2}} \cdot \frac{dy}{\sqrt{\lambda_1 y^2 + 2\lambda_2 y + \lambda_3}}, \qquad (24)$$

где введены обозначения:

1) 
$$\lambda_{1} = (1 - e^{2}) (1 - \tau^{2}) = -\frac{\nu^{2} (1 - \nu^{2})^{2}}{1 - \nu^{2}} \leq 0,$$
  
2)  $2\lambda_{2} = (1 - e^{2})\tau^{2} + (1 - \tau^{2})e^{2} = \frac{(1 - e^{2})(1 - 2e^{2}\nu^{2})}{1 - \nu^{2}},$  (25)  
3)  $\lambda_{3} = e^{2}\tau^{2} = \frac{e^{2}(1 - e^{2}\nu^{2})}{1 - \nu^{2}}.$ 

7). Найдя окончательные выражения (14.1), (14.2) для ds и dL, а также получив выражение (24) с учетом (23), (25) для dA, перейдем от них, наконец, к соответствующим интегральным соотношениям. Такой же интегральный переход произведем с равенствами (17) для dsи dL. Осуществляя тогда попутное решение простого алгебраического интеграла, вытекающего из равенства (24), и используя также уравнение Клеро (7), получим следующую совокупность замкнутых выражений для дуги  $\Delta\Gamma_{1.2}$  выравненной нити  $\Gamma_{1.2}$  земного сфероида:

1) 
$$\beta \cdot s_{1,2} = a \nu \int_{\varphi_1}^{\varphi_2} \frac{d\varphi}{(1 - \kappa^2 \sin^2 \varphi)^{3/2}};$$
  
2)  $s_{1,2} = a \nu \int_{A_{1,2}}^{A_{2,1}'} \sqrt{\frac{\sin^2 A - e^2 \nu^2}{\sin^2 A - \nu^2}} \operatorname{cosec} A \, dA$ 

3) 
$$\beta \cdot \Delta L_{1,2} = \nu \mu \int_{\varphi_1}^{\varphi_2} \frac{d\varphi}{(1-m^2\sin^2\varphi)\sqrt{1-\kappa^2\sin^2\varphi}};$$

4) 
$$\Delta L_{1.2} = \int_{A_{1.2}}^{A_{2.1}} \sqrt{\frac{\sin^2 A - e^2 v^2}{\sin^2 A - v^2}} dA$$

5) 
$$2 \cdot \Delta A_{1,2} = \arcsin \left[ 2 v^2 (1 - v^2) \sec^2 B - (1 - 2e^2 v^2) \right] \Big|_{B_1}^{B_2};$$
  
5a)  $2 \cdot \Delta A_{1,2} = \arcsin (1 - 2\sin^2 A_{1,2}) - \arcsin (1 - 2g^2 \sin^2 A_{1,2});$   
6)  $\operatorname{ctg} A_{1,2} = \frac{V_2 \cos B_1 - V_1 \cos B_2 \cos \Delta A_{1,2}}{V_2 \cos B_1 \sin \Delta A_{1,2}} = \frac{g - \cos \Delta A_{1,2}}{\sin \Delta A_{1,2}};$ 

39

(26)

$$7) - \operatorname{ctg} A'_{2,1} = \frac{V_1 \cos B_2 - V_2 \cos B_1 \cos \Delta A_{1,2}}{V_1 \cos B_2 \sin \Delta A_{1,2}} = \frac{(1:g) - \cos \Delta A_{1,2}}{\sin \Delta A_{1,2}};$$

$$8) \sin A_{1,2} = \frac{a \cdot v}{r_1} = \sqrt{1 - e^2} \frac{v \, V_1}{\cos B_1};$$

$$9) \sin A'_{2,1} = \frac{a \cdot v}{r_2} = \sqrt{1 - e^2} \frac{v \, V_2}{\cos B_2};$$

$$10) \, L_2 = L_1 + \Delta L_{1,2}; 11) \, A_{2,1} = A'_{2,1} \pm 180^\circ = (A_{1,2} + \Delta A_{1,2}) \pm 180^\circ.$$
B равенствах (26) введены обозначения:  

$$1) \, V = \sqrt{1 + e'^2 \cos^2 B}; \qquad 6) \, m^2 = 1 : \tau^2 = m_{1,2}^2;$$

$$2) \, v = \frac{r_1}{a} \sin A_{1,2} = 7) \, \sin \varphi = \tau \sin B;$$

$$= \sqrt{1 + e'^2} \frac{\cos B_1 \sin A_{1,2}}{V_1} = v_{1,2};$$

$$3) \, \mu = \frac{1 - e^2}{\sqrt{1 - e^2 \, v^2}} = \mu_{1,2}; \qquad 8) \, g = \frac{V_2 \cos B_1}{V_1 \cos B_2};$$

$$4) \, \tau^2 = \frac{1 - e^2 v^2}{1 - v^2} = \tau_{1,2}^2; \qquad 9) \, e^2 = \frac{a^2 - b^2}{a^2};$$

$$5) \, \kappa^2 = e^2 : \tau^2 = \kappa_{1,2}^2; \qquad 10) \, e'^2 = \frac{a^2 - b^2}{b^2};$$

$$11) \, \beta = \frac{\cos A_{1,2}}{|\cos A_{1,2}|} = \frac{B_2 - B_1}{|B_2 - B_1|} = \frac{\varphi_2 - \varphi_1}{|\varphi_2 - \varphi_1|} = \beta_{1,2} = \pm 1.$$

а и b – большая и малая полуоси земного сфероида.

Свод (26) обладает двумя примечательными особенностями:

а) равенство (26.1) имеет тот же вид, что и известное выражение для длины  $x_{1.2}$  дуги меридиана  $\Delta X_{1.2}$ :

$$\beta x_{1,2} = a \left(1 - e^2\right) \int_{B_1}^{B_2} \frac{dB}{\left(1 - e^2 \sin^2 B\right)^{3/2}} .$$
 (28)

Легко видеть, что (28) получится из (26.1), если в (27.2) — (27.7) внести азимут  $A_{1.2}$  выравненной дуги  $\Delta X_{1.2}$ , равный 0;

б) величины  $s_{1,2}$  и  $\Delta L_{1,2}$  выражены не только через широту B в текущей точке C дуги  $\Delta \Gamma_{1,2}$  выравненной нити  $\Gamma_{1,2}$  сфероида, но и в зависимости от азимута A дуги  $\Delta \Gamma_{1,2}$  в той же текущей точке C. Это дает возможность осуществить поверку искомых величин несколькими путями.

8. Свод (26) является единой основой для предложенных мной новых общих способов решения первых трех расчетных задач (1)—(3) на земном сфероиде. Не имея возможности по недостатку места дать подробное решение входящих в этот свод эллиптических интегра-40

лов (26.1) — (26.4), я ограничусь в дальнейшем лишь применением в указанных выше задачах (1) — (3) соответствующих рабочих выражений для интегралов (26.1) — (26.4). Здесь же только очень кратко намечу пути получения этих рабочих выражений.

Интегралы (26.1) и (26.3) являются частными случаями приведенного по Лежандру эллиптического интеграла 3 рода  $\Pi(\varphi, \kappa, n)$ :

$$\Pi(\varphi,\kappa,n) = \int_{0}^{\tau} \frac{d\varphi}{(1+n\sin^{2}\varphi)\sqrt{1-\kappa^{2}\sin^{2}\varphi}} (n \ge 0, \ 0 \le \kappa^{2} \le 1),$$
(29)

решение которого согласно [2] может быть представлено в следующем конечном виде через эллиптические функции Якоби и тэта-функции:

$$\Pi(\varphi,\kappa,n) = \int_{0}^{\infty} \frac{du}{1+n\,\mathrm{sn}^{2}u} = u + \frac{\mathrm{sn}\,\beta}{\mathrm{cn}\,\beta\,\mathrm{dn}\,\beta} \left[\frac{\vartheta_{4}'(\beta)}{\vartheta_{4}(\beta)} + \frac{1}{2}\ln\frac{\vartheta_{4}(u-\beta)}{\vartheta_{4}(u+\beta)}\right],$$
(30)

1) 
$$u = \int_{0}^{r} \frac{d\varphi}{\sqrt{1 - \kappa^2 \operatorname{sn}^2 \varphi}} = F(\varphi, \kappa); \quad 2) \operatorname{sn}^2 \beta = -n : \kappa^2.$$
(31)

Однако применение выражений (30) и (31) к решению интегралов (26.1) и (26.3) при очень малом значении  $\kappa^2 (\kappa^2 \leqslant e^2 = 0.0066934)$  для сфероида Красовского) оказывается крайне невыгодным:

а) требуется предварительный подсчет некоторых вспомогательных величин;

б) для интеграла (26.1) равенство (30) приобретает неопределенный

, раскрытие которого еще более осложняет это равенство; вид

в) для интеграла (26.3) решение его согласно (30) будет неточным, так как при—  $n = m^2 \gg \kappa^2$  значение sn  $\beta$  определится из (31) весьма ненадежно (sn <sup>β</sup> становится в этом случае очень большим по модулю).

Учитывая сказанное, а также малость  $\kappa^2$  для земного сфероида, целесообразнее будет интеграл (26.1) найти разложением в ряд по степеням  $\kappa^2$ .

По тем же соображениям интеграл (26.3), после разложения в ряд по степеням  $\kappa^2$ , решим по способу, предложенному в 1935 году проф. В. П. Ветчинкиным в [3].

Что касается остальных двух интегралов (26.2) и (26.4), то они являются эллиптическими интегралами общего вида, и их преобразование к выражению, содержащему только приведенные по Лежандру эллиптические интегралы 1 — 3 рода  $F(\varphi, \kappa)$ ,  $E(\varphi, \kappa)$  и  $\Pi(\varphi, \kappa, n)$ , потребует большой затраты вычислительного труда. Поэтому интегралы (26.2), (26.4) получим разложением числителя  $(\sin^2 A - e^2 \gamma^2)^{1/2}$ в ряд по степеням малой величины  $e^{\gamma_{\gamma^2}}$ , или же найдем численным интегрированием по Гауссу.

Наконец, отметим то важное обстоятельство, что при заданном  $e^2$ интегралы (26.1) и (26.3) содержат только два параметра: интеграл (26.1) — параметры  $\varphi$  и  $\kappa^2$ , интеграл (26.3) — параметры  $\varphi$  и  $m^2$ . Поэтому указанные интегралы могут быть представлены в виде таблиц с двумя входами, наподобие приведенного эллиптического интеграла 1 рода  $F(\varphi,\kappa)$ . Наличие таких таблиц существенно облегчает решение задач, в которых используются эти интегралы (см. дальше).

# Дел. 4. Решение прямой задачи для выравненной дуги $\Delta \Gamma_{1,2}$ на сфероиде

Приведем лишь с очень краткими пояснениями совокупности расчетных выражений для решения предлагаемым способом прямой задачи (1) при различных условиях относительно значений величин, входящих в эту задачу.

Условие задачи: Даны B<sub>1</sub>, L<sub>1</sub>, A<sub>1.2</sub>, s<sub>1.2</sub>. Найти B<sub>2</sub>, A<sub>2.1</sub>, L<sub>2</sub>.

1. Определение В<sub>2</sub>

1) 
$$V_{1} = \sqrt{1 + e^{\prime 2} \cos^{2} B_{1}} - \mu 3$$
 геодезических таблиц;  
2)  $v = \sqrt{1 + e^{\prime 2}} \frac{\cos B_{1} \sin A_{1,2}}{V_{1}};$  5)  $\kappa^{2} = \frac{e^{2}}{\tau^{2}} \leqslant e^{2};$   
3)  $v = \frac{1 - e^{2}}{\sqrt{1 - e^{2} v^{2}}};$  4)  $\tau^{2} = \frac{1 - e^{2} v^{2}}{1 - v^{2}} \geqslant 1;$  6)  $\sin \varphi_{1} = \tau \sin B_{1};$   
7)  $C_{0} = 1 + \sum_{\lambda=1}^{n} (-1)^{\lambda} \frac{\begin{pmatrix} -3/2 \\ \lambda \end{pmatrix} \cdot \begin{pmatrix} 2\lambda \\ \lambda \end{pmatrix}}{\cdot 2^{2\lambda}} \kappa^{2\lambda} = 1 + \sum_{\lambda=1}^{n} c_{0.2\lambda} \kappa^{2\lambda};$   
8)  $C_{2u} = \sum_{\lambda=u}^{n} (-1)^{\lambda-u} \frac{\begin{pmatrix} -3/2 \\ \lambda \end{pmatrix} \cdot \begin{pmatrix} 2\lambda \\ \lambda - u \end{pmatrix}}{2^{2\lambda} \cdot u} \kappa^{2\lambda} = \sum_{\lambda=u}^{n} c_{2u,2\lambda} \kappa^{2\lambda};$   
9)  $\frac{C_{2u}}{C_{0}} = D_{2u}; \quad (u = 1, 2, ..., n);$   
10)  $\varphi_{2} - \varphi_{1} = \Delta \varphi_{1.2} = \frac{\beta \cdot s_{1.2}}{C_{0} a \mu} - \sum_{u=1}^{n} D_{2u} (\sin 2u \varphi_{2} - \sin 2u \varphi_{1}); \quad \frac{\beta \cdot s_{1.2}}{C_{0} a \mu} = Q$   
11)  $\varphi_{2} = \varphi_{1} + \Delta \varphi_{1.2};$  12)  $\sin B_{2} = \frac{1}{-} \sin \varphi_{2}.$ 

Расчет  $\Delta \varphi_{1,2}$  согласно (10) мы производим из-за незнания  $\varphi_2$  путем последовательных приближений, а еще быстрее — следующим образом:

a) 
$$\varphi_{2}^{(0)} = \varphi_{1} + \frac{\beta s_{1.2}}{C_{0} a_{p}};$$
 b)  $\Delta \varphi_{1.2}^{(0)} = \frac{\beta s_{1.2}}{C_{0} a_{p}} - \sum_{u=1}^{n} D_{2u} (\sin 2u \, \varphi_{2}^{(0)} - \sin 2u \varphi_{1});$   
b)  $\frac{\partial}{\partial \varphi_{2}} \Delta \varphi_{2}^{(0)} = \varkappa = \sum_{u=1}^{n} 2 \, u \, D_{2u} \cos 2 \, u \, \varphi_{2}^{(0)};$  c)  $\Delta \varphi_{1.2} = \frac{\Delta \varphi_{1.2}^{(0)}}{1 - \varkappa}.$ 

Если  $\Delta \varphi_{1,2}$  мало, то от  $\Delta \varphi_{1,2}$  переходим сначала к  $\Delta B_{1,2}$ , затем — к  $B_2$ .

11a) 
$$\Delta B_{1,2}^{"} = (\operatorname{tg} B_{1} \operatorname{ctg} \varphi_{1}) \Delta \varphi_{1,2}^{"} - \frac{\operatorname{tg} B_{1}}{2\rho} (\Delta \varphi_{1,2}^{2} - \Delta B_{1,2}^{2})^{"} - \frac{1}{6\rho^{2}} [(\operatorname{tg} B_{1} \operatorname{ctg} \varphi_{1}) \Delta \varphi_{1,2}^{3} - \Delta B_{1,2}^{3}]^{"};$$
  
12a) 
$$B_{2} = B_{1} + \Delta B_{1,2}; \qquad \rho = 206264.8.$$

При Δφ<sub>1.2</sub> малом можно вычислять Δφ<sub>1.2</sub> иначе:

10a) 
$$\Delta \varphi_{1,2}^{"} = \beta \rho^{"} \frac{\mathbf{s}_{1,2} W_{1}^{3}}{a \mu} - \frac{3 \kappa^{2}}{4 W_{1}^{2}} \left[ \sin 2\varphi_{1} + \frac{2}{3} \left( \cos 2\varphi_{1} + \frac{5\kappa^{2} \sin^{2} \varphi_{1}}{4 W_{1}^{2}} \right) \cdot \frac{\Delta \varphi_{1,2}^{"}}{\rho} \right] \frac{(\Delta \varphi_{1,2}^{"})^{2}}{\rho} ,$$

где

13)  $W_1 = \sqrt{1 - \kappa^2 \sin^2 \varphi_1} = \sqrt{1 - e^2 \sin^2 B_1} = \frac{V_1}{\sqrt{1 + e'^2}}$  — из геодезических таблиц.

2. Определение А<sub>2.1</sub>

1) 
$$\sin A'_{2,1} = \sqrt{1-e^2} \frac{\sqrt{V_2}}{\cos B_2};$$

2) 
$$A_{2.1} = A_{2.1} \pm 180^{\circ} = (A_{1.2} + \Delta A_{1.2}) \pm 180^{\circ}$$

а) Если  $A_{2.1}^{'}$  близко к 90° или 270°, но  $B_2 - B_1 = \Delta B_{1.2}$  велико, то вместо  $A_{2.1}^{'}$  вычисляют  $\Delta A_{1.2}$ :

3)  $g = \frac{V_2 \cos B_1}{V_1 \cos B_2}$ ; 4)  $2 \cdot \Delta A_{1,2} = \arcsin(1 - 2\sin^2 A_{1,2}) - \arcsin(1 - 2g^2 \sin^2 A_{1,2})$ .

б) Если  $B_2 - B_1 = \Delta B_{1,2}$  мало, то вместо  $A_{2,1}'$  можно также вычислить  $\Delta A_{1,2}$ :

$$\begin{array}{l} 4a) \ 2 \cdot \Delta \ A_{1,2}^{''} = \rho^{\prime\prime} \ \frac{\varepsilon}{\sin 2A_{1,2}} \left[ 1 + \frac{\cos 2A_{1,2}}{2\sin^2 2A_{1,2}} \varepsilon + \frac{1 + 2\cos^2 2A_{1,2}}{6\sin^4 2A_{1,2}} \varepsilon^2 \right], \\ \\ \text{de} \qquad \qquad 5) \ \varepsilon = 2 \left( g^2 - 1 \right) \sin^2 A_{1,2}. \end{array}$$

где

### 3. Поверка вычисления $B_2$ и $A_{2.1}$

Так как согласно (26.1) и (26.9) обратный азимут  $A_{2.1} = A_{2.1} \pm 180^{\circ} = F(s_{1.2}, \nu, B_2)$ , то вычисленные  $B_2$  и  $A_{2.1}$  поверяются совместно равенством (26.2) — вторым выражением для  $s_{1.2}$ :

$$s_{1,2} = a \nu \int_{\Lambda_{1,2}}^{\Lambda_{2,1}} \sqrt{\frac{\sin^2 A - e^2 \nu^2}{\sin^2 A - \nu^2}} \operatorname{cosec}^2 A \, dA.$$

Подсчитывая этот интеграл тремя различными путями:

а) разложением числителя  $(\sin^2 A - e^2 v^2)^{1/2}$  в ряд по степеням малой величины  $e^2 v^2$ ,

б) численным интегрированием по Гауссу,

в) разложением интеграла вблизи среднего значения  $\overline{A_{1,2}} = \frac{1}{2} (A_{1,2} + A_{2,1})$  в ряд по степеням разности  $\Delta A_{1,2} = A_{2,1}' - A_{1,2}$  получим три соответствующих способа поверки  $B_2$  и  $A_{2,1}$ .

#### 4. Определение L<sub>2</sub>

1) 
$$\sqrt{1-m^2} = p;$$
 2)  $\varphi_{1,2} = \frac{1}{2} (\varphi_1 + \varphi_2);$  3)  $\Delta \varphi_{1,2} = \varphi_2 - \varphi_1;$ 

4) 
$$\operatorname{tg} \varphi = t;$$
  
5)  $\beta = \frac{\Delta \varphi_{1,2}}{|\Delta \varphi_{1,2}|};$   
6)  $\operatorname{arc} \operatorname{tg}(pt) = \vartheta;$   
7)  $\nu \varphi = \frac{\nu}{|\nu|} p \sqrt{1-e^2};$   
8)  $\frac{\nu}{|\nu|} p = \frac{\nu \sqrt{1-e^2}}{\sqrt{1-e^2}\nu^2};$   
9)  $\nu = \frac{\nu}{|\nu|} \frac{p}{\sqrt{(1-e^2)-p^2}};$   
10)  $g(\lambda) = (-1)^{\lambda} {\binom{-1/2}{\lambda}} \kappa^{2\lambda};$   
11)  $\Phi(\lambda) = \int_{\varphi_1}^{\varphi_2} \frac{\sin^{2\lambda}\varphi \, d\varphi}{1-m^2 \sin^2\varphi};$   
12)  $F(\lambda) = g(\lambda) \Phi(\lambda);$   
 $(\lambda = 0, 1, 2, ..., n).$ 

Из (10) — (12) найдем последовательно:

13) 
$$F(0) = \Phi(0) = \frac{1}{p} [\operatorname{arc} \operatorname{tg}(pt_2) - \operatorname{arc} \operatorname{tg}(pt_1)] = p [\vartheta_2 - \vartheta_1].$$

14) 
$$F(\lambda) = E(\lambda) [S(\lambda - 1) - \Phi(\lambda - 1)], \ (\lambda = 1, 2, ..., n),$$
  
503начено:

где обозначено:

(5) 
$$E(\lambda) = -\frac{g(\lambda)}{m^2} = (-1)^{\lambda+1} \begin{pmatrix} -1/2 \\ \lambda \end{pmatrix} \frac{k^{2\lambda}}{m^2}$$
  
(6) 
$$S(\lambda-1) = \int_{\varphi_1}^{\varphi_2} \sin^{2(\lambda-1)} \varphi \, d\varphi.$$

Интегрируя (16), получим для функции S ( $\lambda - 1$ ), входящей в (14): · 17)  $S(0) = \varphi_2 - \varphi_1 = \Delta \varphi_{1,2}, \ (\lambda = 1);$ 

18) 
$$S(\lambda-1) = S(\omega) = \frac{1}{2^{2\omega}} \left\{ \begin{pmatrix} 2\omega \\ \omega \end{pmatrix} (\varphi_2 - \varphi_1) + (-1)^{\omega} \sum_{\varkappa=0}^{\omega-1} (-1)^{\varkappa} \frac{\begin{pmatrix} 2\omega \\ \omega \end{pmatrix}}{\omega - \varkappa} \times \left[ \sin 2(\lambda - \varkappa) \varphi_2 - \sin 2(\lambda - \varkappa) \varphi_1 \right] \right\}, \quad (\lambda - 1 = \omega = 1, 2, ..., n).$$

После определения функций  $F(\lambda)$  искомые значения  $\Delta L_{1,2}$  и  $L_2$ подсчитаем так:

19) 
$$\beta \cdot \Delta L_{1,2} = \nu \mu \sum_{\lambda=0}^{n} F(\lambda) = \sum_{\lambda=0}^{n} \nu \mu F(\lambda) = \sum_{\lambda=0}^{n} R(\lambda); \quad 20) \quad L_{2} = L_{1} + \Delta L_{1,2}.$$

Ниже даются рабочие выражения для первых пяти членов γγF(λ) =  $=R(\lambda)$  в равенстве (19):

20) 
$$\forall p F(0) = \frac{\nu}{|\nu|} \sqrt{1 - e^2} \left[ \operatorname{arc} \operatorname{tg}(pt_2) - \operatorname{arc} \operatorname{tg}(pt_1) \right] =$$
$$= \frac{\nu}{|\nu|} \sqrt{1 - e^2} \left[ \vartheta_2 - \vartheta_1 \right] = \frac{\nu}{|\nu|} \sqrt{1 - e^2} \Delta \vartheta_{1,2} = R(0);$$

но если  $\varphi_2 - \varphi_1 = \Delta \varphi_{1,2}$  невелико или если одна из величин  $\varphi_1$ ,  $\varphi_2$  близка к $\frac{\pi}{2}$ , то лучше

20a) 
$$\gamma \mu F(0) = \frac{\gamma}{|\gamma|} \sqrt{1 - e^2} \operatorname{arc} \operatorname{tg} \frac{p \sin \Delta \varphi_{1,2}}{\cos \Delta \varphi_{1,2} - m^2 \sin \varphi_1 \sin \varphi_2}$$

21) 
$$yy F(1) = -\frac{e^2}{2} y\mu (\varphi_2 - \varphi_1) + \frac{1}{2} e^2 R(0) =$$

$$= \frac{v}{|v|} \frac{e^2}{2} \sqrt{1 - e^2} [(\vartheta_2 - \vartheta_1) - p(\varphi_2 - \varphi_1)] = R(1);$$
22) 
$$yy F(2) = -\frac{3}{16} e^2 \kappa^2 yp \left[ (\varphi_2 - \varphi_1) - \frac{1}{2} (\sin 2\varphi_2 - \sin 2\varphi_1) \right] +$$

$$+ \frac{3}{4} e^2 R(1) = R(2);$$
23) 
$$yy F(3) = -\frac{5}{16} e^2 \kappa^4 yp \left[ \frac{3}{8} (\varphi_2 - \varphi_1) - \frac{1}{4} (\sin 2\varphi_2 - \sin 2\varphi_1) +$$

$$+ \frac{1}{32} (\sin 4\varphi_2 - \sin 4\varphi_1) \right] + \frac{5}{6} e^2 R(2) = R(3);$$
24) 
$$yy F(4) = -\frac{35}{128} e^2 \kappa^6 yp \left[ \frac{5}{16} (\varphi_2 - \varphi_1) - \frac{15}{64} (\sin 2\varphi_2 - \sin 2\varphi_1) +$$

$$- \frac{3}{64} (\sin 4\varphi_2 - \sin 4\varphi_1) - \frac{1}{192} (\sin 6\varphi_2 - \sin 6\varphi_1) \right] + \frac{7}{8} e^2 R(3) = R(4).$$

#### 5. Заключительная поверка

Заключительную поверку найденных  $B_2$ ,  $A_{1,2}$  и  $\Delta L_{1,2}$  производим, используя равенство [Дел. 3; (26.4)]:

$$\Delta L_{1,2} = \int_{A_{1,2}}^{A_{2,1}'} \sqrt{\frac{\sin^2 A - e^2 v^2}{\sin^2 A - v^2}} dA.$$

Здесь так же, как и выше в разд. З для s<sub>1.2</sub>, возможны три способа поверки.

#### Дел. 5. Решение обратной задачи для выравненной дуги $\Delta \Gamma_{1,2}$ на сфероиде

Как и в прямой задаче, здесь будут даны в основном только последовательности рабочих выражений, вытекающие из начального свода [Дел. 3; (26)] и определяющие совокупность искомых величин в обратной задаче; будут также указаны пределы годности этих последовательностей в различных случаях.

Условие задачи: даны  $B_1$ ,  $L_1$  и  $B_2$ ,  $L_2$ ; найти  $A_{1,2}$ ,  $A_{2,1}$  и  $s_{1,2}$ . 1. Первый способ определения  $A_{1,2}$  и  $A_{2,1}$  (при  $s_{1,2} > 1000$  км) Прежде всего решаем 2 приближениями уравнение [Дел. 4, 4; (19)]

1) 
$$\beta \cdot \Delta L_{1,2} = \nu p \sum_{\lambda=0}^{n} F(\lambda) = \sum_{\lambda=0}^{n} R(\lambda) = R(0) + \sum_{\lambda=1}^{n} R(\lambda),$$
  
 $R(0) = \frac{\nu}{|\nu|} \sqrt{1 - e^2} \left[ \operatorname{arc} \operatorname{tg}(p \, tg \, \varphi_2) - \operatorname{arc} \operatorname{tg}(p \, tg \, \varphi_1) \right] =$ 

$$= \frac{\nu}{|\nu|} \sqrt{1-e^2} \left[\vartheta_2 - \vartheta_1\right] = \frac{\nu}{|\nu|} \sqrt{1-e^2} \,\Delta\vartheta_{1,2};$$

$$R(1) = \frac{e^2}{2} R(0) - \frac{e^2}{2} \nu \mu (\varphi_2 - \varphi_1) = \frac{e^2}{2} R(0) - \frac{e^2}{2} \nu \mu \Delta \varphi_{1,2} =$$

$$= \frac{\nu}{|\nu|} \frac{e^2}{2} \sqrt{1 - e^2} [\Delta \vartheta_{1,2} - p \cdot \Delta \varphi_{1,2}];$$

$$R(2) = \frac{3}{4} e^2 R(1) - \frac{3}{16} e^2 \kappa^2 \nu \mu \left[ \Delta \varphi_{1,2} - \frac{1}{2} (\sin 2\varphi_2 - \sin 2\varphi_1) \right];$$

$$R(3) = \frac{5}{6} e^2 R(2) - \frac{5}{16} e^2 \kappa^4 \nu \mu \left[ \frac{3}{8} \Delta \varphi_{1,2} - \frac{1}{4} (\sin 2\varphi_2 - \sin 2\varphi_1) + \frac{1}{32} (\sin 4\varphi_2 - \sin 4\varphi_1) \right];$$

$$R \tau, \mu,$$

относительно неизвестного p, причем сумма  $\sum_{\lambda=1}^{2} R(\lambda)$  есть малость по-

рядка  $e^2$ .

Начальное достаточно точное значение  $A_{1,2}^{(0)}$  азимута  $A_{1,2}$ , входящего в вычисление p, находим из соотношения

2) 
$$\frac{\cos B_2 \operatorname{tg} B_1 - \cos \Delta L_{1,2} \sin B_1}{\sin \Delta L_{1,2}} = \frac{\pi_2 - \pi_1}{\sin \Delta L_{1,2}} = \operatorname{ctg} \alpha_{1,2} = \operatorname{ctg} A_{1,2}^{(0)}.$$

Соответствующее приближенное значение  $p^{(0)}$  неизвестного p и начальное значение  $R^{(0)}$  для R(0), а также последовательные значения величин  $v_{1^{k}}$ , m,  $\tau$ ,  $\kappa^{2}$ ,  $\varphi$ , входящих в  $R(\lambda)$ , определим тогда из соотношений:

3) 
$$p = \cos B_0 \approx \sin A_{1,2}^{(0)} \cos B_1 = p^{(0)};$$
  
4)  $R(0) = \frac{\nu}{|\nu|} \sqrt{1 - e^2} \Delta \vartheta_{1,2} \approx \frac{\nu}{|\nu|} \sqrt{1 - e^2} \Delta L_{1,2} = R^{(0)}(0);$   
5)  $\nu \mu = \frac{\nu}{|\nu|} p \sqrt{1 - e^2};$  6)  $\sin B_0 = m;$  7)  $\csc B_0 = \tau;$   
8)  $\kappa^2 = e^2 (1 - p^2) = e^2 \sin^2 B_0;$  9)  $\sin \varphi = \tau \sin B$ 

при  $A_{1,2} = A_{1,2}^{(0)}$  и  $p = p^{(0)}$ ,  $p^{(1)}$ ,  $p^{(2)}$ , ..., причем  $B_0$  есть широта вершины  $O_{1,2}$  выравненной кривой  $\Gamma_{1,2}$ .

Улучшенное значение  $p^{(s)}$  неизвестного p в итоге s-го приближения найдем так:

10) 
$$w^{(s-1)} = \beta \sum_{\lambda=0}^{n} R^{(s-1)}(\lambda) - \Delta L_{1,2} = \Delta L_{1,2}^{(s-1)} - \Delta L_{1,2},$$
  
11)  $\frac{\partial w^{(s-1)}}{\partial p} = \sqrt{1 - e^2} \tau^2 [\operatorname{tg} \varphi_2 - \operatorname{tg} \varphi_1] = \varkappa^{(s-1)};$   
12)  $p^{(s)} = p^{(s-1)} - \frac{w^{(s-1)}}{\varkappa^{(s-1)}} = p^{(s-1)} + \Delta p^{(s-1)}.$ 

Решив уравнение (1) двумя-тремя приближениями, вычисляем затем окончательные значения азимутов  $A_{1.2}$ ,  $A_{2.1}$ :

13) 
$$\sin A_{1,2} = \frac{\gamma}{|\nu|} \frac{\cos B_0}{\cos B_1} \sqrt{\frac{1 - e^2 \sin^2 B_1}{1 - e^2 \sin^2 B_0}} = \frac{\gamma}{|\nu|} \frac{p}{\cos B_1} \frac{V_1}{V_0};$$

14) 
$$\sin A'_{2,1} = \frac{\gamma}{|\nu|} \frac{\cos B_0}{\cos B_2} \sqrt{\frac{1-e^2 \sin^2 B_2}{1-e^2 \sin^2 B_0}} = \frac{\gamma}{|\nu|} - \frac{p}{\cos B_2} \frac{V_2}{V_0};$$
  
15)  $A_{2,1} = A'_{2,1} \pm 180^\circ.$ 

Необходимая в дальнейшем при вычислении расстояния  $s_{1,2}$  вспомогательная величина р может быть выражена следующим образом через найденную выше величину  $\kappa^2 = e^2 (1 - p^2) = e^2 \sin^2 B_0$ :

16) 
$$\mu = \sqrt{(1-e^2)(1-\kappa^2)} = \sqrt{(1-e^2)(1-e^2\sin^2 B_0)} = \sqrt{1-e^2} W_0 = (1-e^2) V_0.$$

Что касается величины у, то она связана с величинами р и к соотношением

17) 
$$\mathbf{v} = \frac{\mathbf{v}}{|\mathbf{v}|} \frac{p}{\sqrt{1-\kappa^2}} = \frac{\mathbf{v}}{|\mathbf{v}|} \frac{\cos B_0}{\sqrt{1-e^2 \sin^2 B_0}} = \frac{\mathbf{v}}{|\mathbf{v}|} \frac{\cos B_0}{W_0} = \frac{\mathbf{v}}{|\mathbf{v}|} \frac{\cos B_0}{\sqrt{1-e^2} V_0}.$$

2. Второй способ определения A<sub>1.2</sub> и A<sub>2.1</sub> (при s<sub>1.2</sub> ≤ 1000 км)

1) 
$$\operatorname{tg} \frac{1}{2} (\alpha'_{2,1} + \alpha_{1,2}) = \frac{\cos \frac{1}{2} (B_2 + B_1)}{\sin \frac{1}{2} (B_2 - B_1)} \operatorname{tg} \frac{\Delta L_{1,2}}{2} = \operatorname{tg} \overline{\alpha}_{1,2};$$
  
2)  $\operatorname{tg} \frac{1}{2} (\alpha'_{2,1} - \alpha_{1,2}) = \frac{\sin \frac{1}{2} (B_2 + B_1)}{\cos \frac{1}{2} (B_2 - B_1)} \operatorname{tg} \frac{\Delta L_{1,2}}{2} = \operatorname{tg} \frac{\Delta \alpha_{1,2}}{2}$ 

отсюда найти α<sub>1.2</sub> и α<sub>2.1</sub> в отдельности.

3) 
$$Q = \frac{e^{2}}{\sin \Delta L_{1,2}} (V_{1} \sin B_{2} - V_{2} \sin B_{1});$$
  
4) 
$$\alpha_{2.1} = \alpha'_{2.1} \pm 180^{\circ} = (\alpha_{1.2} + \Delta \alpha_{1.2}) \pm 180^{\circ};$$
  
5) 
$$\sin \sigma_{1.2} = \frac{\cos B_{2}}{\sin \alpha_{1.2}} \sin \Delta L_{1,2} = -\frac{\cos B_{1}}{\sin \alpha_{2.1}} \sin \Delta L_{1.2};$$
  
6) 
$$\operatorname{ctg} \tilde{A}_{1,2} = \operatorname{ctg} \alpha_{1,2} - Q \frac{\cos B_{1}}{V_{1} \cos B_{2}};$$
  
7) 
$$\operatorname{ctg} \tilde{A}_{2.1} = \operatorname{ctg} \alpha_{2.1} - Q \frac{\cos B_{2}}{V_{2} \cos B_{1}}; \quad (CM. [4]).$$
  
8) 
$$\eta'_{1.2} = \frac{e^{2}}{6\rho''} (\sigma'_{1.2})^{2} \sin \tilde{A}_{1.2} \cos^{2} B_{1} \left(\cos \tilde{A}_{1.2} - \frac{\sigma'_{1.2}}{4\rho''} \operatorname{tg} B_{1}\right);$$
  
9) 
$$\eta''_{2.1} = \frac{e^{2}}{6\rho''} (\sigma'_{1.2})^{2} \sin \tilde{A}_{2.1} \cos^{2} B_{2} \left(\cos \tilde{A}_{2.1} - \frac{\sigma'_{1.2}}{4\rho''} \operatorname{tg} B_{2}\right) \quad (CM. [5]).$$
  
10) 
$$A_{1.2} = \tilde{A}_{1.2} - \eta''_{1.2}; \quad 11) \quad A_{2.1} = \tilde{A}_{2.1} - \eta''_{2.1}.$$

#### 3. Поверка вычисления А<sub>1.2</sub> и А<sub>2.1</sub>

Поверка вычисленных азимутов  $A_{1,2}$  и  $A_{2,1}$  производится их подстановкой в одно из следующих равенств:

1) 
$$\frac{\sin A_{1,2}}{\sin A_{2,1}'} = \frac{\cos B_2}{\cos B_1} \sqrt{\frac{1 - e^2 \sin^2 B_1}{1 - e^2 \sin^2 B_2}} = \frac{V_2 \cos B_1}{V_1 \cos B_2} = g;$$
  
2) 
$$\Delta L_{1,2} = \int_{A_{1,2}}^{A_{2,1}'} \sqrt{\frac{\sin^2 A - e^2 v^2}{\sin^2 A - v^2}} dA.$$

Действительное решение интеграла (2) производим одним из трех способов, примененных выше в заключительной части прямой задачи.

4. Вычисление s<sub>1.2</sub> четырьмя способами

Расстояние s<sub>1.2</sub> может быть вычислено четырьмя путями из двойного равенства

$$s_{1,2} = \beta a \nu \int_{\varphi_1}^{\varphi_2} \frac{d\varphi}{(1-\kappa^2 \sin^2 \varphi)^{s_{1/2}}} = a \nu \int_{A_{1,2}}^{A_{2,1}} \sqrt{\frac{\sin^2 A - e^2 \nu^2}{\sin^2 A - \nu^2}} \, dA.$$

Из первой части этого двойного равенства имеем

$$\beta s_{1,2} = C_0 a_{\mathcal{V}} (\varphi_2 - \varphi_1) + a_{\mathcal{V}} \sum_{u=1}^n C_{2u} (\sin 2 u \varphi_2 - \sin 2 u \varphi_1),$$

где  $\varphi_1$ ,  $\varphi_2$  и  $\kappa^2$  найдены выше при определении  $p = \cos B_0$ , величина р дана в [Дел. 5, 4; (14)], а коэффициенты  $C_0$ ,  $C_{2u}$  указаны в [Дел. 3, 1; (7), (8)].

Вторую часть того же двойного равенства решаем одним из трех способов, упомянутых выше в прямой задаче.

#### Дел. 6. Решение прямой выравненнолучевой засечки на сфероиде

Прямой выравненнолучевой засечкой на сфероиде назовем задачу определения геодезических координат  $B_3$ ,  $L_3$  точки 3, если даны геодезические координаты  $B_1$ ,  $L_1$  и  $B_2$ ,  $L_2$  исходных точек 1, 2, а также даны геодезические азимуты  $A_{1.3}$ ,  $A_{2.3}$  засекающих точку 3 лучей  $\mathcal{J}_{1.3}$ ,  $\mathcal{J}_{2.3}$  с вершинами в исходных точках 1, 2.

При этом может быть поставлено дополнительное требование найти также длины s<sub>1.3</sub>, s<sub>2.3</sub> засекающих сторон 1.3, 2.3 и обратные азимуты A<sub>3.1</sub>, A<sub>3.2</sub> этих сторон в определяемой точке 3. Из сказанного вытекает следующее краткое:

Условие задачи: Даны  $B_1$ ,  $L_1$ ,  $A_{1.3}$  и  $B_2$ ,  $L_2$ ,  $A_{2.3}$ . Найти  $B_3$ ,  $L_3$ , а также  $A_{3.1}$ ,  $s_{1.3}$  и  $A_{3.2}$ ,  $s_{2.3}$ .

В указанной постановке данная задача может быть решена двумя общими способами, в основе которых лежит очевидное соотношение

$$\Delta L_{1,2} = \Delta L_{1,3} - \Delta L_{2,3}.$$
 (1)

Рассмотрим каждый из этих способов в отдельности.

#### А. Первый способ решения прямой засечки на сфероиде

Этот способ целесообразно применять, когда нам нужны только геодезические координаты  $B_3$ ,  $L_3$  определяемой точки 3. Сущность способа заключается в следующем.

Прежде всего из решения прямой засечки на шаре находим приближенные значения  $\tilde{B}_{3}^{(0)}$ ,  $\tilde{L}_{3}^{(0)}$  геодезических координат  $B_{3}$ ,  $L_{3}$  определяемой точки 3. Для указанного решения, которое выполняется с поверкой, применяются следующие рабочие выражения:

1) tg  $\Delta \tilde{L}_{1.3}^{(0)} =$ 

$$\frac{\cos (90^{\circ} - B_2) \cos \Delta L_{1.2} - \operatorname{ctg} A_{2.3} \sin \Delta L_{1.2} - \operatorname{ctg} (90^{\circ} - B_1) \sin (90^{\circ} - B_2)}{\operatorname{ctg} A_{1.3} \frac{\sin (90^{\circ} - B_2)}{\sin (90^{\circ} - B_1)} - \operatorname{ctg} A_{2.3} \cos \Delta L_{1.2} - \cos (90^{\circ} - B_2) \sin \Delta L_{1.2}};$$

$$2) \quad \tilde{L}_3^{(0)} = L_1 + \Delta \tilde{L}_{1,3}^{(0)}; \qquad 3) \quad \Delta \tilde{L}_{2,3}^{(0)} = \tilde{L}_3^{(0)} - L_2;$$

4) tg  $\tilde{B}_{3}^{(0)} = [\operatorname{ctg} A_{1,3} \sin \Delta \tilde{L}_{1,3}^{(0)} + \cos (90^{\circ} - B_{1}) \cos \Delta \tilde{L}_{1,3}^{(0)}] : \sin (90^{\circ} - B_{1}) =$ 

$$= [\operatorname{ctg} A_{2,3} \sin \Delta L_{2,3}^{(0)} + \cos (90^{\circ} - B_2) \cos \Delta L_{2,3}^{(0)}] : \sin (90^{\circ} - B_2).$$

Вычисления производятся с точностью до 0,00001 для чисел и с точностью до 1<sup>"</sup> или до 0<sup>r</sup> · 0001 для углов.

Далее вычисляем с окончательной точностью (например, с точностью до  $10^{-8}$ ) величины  $v_{i3}$ ,  $\kappa_{i3}^2$ ,  $\tau_{i3}$ ,  $p_{i3}$ ,  $(v_i)_{i3}$ ,  $\varphi_i^3$  и  $\vartheta_i^3$  для обеих засекающих сторон i3 = 1.3, 2.3. Соответствующие расчетные выражения даны в дел. 4 (sin  $\varphi_i^3 = \tau_{i3} \sin B_i$ ; tg  $\vartheta_i^3 = p_{i3} \operatorname{tg} \varphi_i^3$ ).

Теперь приступаем к вычислению на сфероиде последовательных приближений  $B_3^{(s)}$ ,  $L_3^{(s)}$ , (s = 1, 2, ...), для геодезических координат  $B_3$ ,  $L_3$  определяемой точки 3.

Начиная первое приближение, берем в качестве исходного зна-

чение  $B_3^{(0)} = B_3^{(0)}$  широты точки 3, полученное из решения засечки на шаре. Затем решением обратных задач по сторонам i3 = 1.3, 2.3 при известных азимутах  $A_{1,3}$ ,  $A_{2,3}$  лучей  $\partial J_{1,3}$ ,  $\partial J_{2,3}$ , вычисляем согласно [Дел. 5, 1] соответствующие приближенные значения  $\Delta L_{1,3}^{(0)}$ ,  $\Delta L_{2,3}^{(0)}$  на сфероиде разностей долгот  $\Delta L_{1,3}$ ,  $\Delta L_{2,3}$ . При этом расчет ведем следующим образом:

1) 
$$B_{3}^{(0)} = B_{3}^{(0)} \approx B_{3},$$
 2)  $\tau_{i3} \sin B_{3} = \sin \varphi_{3}^{i},$  3)  $\varphi_{3}^{i} - \varphi_{i}^{3} = \Delta \varphi_{i3},$   
4)  $p_{i3} \operatorname{tg} \varphi_{3}^{i} = \operatorname{tg} \vartheta_{3}^{i},$  5)  $\vartheta_{3}^{i} - \vartheta_{i}^{3} = \Delta \vartheta_{i3},$  6)  $\frac{\nu_{i3}}{|\nu_{i3}|} = \omega_{i3},$   
7)  $\omega_{i3} \sqrt{1 - e^{2}} \Delta \vartheta_{i3} = R_{i3}(0),$  8)  $(\nu \varphi)_{i3} \Delta \varphi_{i3} = \Delta R_{i3}(0),$   
9)  $\frac{e^{2}}{2} [R_{i3}(0) - \Delta R_{i3}(0)] = R_{i3}(1),$   
10)  $\frac{1}{4} (\kappa^{2} \nu \varphi)_{i3} [\Delta \varphi_{i3} - (\sin 2\varphi_{3}^{i} - \sin 2\varphi_{i}^{3}) = \Delta R_{i3}(1),$   
11)  $\frac{3}{4} e^{2} [R_{i3}(1) - \Delta R_{i3}(1)] = R_{i3}(2),$  12)  $\sum_{\lambda=0}^{2} R_{i3}(\lambda) = \beta_{i3} \Delta L_{i3}^{(0)}.$ 

Эти расчеты производим, удерживая 6—7 знаков после запятой. 4. Заказ 5717. Подсчитав  $\Delta L_{i3}^{(0)} = \Delta L_{1.3}^{(0)}$ ,  $\Delta L_{2.3}^{(0)}$ , вычисляем соответствующие приближенные значения  $L_{\frac{1}{3}}^{(0)}$ ,  $L_{\frac{2}{3}}^{(0)}$  долготы  $L_{3}$  точки 3 сфероида, а также вычисляем возникающую при этом невязку  $w_{L}^{(0)}$  по долготе:

1) 
$$L_{\frac{1}{3}}^{(0)} = L_1 + \Delta L_{1.3}^{(0)}$$
, 2)  $L_{\frac{2}{3}}^{(0)} = L_2 + \Delta L_{2.3}^{(0)}$ , 3)  $w_L^{(0)} = L_{\frac{1}{3}}^{(0)} - L_{\frac{2}{3}}^{(0)}$ , (4.1)

т. е. производим расчеты, вытекающие из основного соотношения (1):  $\Delta L_{1,2} = \Delta L_{1,3} - \Delta L_{2,3}$ , если вместо точного значения  $B_3$  широты точки 3 взять приближенное значение  $\tilde{B}_3^{(0)} = B_3^{(0)}$ .

ки 3 взять приближенное значение  $\widetilde{B}_{3}^{(0)} = B_{3}^{(0)}$ . Найдя невязку  $w_{L}^{(0)}$ , вычисляем соответствующие поправки  $\delta B_{3}^{(0)}$ и  $\delta L_{3}^{(0)}$ ,  $\delta L_{3}^{(0)}$ , прибавляя которые к  $B_{3}^{(0)}$ ,  $L_{3}^{(0)}$ ,  $L_{2}^{(0)}$ , получим улучшенные в первом приближении значения  $B_{3}^{(1)}$ ,  $L_{3}^{(1)}$  широты и долготы точки 3. Выполняется это так:

) 
$$\sin A_{i3}' = \frac{\sqrt{1-e^2} v_{i3} V_3}{\cos B_3}$$
; 2)  $\frac{\partial L_3^i}{\partial B_3} = a_{i3} = \frac{\operatorname{tg} A_{3i}'}{V_3^2 \cos B_3}$ ;  
3)  $\delta B_3^{(0)} = -\frac{w_L^{(0)}}{(a_{1.3}-a_{2.3})}$ ;  
4)  $a_{i3} \ \delta B_3^{(0)} = \delta L_i^{(0)}$ ; 5)  $B_3^{(1)} = B_3^{(0)} + \delta B_3^{(0)}$ ;  
6)  $L_3^{(1)} = L_3^{(0)} + \delta L_4^{(0)} = L_2^{(0)} + \delta L_2^{(0)}$ .  
(5.1)

На этом первое приближение заканчивается.

Переходя ко в тором у приближению, в качестве исходного берем значение  $B_3^{(1)}$  широты точки 3, полученное в итоге первого приближения. При этом вычисления производим с полным числом знаков и определение  $\Delta L_{i3}^{(1)}$  выполняем с учетом поправочного члена  $R_{i3}$  (3). Таким образом, во изменение и в дополнение к (3.1) будем иметь для второго приближения:

$$B_{3}^{(1)} \approx B_{3}; \quad 12) \frac{3}{8} (\kappa^{2} \nu p)_{i3} \left[ \frac{3}{8} \Delta \varphi_{i3} - \frac{1}{4} (\sin 2\varphi_{3}^{i} - \sin 2\varphi_{i}^{3}) + \frac{1}{32} (\sin 4\varphi_{3}^{i} - \sin 4\varphi_{i}^{3}) \right] = \Delta R_{i3}(2);$$

$$(2.2)$$

$$13) \frac{5}{6} e^{2} \left[ R_{i3}(2) - \Delta R_{i3}(2) \right] = R_{i3}(3); \quad 14) \sum_{i}^{3} R_{i3}(\lambda) = \beta_{i3} \cdot \Delta L_{i}^{(1)}.$$

Подсчитав  $\Delta L_{i_3}^{(1)} = \Delta L_{1_3}^{(1)}$ ,  $\Delta L_{2_3}^{(1)}$  в соответствии с (2.1) и (2.2), находим согласно (4.1) (с заменой <sup>(0)</sup> на <sup>(1)</sup>) значения  $L_{1_3}^{(1)}$ ,  $L_{2_3}^{(1)}$  долготы точки 3 и невязку  $w_L^{(1)}$ , после чего вычисляем согласно (5.1) (с заменой<sup>(x)</sup> на <sup>(x+1)</sup>) широту  $B_{3}^{(2)}$  и долготу  $L_{3}^{(2)}$  точки 3 в итоге второго приближения. При этих подсчетах значения tg  $A_{3i}$  й  $\frac{\partial L_3^i}{\partial B_3} = a_{i3}$  можно взять из первого приближения.

По окончании второго приближения производим поверочное третье приближение, в котором ограничиваемся вычислением лишь величин  $R_{i3}$  (0) и  $R_{i3}$  (1) при  $B_3 = B_3^{(2)}$ . Остальные же члены  $R_{i3}$  (2) и  $R_{i3}$  (3) берем из второго приближения. Подсчитав затем соответст-50 вующие разности долгот  $\Delta L_i^{(2)}$ , находим невязку  $w_L^{(2)}$  третьего приближения. Если расчеты второго и третьего приближений выполнены правильно, то эта невязка  $w_L^{(2)} \approx 0$  в пределах точности вычислений. Тогда в качестве окончательных координат  $B_3$ ,  $L_3$  определяемой точки 3 принимаем их значения  $B_3^{(2)}$ ,  $L_3^{(2)}$ , полученные во втором приближении.

Найдя координаты  $B_3$ ,  $L_3$  точки 3, вычисляем в случае надобности также обратные азимуты  $A_{3i}$  и длины  $s_{i3}$ , что может быть выполнено согласно [Дел. 5].

#### Б. Второй способ решения прямой засечки на сфероиде

Применение этого способа целесообразно в том случае, когда кроме геодезических координат  $B_3$ ,  $L_3$  определяемой точки 3 нужно знать одновременно расстояния  $s_{1.3}$ ,  $s_{2.3}$  и, может быть, также обратные азимуты  $A_{3.1}$ ,  $A_{3.2}$ . Решение прямой засечки по этому способу производится в следующем порядке.

Прежде всего по известным координатам  $B_1$ ,  $L_1$  и  $B_2$ ,  $L_2$  исходных точек 1, 2 и по известным азимутам  $A_{1,3}$ ,  $A_{2,3}$  засекающих лучей  $\mathcal{J} \mathcal{I}_{1,3}$ ,  $\mathcal{J} \mathcal{I}_{2,3}$  на этих точках решаем на шаре соответствующую прямую засечку, определяя из этого решения сферические расстояния  $\sigma_{1,2}$ ,  $\sigma_{1,3}$ ,  $\sigma_{2,3}$  дуг 1°2°, 1°3°, 2°3° и сферические углы  $\gamma_1$ ,  $\gamma_2$ ,  $\gamma_3$  в вершинах 1°,2°, 3° сферического треугольника 1°2°3°, отображающего данный сфероидический треугольник 123. Эти вычисления выполняются так:

$$\begin{array}{rcl} 1) & 90^{\circ} - B_{1} = \Theta_{1}, \\ 3) & \frac{1}{2} \left(\Theta_{1} + \Theta_{2}\right) = \Theta_{1,2}; \\ & 5) & \frac{1}{2} \Delta L_{1,2} = \delta L_{1,2}; \\ & 6) & \frac{\sin \delta \Theta_{1,2} \operatorname{ctg} \delta L_{1,2}}{\sin \Theta_{1,2}} = \operatorname{tg} \delta \alpha_{1,2}; \\ \hline & 5) & \frac{1}{2} \Delta L_{1,2} = \delta L_{1,2}; \\ & 6) & \frac{\sin \delta \Theta_{1,2} \operatorname{ctg} \delta L_{1,2}}{\sin \Theta_{1,2}} = \operatorname{tg} \delta \alpha_{1,2}; \\ \hline & 7) & \frac{\cos \Theta_{1,2} \operatorname{ctg} \delta L_{1,2}}{\cos \Theta_{1,2}} = \operatorname{tg} \alpha_{1,2}; \\ & 9) & \alpha_{1,2} - \delta \alpha_{1,2} = \beta_{2}; \\ & 10) & \beta_{2} + A_{2,3} = \gamma_{1}; \\ & 11) & \beta_{1} - A_{1,3} = \gamma_{2}; \\ & 12) & \frac{1}{2} \left(\gamma_{1} + \gamma_{2}\right) = \gamma_{1,2}; \\ & 13) & \frac{1}{2} \left(\gamma_{2} - \gamma_{1}\right) = \delta \gamma_{1,2}; \\ & 14) & \frac{\sin \Theta_{1}}{\sin \beta_{2}} \sin \Delta L_{1,2} = & \frac{\sin \Theta_{2}}{\sin \beta_{1}} \sin \Delta L_{1,2} = \sin \sigma_{1,2}; \\ & 15) & \frac{1}{2} \sigma_{1,2} = \delta \sigma_{1,2}; \\ & 16) & \frac{\sin \delta \gamma_{1,2}}{\sin \gamma_{1,2}} \operatorname{tg} \delta \sigma_{1,2} = \operatorname{tg} \delta \sigma_{0}; \\ & 17) & \frac{\cos \delta \gamma_{1,2}}{\cos \gamma_{1,2}} \operatorname{tg} \delta \sigma_{1,2} = \operatorname{tg} \sigma_{0}; \\ & 19) & \sigma_{-} + \delta \sigma_{0} = \sigma_{2,3}; \\ \end{array}$$

(19) 
$$\sigma_0 - \delta \sigma_0 = \sigma_{2.3};$$
  
(20)  $\frac{\sin \gamma_{11}}{\sin \sigma_{2.3}} \sin \sigma_{1.2} = \frac{15}{\sin \sigma_{1.3}} \sin \sigma_{1.2} = \sin \gamma_3;$   
(21)  $\gamma_1 + \gamma_2 + \gamma_3 + 180^\circ = \varepsilon.$ 

Вычисления на шаре производятся с точностью до 0.00001 для чисел и с точностью до 1" или до 0'. 0001 для углов.

4\*.

Далее мы вычисляем с полной точностью вспомогательные величины  $\nu_{i3}$ ,  $\kappa_{i3}^2$ ,  $p_{i3}$ ,  $C_0^i$ ,  $C_{2u}^i$ ,  $D_{2u}^i$ ,  $Q_{i3}$ ,  $\varphi_{i3}$ ,  $\vartheta_{i3}$ ,  $(\nu_{\mu})_{i3}$  для обеих засекающих сторон i3 = 1.3, 2.3, необходимые для решения соответствующих прямых задач согласно [Дел. 4.].

Чтобы начать затем решение указанных прямых задач по стороне 1.3 и по стороне 2.3, нам нужно каким-то образом найти приближенные длины  $s_{1.3}^{(0)}$ ,  $s_{2.3}^{(0)}$  этих сторон. Проще всего и, пожалуй, достаточно надежно это можно сделать следующим образом. Исходя из выполненного выше решения прямой засечки на шаре, произведем построение соответствующего сферического треугольника 1° 2° 3° на глобусе или построим равноугольное изображение 1′ 2′ 3′ этого треугольника на карте. Разбив затем длины засекающих сторон 1° 3°, 2° 3° или 1′ 3′, 2′ 3′ на равное число частей ( $e\kappa$ )<sub>i3</sub>, например — на 5, определим для каждой такой части ( $e\kappa$ )<sub>i3</sub> среднюю широту  $B_{e\kappa}^{(i3)}$ . Для каждой широты  $B_{e\kappa}^{(i3)}$  вычислим средний радиус кривизны  $R_{e\kappa}^{(i3)}$  и затем подсчитаем их среднее значение  $R^{(i3)}$  по каждой засекающей стороне *i*3. Тогда можно принять, что

1)  $s_{1,3}^{(0)} = \sigma_{1,3} R^{(1,3)}, 2$   $s_{2,3}^{(0)} = \sigma_{2,3} R^{(2,3)},$  (2)

где  $\sigma_{1.3}$ ,  $\sigma_{2.3}$  — найденные выше сферические расстояния.

Теперь переходим к последовательным приближениям, в которых вычисляются совместно улучшенные значения расстояний  $s_{1.3}$ ,  $s_{2,3}$  и координат  $B_3$ ,  $L_3$  определяемой точки 3. В качестве исходных для этих приближений берутся значения  $s_{1.3}^{(0)}$ ,  $s_{2.3}^{(0)}$  расстояний  $s_{i3}$ , полученные согласно (2). Каждое ×-ое приближение распадается при этом на три ступени:

а) нахождение невязки  $w_B^{(\alpha-1)}$  в двух вычисленных значениях  $B_{\frac{1}{3}}^{(\alpha-1)}$ ,  $B_{\frac{2}{3}}^{(\alpha-1)}$  широты точки 3, которая была вызвана ошибочностью полученных в ( $\alpha-1$ )-ом приближении значений  $s_{1,3}^{(\alpha-1)}$ ,  $s_{2,3}^{(\alpha-1)}$  для расстояний  $s_{1,3}$ ,  $s_{2,3}$ ;

б) нахождение невязки  $w_L^{(x-1)}$  в двух вычисленных значениях  $L_{\frac{1}{3}}^{(x-1)}$ ,  $L_{\frac{2}{3}}^{(x-1)}$  долготы точки 3, которая была вызвана той же причиной, что и в (*a*);

в) составление свода двух плоскостных уравнений с поправками  $\delta s_{1,3}^{(x-1)}$ ,  $\delta s_{2,3}^{(x-1)}$  приближенных значений  $s_{1,3}^{(x-1)}$ ,  $s_{2,3}^{(x-1)}$  для расстояний  $s_{i3}$  и решение этого свода; вычисление соответствующих поправок  $\delta B_{1,3}^{(x-1)}$ ,  $\delta B_{\frac{3}{3}}^{(x-1)}$  и  $\delta L_{\frac{3}{3}}^{(x-1)}$ ; вычисление улучшенных в х-ом приближении значений  $s_{1,3}^{(x)}$ ,  $s_{2,3}^{(x)}$  для сторон  $s_{i3}$  и улучшенных значений  $B_{3}^{(x)}$ ,  $L_{3}^{(x)}$  для координат  $B_3$ ,  $L_3$  определяемой точки 3.

Рассмотрим более подробно каждое из этих основных действий, выполняемых в х-ом приближении.

Нахождение невязки  $w_B^{(x-1)}$ . Взяв в качестве исходных значения  $s_{1,3}^{(x-1)}$ ,  $s_{2,3}^{(x-1)}$  расстояний  $s_{i3}$ , полученные в предшествующем (x-1)-ом приближении, вычисляем согласно [Дел. 4.1] широту  $B_3$  точки 3 дважды—по стороне 1.3 и по стороне 2.3. При этом мы используем указанный там прием резкого усиления сходимости при вычислении  $\Delta \varphi_{i3}^{(x-1)}$ . В итоге решения этих двух задач мы получаем два соответствующих значения  $B_{\frac{1}{3}}^{(x-1)}$ ,  $B_{\frac{2}{3}}^{(x-1)}$  для широты  $B_3$  точки 3, и тогда

 $w_B^{(\alpha-1)} = B_{\frac{1}{3}}^{(\alpha-1)} - B_{\frac{2}{3}}^{(\alpha-1)}.$ (3)

Нахождение невязки  $w_L^{(x-1)}$ . Взяв в качестве исходных значения  $\varphi_3^{(x-1)}$ ,  $\varphi_3^{(x-1)}$  преобразованной широты  $\varphi_3$  точки 3, которые были получены при вычислении двух значений  $B_{1_3}^{(x-1)}$ ,  $B_{2_3}^{(x-1)}$  широты  $B_3$  этой точки, мы определяем затем согласно [Дел. 4.4] долготу  $L_3$  точки 3 дважды но стороне 1.3 и по стороне 2.3. В итоге решения этих двух частных задач мы получаем два значения  $L_{1_3}^{(x-1)}$ ,  $L_{2_3}^{(x-1)}$  для долготы  $L_3$  точки 3, и тогда:

$$w_L^{(x-1)} = L_{\frac{1}{3}}^{(x-1)} - L_{\frac{2}{3}}^{(x-1)} .$$
(4)

Вычисление  $s_{l,3}^{(x)}$ ,  $B_3^{(x)}$ ,  $L_3^{(x)}$ . Найдя невязки  $w_B^{(x-1)}$ ,  $w_L^{(x-1)}$ , составляем свод двух плоскостных уравнений с искомыми поправками  $\delta s_{1,3}^{(x-1)}$ ,  $\delta s_{2,3}^{(x-1)}$  расстояний  $s_{1,3}^{(x-1)}$ ,  $s_{2,3}^{(x-1)}$  и свободными членами  $w_B^{(x-1)}$ ,  $w_L^{(x-1)}$ :

$$\frac{\partial B_3^1}{\partial s_{1,3}} \delta s_{1,3}^{(\alpha-1)} - \frac{\partial B_3^2}{\partial s_{2,3}} \delta s_{2,3}^{(\alpha-1)} + w_B^{(\alpha-1)} = 0;$$

$$\frac{\partial L_3^1}{\partial s_{1,3}} \delta s_{1,3}^{(\alpha-1)} - \frac{\partial L_3^2}{\partial s_{2,3}} \delta s_{2,3}^{(\alpha-1)} + w_L^{(\alpha-1)} = 0.$$
(5)

Входящие сюда коэффициенты вычисляются так:

1) 
$$\sin A'_{3i} = \frac{\sqrt{1 - e^2} v_{i3} V_3^i}{\cos B_3^i};$$
  
2)  $\frac{\partial B_3^i}{\partial s_{i3}} = \frac{\rho''}{M_3} \cos A'_{3i};$   
3)  $\frac{\partial L_3^i}{\partial s_{i3}} = \frac{\rho''}{N_3} \sin A'_{3i},$ 
(6)

где

1) 
$$M = \frac{a(1-e^2)}{(1-e^2\sin^2 B)^{3/2}}$$
; 2)  $N = \frac{a}{(1-e^2\sin^2 B)^{1/2}}$ ;  
3)  $\rho'' = 206264.8.$  (7)

Определив из решения свода (5) поправки  $\delta s_{i3}^{(\alpha-1)}$ , вычисляем соответствующие поправки  $\delta B_{i_3}^{(\alpha-1)}$ ,  $\delta L_{i_3}^{(\alpha-1)}$ :

1) 
$$\delta B_{i_{3}}^{(\varkappa-1)} = \frac{\partial B_{3}^{i}}{\partial s_{i_{3}}} \, \delta s_{i_{3}}^{(\varkappa-1)} ; \qquad 2) \, \delta L_{i_{3}}^{(\varkappa-1)} = \frac{\partial L_{3}^{i}}{\partial s_{i_{3}}} \delta s_{i_{3}}^{(\varkappa-1)}$$
(8)

Теперь улучшенные в итоге ×-го приближения значения  $s_{i3}^{(x)}$ ,  $B_3^{(x)}$ ,  $L_3^{(x)}$  расстояний  $s_{i3}$  и координат  $B_3$ ,  $L_3$  найдутся так:

1) 
$$s_{i3}^{(\alpha)} = s_{i3}^{(\alpha-1)} + \delta s_{i3}^{(\alpha-1)};$$
  
2)  $B_{3}^{(\alpha)} = B_{\frac{1}{3}}^{(\alpha-1)} + \delta B_{\frac{1}{3}}^{(\alpha-1)} = B_{\frac{2}{3}}^{(\alpha-1)} + \delta B_{\frac{2}{3}}^{(\alpha-1)};$   
3)  $L_{3}^{(\alpha)} = L_{\frac{1}{3}}^{(\alpha-1)} + \delta L_{\frac{1}{3}}^{(\alpha-1)} = L_{\frac{2}{3}}^{(\alpha-1)} + \delta L_{\frac{2}{3}}^{(\alpha-1)},$ 
(9)

На этих трех основных действиях ×-ое приближение заканчивается. Опыт показывает, что при длинах  $s_{i3}$  засекающих сторон до 10000 км достаточно двух приближений; в третьем же приближении путем сокращенного расчета нужно только убедиться, что новые значения  $s_{i3}^{(2)}$ ,  $B_3^{(2)}$ ,  $L_3^{(2)}$  расстояний и координат дают невязки  $w_B^{(2)} \approx 0$ ,  $w_L^{(2)} \approx 0$  в пределах точности вычислений. В случае надобности, после определения  $s_{i3}$ ,  $B_3$ ,  $L_3$  могут быть найдены согласно [Дел. 4.2] также обратные азимуты  $A_{3i}$  лучей  $\partial J_{3i}$  на засекаемой точке 3.

#### Дел. 7. Некоторые обобщения и дополнения

Рассмотрим некоторые обобщения и дополнения, относящиеся к решению первых трех задач на земном сфероиде.

**Дополнение** 1. Прежде всего найдем значение преобразованной широты  $\varphi_0 = -\overline{\varphi_0}$  для северных  $O^{(s)}$  и южных  $\overline{O}^{(s)}$  вершин выравненной кривой  $\Gamma$ , исходя из введенных в делянке 3 обозначений  $\nu$ ,  $\tau$  и подстановки

$$\sin\varphi=\tau\sin B.$$

Заметив, что в вершинах  $O^{(s)}$ ,  $\overline{O}^{(s)}$  выравненной кривой  $\Gamma$  соответствующий азимут  $A_0 = A_{\overline{0}} \pm \pi = \frac{\pi}{2}$ , найдем:

1) 
$$v^2 = \frac{r^2}{a^2} \sin^2 A = \frac{r_0^2}{a^2} \sin^2 A_0 = \frac{\cos^2 B_0}{1 - e^2 \sin^2 B_0};$$
  
2)  $1 - e^2 v^2 = \frac{1 - e^2}{1 - e^2 \sin^2 B_0};$ 

3)  $1 - v^2 = \frac{(1 - e^2)\sin^2 B_0}{1 - e^2\sin^2 B_0};$  4)  $\tau^2 = \frac{1 - e^2v^2}{1 - v^2} = \csc^2 B_0;$  5)  $\sin \varphi_0 = 1.$ 

Отсюда следует, что независимо от значения геодезической широты  $B_0 = -\overline{B}_{\overline{0}}$  для вершин  $O^{(s)}, \overline{O}^{(s)}$  выравненной кривой  $\Gamma$  получим всегда

$$\varphi_0 = -\overline{\varphi_0} = \frac{\pi}{2} \,. \tag{1}$$

Сбобщенные разложения. Используем равенство (1) для получения некоторых соотношений, имеющих более общий вид, чем в делянках 4—6.

Дело в том, что разложения, которые мы применяли при решении прямой и обратной задач для дуги  $\Delta\Gamma_{1,2}$  выравненной кривой  $\Gamma_{1,2}$  на земном сфероиде, а также для решения прямой сфероидической засечки, были получены из замкнутых выражений (26) делянки З в предположении, что вершины  $O_{ij}^{(s)}$ ,  $\overline{O}_{ij}^{(s)}$ ,  $\overset{\circ}{\overline{O}}_{ij}^{(s)}$  выравненной кривой  $\Gamma_{ij}$  выравненной кривой  $\Gamma_{ij}$  расположены вне соответствующей дуги  $\Delta\Gamma_{ij}$ . В том же слу-

чае, когда на выравненной дуге  $\Delta\Gamma_{ij}$  между концевыми ее точками i, jлежит одна из вершин  $O_{ij}^{(s)}, \overline{O}_{ij}^{(s)}, \overset{\circ}{O}_{ij}^{(s)}, \overset{\circ}{O}_{ij}^{(s)}$  или даже несколько таких вершин (рис. 1), то предшествующие разложения для решения указанных выше задач должны быть надлежащим образом обобщены.

Для получения соответствующих обобщений будем исходить из ранее найденных разложений для вычисления расстояния  $s_{ij}$  и разности долгот  $\Delta L_{ij}$  между концевыми точками *i*, *j* выравненной дуги  $\Delta \Gamma_{ij}$ . Но только теперь мы разобьем всю дугу  $\Delta \Gamma_{ij}$  на ряд частных дуг  $\Delta \Gamma_{x,x+1}$ , выбрав при этом в качестве промежуточных наиболее подходящие точки х. х+1, что будет сделано несколько позже. В таком случае разложения, приведенные в делянках 4,5 и используемые также в делянке 6, при решении прямой сфероидической засечки, могут быть представлены в следующем обобщенном виде:

$$\begin{aligned} 1) \frac{8ij}{a} &= u_{ij} \sum_{x=l}^{x+1-j} \beta_{x,x+1} \int_{\varphi_{x}}^{\varphi_{x+1}} \int_{\varphi_{x}}^{\varphi_{x+1}} \frac{d\varphi}{(1-k_{ij}^{2} \sin^{2}\varphi)^{u_{j}}} = \\ &= u_{ij} \sum_{x=l}^{x+1-j} \beta_{x,x+1} \int_{\varphi_{x}}^{\varphi_{x+1}} \left[ \sum_{k=0}^{n} (-1)^{\lambda} \left( -\frac{3/2}{\lambda} \right) k_{ij}^{2\lambda} \sin^{2\lambda}\varphi \, d\varphi \right] = \\ &= (u C_{0})_{ij} \sum_{x=l}^{x+1-j} \beta_{x,x+1} \left( \varphi_{x+1} - \varphi_{x} \right) + \\ &+ (u_{ij}) \sum_{x=l}^{x+1-j} \beta_{x,x+1} \left[ \sum_{u=0}^{n} C_{2u} \left( \sin 2u\varphi_{x+1} - \sin 2u\varphi_{x} \right) \right]_{ij} = \\ &= (u_{ij}C_{0j}^{(j)}) \sum_{x=l}^{x+1-j} \beta_{x,x+1} \left( \sin 2u\varphi_{x+1} - \sin 2u\varphi_{x} \right) \\ &+ (u_{ij}) \sum_{x=l}^{x-1} \beta_{x,x+1} \left[ \sum_{u=0}^{n} C_{2u}^{(j)} \left[ \sum_{x=l}^{x+1-j} \beta_{x,x+1} \left( \sin 2u\varphi_{x+1} - \sin 2u\varphi_{x} \right) \right] . \end{aligned}$$

$$(2) \sum_{x=l}^{x+1-j} \beta_{x,x+1} \left[ \sum_{u=1}^{n} D_{2u}^{(j)} \left[ \sum_{x=l}^{x+1-j} \beta_{x,x+1} \left( \sin 2u\varphi_{x+1} - \sin 2u\varphi_{x} \right) \right] \\ &- \sum_{x=l}^{x+1-j} \beta_{x,x+1} \left[ \sum_{u=1}^{n} D_{2u}^{(j)} \left[ \sum_{x=l}^{x+1-j} \beta_{x,x+1} \left( \sin 2u\varphi_{x+1} - \sin 2u\varphi_{x} \right) \right] \\ &= \frac{\delta_{ij}}{a \psi_{ij} C_{0}^{(j)}} - \sum_{u=1}^{n} D_{2u}^{(j)} \left[ \sum_{x=l}^{x+1-j} \beta_{x,x+1} \left( \sin 2u\varphi_{x+1} - \sin 2u\varphi_{x} \right) \right] \\ &= \frac{\delta_{ij}}{a \psi_{ij} C_{0}^{(j)}} - \sum_{u=1}^{n} D_{2u}^{(j)} \left[ \sum_{x=l}^{x+1-j} \beta_{x,x+1} \left( \sin 2u\varphi_{x+1} - \sin 2u\varphi_{x} \right) \right] \\ &= \sum_{x=l}^{x+1-j} \beta_{x,x+1} \left[ \sum_{x=1}^{n} \beta_{x,x+1} \left[ \sum_{x=1}^{\varphi_{x+1}} \left( \cos 2u\varphi_{x+1} - \sin 2u\varphi_{x} \right) \right] \\ &= \sum_{x=l}^{x+1-j} \beta_{x,x+1} \left[ \sum_{\lambda=0}^{x+1-j} \beta_{x,x+1} \left( \sum_{\lambda=0}^{\varphi_{x+1}} \left[ \sum_{\lambda=0}^{\varphi_{x+1}} \left( \sum_{\lambda=0}^{\varphi_{x+1}} \left[ \sum_{\lambda=0}^{\varphi_{x+1}} \left( \sum_{\lambda=0}^{\varphi_{x+1}} \left( \sum_{\lambda=0}^{\varphi_{x+1}} \left[ \sum_{\lambda=0}^{\varphi_{x+1}$$

5) 
$$R_{ij}(1) = \frac{1}{2} e^2 R_{ij}(0) - \frac{e^2}{2} (v p)_{ij} \sum_{\alpha=i}^{\alpha+1=j} \beta_{\alpha,\alpha+1} (\varphi_{\alpha+1} - \varphi_{\alpha});$$

*a*)

$$R_{ij}(2) = \frac{3}{4} e^2 R_{ij}(1) - \frac{3}{16} e^2 (k^2 \gamma \varphi)_{ij} \sum_{x=i}^{x+1-j} \left[ \beta_{x,x+1} (\varphi_{x+1} - \varphi_x) - \frac{1}{2} \beta_{x,x+1} (\sin 2\varphi_{x+1} - \sin 2\varphi_x) \right],$$

и т. д. (см. Дел. 4.4). Здесь

$$\beta_{\mathbf{x}.\mathbf{x}+1} = \frac{\cos A_{\mathbf{x}.\mathbf{x}+1}}{\left|\cos A_{\mathbf{x}.\mathbf{x}+1}\right|} = \frac{\varphi_{\mathbf{x}+1} - \varphi_{\mathbf{x}}}{\left|\varphi_{\mathbf{x}+1} - \varphi_{\mathbf{x}}\right|} = \pm 1.$$

Допустим теперь, что в разложениях (2) точки x, x + 1 располагаются в зависимости от границ изменения азимута  $A_{ij}$  в одной из следующих последовательностей (см. Дел. 1.3 и рис. 1):

a) 
$$\mathbf{x} = i, \ O_{ij}^{(1)}, \ \mathcal{J}_{ij}^{(1)}, \ \overline{O}_{ij}^{(2)}, \ \mathcal{J}_{ij}^{(2)}, \dots, \mathbf{x}+1=j \text{ при } 0 \leqslant A_{ij} < \frac{\pi}{2} \text{ (рис. 1,a)};$$
  
b)  $\mathbf{x} = i, \ \mathcal{J}_{ij}^{(1)}, \ \overline{O}_{ij}^{(1)}, \ \mathcal{J}_{ij}^{(2)}, \dots, \mathbf{x}+1=j \text{ при } \frac{\pi}{2} \leqslant A_{ij} < \pi \text{ (рис. 1,d)};$   
c)  $\mathbf{x} = i, \ \ \mathcal{J}_{ij}^{(1)}, \ \overline{O}_{ij}^{(2)}, \dots, \mathbf{x}+1=j \text{ при } \pi \leqslant A_{ij} < \frac{3}{2} \pi \text{ (рис. 1,d)};$   
c)  $\mathbf{x} = i, \ \ \mathcal{O}_{ij}^{(1)}, \ \mathcal{J}_{ij}^{(1)}, \ \mathcal{O}_{ij}^{(2)}, \dots, \mathbf{x}+1=j \text{ при } \frac{3}{2} \pi \leqslant A_{ij} < 2\pi \text{ (рис. 1,c)};$ 

Тогда не трудно прежде всего подсчитать, что при таком расположении точек x, x + 1 будем иметь всегда:

1) 
$$\sum_{\alpha=1}^{\alpha+1=j} \beta_{\alpha,\alpha+1} \left( \sin 2u\varphi_{\alpha+1} - \sin 2u\varphi_{\alpha} \right) = \beta_{ji} \sin 2u\varphi_{j} - \beta_{ij} \sin 2u\varphi_{i},$$
(4)

где

2) 
$$\beta_{ij} = \frac{\cos A_{ij}}{|\cos A_{ij}|}$$
, 3)  $\beta'_{ji} = \frac{\cos A'_{ji}}{|\cos A'_{ji}|}$ , 4)  $A'_{ji} = A_{ji} \pm 180^{\circ}$ .

Сказанное вытекает из того, что если х,  $x + 1 = \Im_{ij}^{(s)}$ ,  $\mathring{\mathcal{G}}_{ij}^{(s)}$ , то  $\varphi_x = \varphi_{x+1} = 0$ ; если же x,  $x + 1 = O_{ij}^{(s)}$ ,  $\mathring{O}_{ij}^{(s)}$ ,  $\overleftarrow{O}_{ij}^{(s)}$ ,  $\overleftarrow{O}_{ij}^{(s)}$ , то  $\varphi_x$ ,  $\varphi_{x+1} = \pm \frac{\pi}{2}$ . Значит, во всех этих случаях

$$\sin 2u\varphi_{x+1} - \sin 2u\varphi_x = 0, \ (x \neq i, \ x+1 \neq j).$$

Что касается сумм

1) 
$$\sum_{\mathbf{x}=\mathbf{i}}^{\mathbf{x}+1=\mathbf{j}} \beta_{\mathbf{x},\mathbf{x}+1} \left(\varphi_{\mathbf{x}+1}-\varphi_{\mathbf{x}}\right) = \Delta \varphi_{\mathbf{i}\mathbf{j}}, \qquad 2) \sum_{\mathbf{x}=\mathbf{i}}^{\mathbf{x}+1=\mathbf{j}} \beta_{\mathbf{x},\mathbf{x}+1} \left(\vartheta_{\mathbf{x}+1}-\vartheta_{\mathbf{x}}\right) = \Delta \vartheta_{\mathbf{i}\mathbf{j}}, \qquad (5)$$

то на основании (1) и смысла множителя В<sub>х.х+1</sub> имеем всегда:

1) 
$$\Delta \varphi_{ij} = q\pi + (\beta_{ji} \varphi_j - \beta_{ij} \varphi_i);$$
 2)  $\Delta \vartheta_{ij} = q\pi + (\beta_{ji} \vartheta_j - \beta_{ij} \vartheta_i),$  (6)

где *q* есть число вершин  $O_{ij}^{(s)}$ ,  $\overline{O}_{ij}^{(s)}$  или  $\mathring{O}_{ij}^{(s)}$ ,  $\stackrel{\circ}{\overline{O}}_{ij}^{(s)}$ , содержащихся между концевыми точками *i*, *j* дуги  $\Delta\Gamma_{ij}$ , причем в (6) преобразованные широты  $\varphi_i$ ,  $\varphi_j$  и дуги  $\vartheta_i$ ,  $\vartheta_j$  берутся с их знаками  $\pm$ . Таким образом, например, для дуг  $\Delta\Gamma_{ij}$ , изображенных на рис. 1*a*, 1*b*, имеем: 56

Рис. 1,*a*: 1) 
$$\Delta \varphi_{ij} = 3\pi - (\varphi_j + \varphi_i), 2) \Delta \vartheta_{ij} = 3\pi - (\vartheta_j + \vartheta_i),$$
  
 $(\varphi_i, \vartheta_i > 0, \varphi_j, \vartheta_j < 0);$   
Рис. 1,*6*: 1)  $\Delta \varphi_{ij} = 2\pi - (\overline{\varphi_j} - \varphi_i), 2) \Delta \vartheta_{ij} = 2\pi - (\overline{\vartheta_j} - \vartheta_i),$   
 $(\varphi_i, \vartheta_i > 0, \overline{\varphi_j}, \overline{\vartheta_j} < 0).$ 

Равенства (4) — (6) являются обобщением соответствующих частных равенств в делянке 4, которые там были записаны без множителя  $\beta_{ij} = \beta'_{ji}$ , перенесенного в левую часть. Вставляя равенства (4)—(6) в разложения общего вида (2), получим следующие окончательные выражения для этих разложений при любой длине  $s_{ij}$  выравненной дуги  $\Delta \Gamma_{ij}$ :

$$1) \frac{s_{ij}}{a} = \mu_{ij} C_0^{(ij)} \Delta \varphi_{ij} + \mu_{ij} \sum_{u=1}^n C_{2u}^{(ij)} (\beta'_{ji} \sin 2u\varphi_j - \beta_{ij} \sin 2u\varphi_i);$$

$$2) \Delta \varphi_{ij} = \frac{s_{ij}}{a\mu_{ij} C_0^{(ij)}} - \sum_{u=1}^n D_{2u}^{(ij)} (\beta'_{ji} \sin 2u\varphi_j - \beta_{ij} \sin 2u\varphi_i);$$

$$3) \Delta L_{ij} = \sum_{\lambda=0}^n R_{ij} (\lambda),$$

$$(2a)$$

где

a) 
$$R_{ij}(0) = \frac{v_{ij}}{|v_{ij}|} \sqrt{1 - e^2} \Delta \vartheta_{ij};$$
 b)  $R_{ij}(1) = \frac{e^2}{2} R_{ij}(0) - \frac{e^2}{2} (v\mu)_{ij} \Delta \varphi_{ij}$   
b)  $R_{ij}(2) = \frac{3}{4} e^2 R_{ij}(1) - \frac{3}{16} e^2 (k^2 v\mu)_{ij} \left[ \Delta \varphi_{ij} - \frac{1}{2} (\beta_{ji} \sin 2\varphi_j - \beta_{ij} \sin 2\varphi_i) \right];$   
c)  $R_{ij}(3) = \frac{5}{6} e^2 R_{ij}(2) - \frac{5}{16} e^2 (k^4 v\mu)_{ij} \left[ \frac{3}{8} \Delta \varphi_{ij} - \frac{-\frac{1}{4} (\beta_{ji}' \sin 2\varphi_j - \beta_{ij} \sin 2\varphi_i) + \frac{1}{32} (\beta_{ji}' \sin 4\varphi_j - \beta_{ij} \sin 4\varphi_i) \right],$   
H T. A.

**Дополнение 2.** Исходя из общих разложений (2*a*), покажем, чтоазимут  $A_{1.2}$  выравненной дуги  $\Delta\Gamma_{1.2}$ , идущей от точки 1 к точке 2 пократчайшему пути, не равен азимуту  $A_{1.2}$  выравненной дуги  $\Delta\Gamma_{1.2}$ , соединяющей те же точки 1, 2, но проведенной в противоположном направлении и потому вообще не являющейся кратчайшей на сфероидемежду указанными точками.

Предположим ради определенности, что  $0 < A_{1,2} < \frac{\pi}{2}$ и что между концевыми точками 1,2 дуги  $\Delta\Gamma_{1,2}$  не содержится вершин выравненной кривой  $\Gamma_{1,2}$ . Тогда азимут  $A_{1,2}$  противоположной дуги  $\Delta\Gamma_{1,2}$  будет удовлетворять условию  $\pi < A_{1,2} < \frac{3}{2} \pi$ , и между концевыми точками 1,2 этой дуги будет содержаться две вершины кривой  $\Gamma_{1,2}$ : южная  $\tilde{O}_{1,2}$  и северная  $\tilde{O}_{1,2}$ . Учитывая указанные особенности расположения выравненных дуг  $\Delta\Gamma_{1,2}$  и  $\Delta\Gamma_{1,2}$  на сфероиде, напишем для них,. ограничиваясь 2 членами, общие выражения разностей долгот  $\Delta L_{1,2}$ ,  $\Delta L_{1,2}$  согласно (2a.3), (6) и [Дел. 5; (5)]:

$$\begin{split} \Delta L_{1,2} &= \sqrt{1 - e^2} \left( \vartheta_2 - \vartheta_1 \right) + \frac{e^2}{2} \sqrt{1 - e^2} \left( \vartheta_2 - \vartheta_1 \right) - \frac{e^2}{2} p_{1,2} \sqrt{1 - e^2} \left( \varphi_2 - \varphi_1 \right); \\ \Delta \overset{\vee}{L}_{1,2} &= -\sqrt{1 - e^2} \left[ 2\pi - \left( \overset{\vee}{\vartheta}_2 - \overset{\vee}{\vartheta}_1 \right) \right] - \frac{e^2}{2} \sqrt{1 - e^2} \left[ 2\pi - \left( \overset{\vee}{\vartheta}_2 - \overset{\vee}{\vartheta}_1 \right) \right] + \\ &+ \frac{e^2}{2} \overset{\vee}{p}_{1,2} \sqrt{1 - e^2} \left[ 2\pi - \left( \overset{\vee}{\varphi}_2 - \overset{\vee}{\varphi}_1 \right) \right], \end{split}$$

причем эти разложения будут точны до малостей порядка  $e^4$  [см. (2a)]. Так как  $\Delta L_{1,2} > 0$ , а  $\Delta L_{1,2} < 0$ , и концы дуг  $\Delta \Gamma_{1,2}$ ,  $\Delta \Gamma_{1,2}$ — одни и те же, то  $\Delta L_{1,2} - \Delta L_{1,2} = 2\pi$ , и мы будем иметь после деления обеих частей на  $\sqrt{1-e^2}$ :

$$\begin{split} \frac{\Delta L_{1,2} - \Delta L_{1,2}}{\sqrt{1 - e^2}} &= 2\pi \left( 1 + \frac{e^2}{2} + \frac{3}{8} e^4 \right) = 2\pi \left( 1 + \frac{e^2}{2} \right) + \\ &+ (1 + \frac{e^2}{2}) \left[ (\vartheta_2 - \vartheta_1) - (\overset{\lor}{\vartheta}_2 - \overset{\lor}{\vartheta}_1) \right] - 2\pi \frac{e^2}{2} \overset{\lor}{p}_{1,2} - \\ &- \frac{e^2}{2} \left[ p_{1,2} \left( \varphi_2 - \varphi_1 \right) - \overset{\lor}{p}_{1,2} \left( \overset{\lor}{\varphi}_2 - \overset{\lor}{\varphi}_1 \right) \right]. \end{split}$$

Разделив затем последнее равенство на  $2\pi$ , получим далее опять с точностью до  $e^4$ :

$$\frac{3}{8}e^{4} \approx 0 \approx \frac{1}{2\pi} [(\vartheta_{2} - \vartheta_{1}) - (\overset{\vee}{\vartheta_{2}} - \overset{\vee}{\vartheta_{1}})] - \frac{e^{2}}{2} \overset{\vee}{p}_{1,2} - \frac{e^{2}}{4\pi} \overset{\vee}{p}_{1,2} [(\varphi_{2} - \varphi_{1}) - (\overset{\vee}{\varphi_{2}} - \overset{\vee}{\varphi_{1}})].$$

Отсюда вытекает, что

$$\frac{1}{2\pi}[(\vartheta_2 - \vartheta_1) - (\overset{\vee}{\vartheta}_2 - \overset{\vee}{\vartheta}_1)] = \frac{e^2}{2} \overset{\vee}{p}_{1,2} + \text{oct.}(\overset{\vee}{e^4}) = \frac{e^2}{2} \cos \overset{\vee}{B}_0 + \text{oct.}(\overset{\vee}{e^4}), \quad (7)$$

и, значит, в данном случае

$$\overset{\vee}{\vartheta}_{2} - \overset{\vee}{\vartheta}_{1}^{!} \neq \vartheta_{2} - \vartheta_{1}.$$
 (8)

Но, согласно делянке 5:

1) 
$$\vartheta_{x} = \operatorname{arc} \operatorname{tg} (p \operatorname{tg} \varphi_{x}) = \operatorname{arc} \operatorname{tg} \frac{p \sin B_{x}}{\sqrt{\cos^{2} B_{x} - p^{2}}} =$$
  

$$= \operatorname{arc} \operatorname{tg} \frac{\cos B_{0} \sin B_{x}}{\sqrt{\cos^{2} B_{x} - \cos^{2} B_{0}}} = f(B_{0}, B_{x});$$
2)  $\sin A_{1,2} = \frac{v_{1,2}}{|v_{1,2}|} \frac{\cos B_{0}}{\cos B_{1}} \sqrt{\frac{1 - e^{2} \sin^{2} B_{1}}{1 - e^{2} \sin^{2} B_{0}}} = \Psi(B_{0}, B_{1}).$ 

Поэтому из неравенства (8) следует, что

$$f(\overset{\vee}{B}_{0}, B_{2}) - f(\overset{\vee}{B}_{0}, B_{1}) \neq f(B_{0}, B_{2}) - f(B_{0}, B_{1}),$$
(9)

т. е.

$$B_0 \neq B_0$$
.

Отсюда заключаем, что

$$\sin A_{1,2} = \Psi (B_0, B_1) \neq \Psi (B_0, B_1) = \sin A_{1,2}.$$
(10)

Наше утверждение доказано.

Из рассмотрения преобразований, выполненных при выводе неравенств (9), (10), вытекает, что эти неравенства будут сохраняться и в том случае, когда на дуге  $\Delta\Gamma_{1,2}$  находится, например, северная вершина  $O_{1,2}$  выравненной кривой  $\Gamma_{1,2}$ , а на противоположной дуге  $\Delta\Gamma_{1,2}$  лежит южная вершина  $O_{1,2}$  соответствующей выравненной кривой  $\Gamma_{1,2}$ . Неравенства (9) и (10) еще более усилятся, если на дуге  $\Delta\Gamma_{1,2}$  содержится q > 2 вершин  $O_{1,2}$ ,  $\overleftarrow{O}_{1,2}$  выравненной кривой  $\Gamma_{1,2}$ .

**Дополнение 3.** Подсчитаем разность долгот  $\Delta L_{1,2}$  для того случая, когда начало 1 дуги  $\Delta \Gamma_{1,2}$  есть южная вершина  $\overline{O}_{1,2}$  выравненной кривой  $\Gamma_{1,2}$ , а конец 2 дуги  $\Delta \Gamma_{1,2}$  есть северная вершина  $O_{1,2}$  кривой  $\Gamma_{1,2}$ , причем дуга  $\Delta \Gamma_{1,2}$  пересекает экватор под азимутом  $A_{\mathfrak{s}}^{(1,2)}$ , который удов-

летворяет условию: 
$$0 < A_{\mathfrak{s}}^{(1.2)} < \frac{\pi}{2}$$

При такой постановке задачи будем иметь прежде всего:

1)  $\frac{v_{1,2}}{|v_{1,2}|} = +1;$  2)  $\varphi_1 = \overline{\varphi_0} = -\frac{\pi}{2}, \qquad \varphi_2 = \varphi_0 = +\frac{\pi}{2};$ 3)  $\vartheta_1 = -\frac{\pi}{2}, \qquad \vartheta_2 = +\frac{\pi}{2};$  4)  $A_{1,2} = A_{2,1}' = \frac{\pi}{2};$ 5)  $\beta_{1,2} = \frac{\varphi_2 - \varphi_1}{|\varphi_2 - \varphi_1|} = +1 = \beta_{2,1}';$  6)  $\beta_{2,1}' \varphi_2 - \beta_{1,2} \varphi_1 = \Delta \varphi_{1,2} = \pi;$ 7)  $\beta_{2,1}' \vartheta_2 - \beta_{1,2} \vartheta_1 = \Delta \vartheta_{1,2} = \pi;$  8)  $\beta_{2,1}' \sin 2u \varphi_2 - \beta_{1,2} \sin 2u \varphi_1 = 0.$ 

Вставляя найденные значения вспомогательных величин в разложение общего вида (2a.3) и используя также равенства (3) — (8) делянки 5, выразим искомую разность долгот  $\Delta L_{1,2}$  для дуги  $\Delta \Gamma_{1,2}$  через вершинную широту  $B_0$ :

$$\Delta L_{1,2} = \sqrt{1 - e^2} \pi + \frac{e^2}{2} \sqrt{1 - e^2} \pi (1 - \cos B_0) + \\ + \left[ \frac{3}{8} e^4 \sqrt{1 - e^2} \pi (1 - \cos B_0) - \frac{3}{16} e^4 \sqrt{1 - e^2} \pi \sin B_0 \cos B_0 \right] = \\ = \sqrt{1 - e^2} \pi \left[ 1 - e^2 \sin^2 \frac{B_0}{2} + \frac{3}{16} e^4 \sin^2 \frac{B_0}{2} - \frac{3}{32} e^4 \sin 2B_0 \right] = \\ = \sqrt{1 - e^2} \pi \left[ 1 - e^2 \sin^2 B_0 \left( 1 - \frac{3}{16} e^2 \right) - \frac{3}{32} e^4 \sin 2B_0 \right] < \pi.$$

Таким образом, если  $0 < A_9^{(1,2)} < \frac{\pi}{2}$ , то для данной выравненной дуги  $\Delta\Gamma_{1,2}$  разность долгот  $\Delta L_{1,2} < \pi$ . Отсюда следует, что для противоположной дуги  $\Delta\Gamma_{1,2}$  соответствующая разность долгот

$$\Delta \check{L}_{1,2} = 2\pi - \Delta L_{1,2} > \pi.$$

Из найденных соотношений

$$\Delta L_{1,2} < 0, \quad \Delta \overset{\vee}{L}_{1,2} > 0 \text{ при } A_{1,2} = A_{2,1}^{'} = \frac{\pi}{2}, \quad B_1 = \overline{B}_{\overline{o}} = -B_2,$$

заключаем далее, что длины  $s_{1,2}$ ,  $s_{1,2}$  дуг  $\Delta\Gamma_{1,2}$ ,  $\Delta\Gamma_{1,2}$  также не равны друг другу, а именно  $s_{1,2} < s_{1,2}$ .

Наконец, так как для экваториальных азимутов  $A_{\mathfrak{s}}^{(1,2)}$ ,  $\overset{\vee}{A}_{\mathfrak{s}}^{(1,2)}$  дуг  $\Delta \Gamma_{1,2}$ ,  $\overset{\vee}{\Delta \Gamma}_{1,2}$  имеем

1) 
$$A_{\mathfrak{s}}^{(1,2)} = F(B_1, B_2, \Delta L_{1,2}), 2) \stackrel{\vee}{A}_{\mathfrak{s}}^{(1,2)} = F(B_1, B_2, \Delta L_{1,2})$$

и по доказанному выше  $\Delta L_{1,2} \neq \Delta \overset{\vee}{L}_{1,2}$ , то, следовательно,  $\dot{A}_{\mathfrak{s}}^{(1,2)} \neq \overset{\vee}{A}_{\mathfrak{s}}^{(1,2)}$ .

#### Дел. 8. Примеры решения новыми способами первых трех основных задач на земном сфероиде

В заключение рассмотрим примеры решения предлагаемыми новыми способами первых трех основных задач на земном сфероиде.

Пример 1. (прилож. 1, рис. 2*a*). Дается решение прямой задачи для выравненной дуги  $\Delta\Gamma_{1,2}$  при расстоянии  $s_{1,2} = 25649 \ \kappa M$  и азимуте  $A_{1,2} = 229^{\circ}03'$ , причем  $B_1 > 0$ ,  $B_2 = \overline{B_2} < 0$ . Проложив дугу  $\Delta\Gamma_{1,2}$ 



Рис. 2.

длины  $s_{1,2}$  и под азимутом  $A_{1,2}$  на глобусе, найдем, что между концевыми точками 1 и  $2=\overline{2}$  этой дуги лежит южная вершина  $\tilde{O}_{1,2}$  кривой  $\Gamma_{1,2}$ , а азимут  $A'_{2,1}$  в точке  $2=\overline{2}$  лежит в пределах  $\frac{3}{2}\pi < A'_{2,1} < 2\pi$ . Применяя поэтому для решения данной задачи разложения общего вида [Дел. 7; (2а)], будем иметь следующие рабочие выражения для вспомогательных величин  $\beta_{1,2}$ ,  $\beta'_{2,1}$ , 60  $\Delta \varphi_{1,2}, \Delta \vartheta_{1,2}$  и (β<sub>2,1</sub> sin  $2u\varphi_2 - \beta_{1,2} sin 2u\varphi_1$ ):

1) 
$$\beta_{1.2} = \frac{\cos A_{1.2}}{|\cos A_{1.2}|} = -1, \quad \beta_{2.1}^{'*} = \frac{\cos A_{2.1}}{|\cos A_{2.1}|} = +1;$$
  
2)  $\Delta \varphi_{1.2} = \pi + \beta_{2.1}^{'} \overline{\varphi_2} - \beta_{1.2} \varphi_1 = \pi + \varphi_1 - |\overline{\varphi_2}|;$   
3)  $\Delta \vartheta_{1.2} = \pi + \beta_{2.1}^{'} \overline{\vartheta_2} - \beta_{1.2} \vartheta_1 = \pi + \vartheta_1 - |\overline{\vartheta_2}|;$   
4)  $\beta_{2.1}^{'} \sin 2u \overline{\varphi_2} - \beta_{1.2} \sin 2u \varphi_1 = \sin 2u \varphi_1 - \sin 2u |\overline{\varphi_2}|.$ 

Решение задачи разбиваем на четыре части: 1) вычисление величин у,  $k^2$ ,  $\tau^2$ ,  $\varphi_1$ ,  $C_0$ ,  $D_{2u}$ ; 2) вычисление  $B_2$ ; 3) вычисление  $L_2$ ; 4) вычисление  $A_{2,1}$ . При нахождении чисел  $C_0$ ,  $D_{2u}$  используем готовые значения вспомогательных коэффициентов  $c_{2u,2\lambda}$ , помещенные в приложении 3. При вычислении преобразованной широты  $\varphi_2$  применяем ускоренный способ расчета поправки  $\Delta \varphi_{1,2}$ , указанный в примечании к [Дел. 4; (10)].

Пример 2. (прилож. 2, рис. 2, б). Дается решение обратной задачи для выравненной дуги  $\Delta\Gamma_{1,2}$ , длина которой  $s_{1,2} = 24447 \ \kappa m$ , а азимут  $A_{1,2} = 147^{\circ}27'$ , причем  $B_1 > 0$ ,  $B_2 = \overline{B_2} < 0$ . После проложения дуги  $\Delta\Gamma_{1,2}$  на глобусе выяснилось, что между концами 1, 2 этой дуги находится южная вершина  $\overline{O}_{1,2}$  кривой  $\Gamma_{1,2}$ , а азимут  $A_{2,1}$  лежит в пределах  $0 < A_{2,1}' < \frac{\pi}{2}$ . Отсюда следует, что

1) 
$$\beta_{1,2} = -1$$
,  $\beta'_{2,1} = +1$ ;  
3)  $\Delta \vartheta_{1,2} = \pi + \vartheta_1 - |\overline{\vartheta_2}|$ ;  
4)  $\beta'_{2,1} \sin 2 u \overline{\varphi_2} - \beta_{1,2} \sin 2 u \varphi_1 = \sin 2 u \varphi_1 - |\overline{\vartheta_2}|$ ;

Все существенные вопросы решения данной задачи изложены достаточно подробно в делянке 5. Здесь же только отметим, что если в прямой задаче основной рабочей величиной является  $v_{1,2} = \sin A_9^{(1,2)}$ , то здесь такой величиной будет  $p_{1,2} = \cos B_0^{(1,2)}$ , которая находится последовательным приближением из уравнения  $\Delta L_{1,2} = \sum_{\lambda=0}^{n} R_{1,2}(\lambda)$ . Для определения величины  $p_{1,2}$  с точностью до 8—9 знаков достаточно 2 полных приближений и одного неполного, поверочного приближения даже при  $s_{1,2} \approx 25000 \ \kappa m$ .

После вычисления основной величины  $p_{1,2}$ , а попутно — и разности  $\Delta \varphi_{1,2}$ , находим азимуты  $A_{1,2}$ ,  $A_{2,1}$  и расстояние  $s_{1,2}$  из равенств, в которых  $y_{1,2}$  и  $p_{1,2}$  выражены через  $p_{1,2} = \cos B_0^{(1,2)}$ .

Примеры 3 и 4. (приложения 4, 5; рис. 3). В этих примерах дано решение прямой сфероидической засечки двумя путями: а) с вычислением только координат  $B_3$ ,  $L_3$  определяемой точки 3,  $\delta$ ) с одновременным вычислением расстояний  $s_{1,3}$ ,  $s_{2,3}$  и координат  $B_3$ ,  $L_3$ .

В обоих примерах решается одна и та же прямая засечка, опорные точки которой 1, 2 взяты вблизи Мурманска и Хабаровска, а определяемая точка 3 находится вблизи Сан-Франциско в США, так что расстояния  $s_{1.3}$ ,  $s_{2.3}$  от опорных точек до определяемой оказались почти равными:  $s_{1.3} = 8073 \ \kappa m$ ,  $s_{2.3} = 7947 \ \kappa m$ . Азимуты засекающих лучей равны соответственно:  $A_{1.3} = 341^{\circ}13'$ ,  $A_{2.3} = 53^{\circ}06'$ , причем северный полюс P сфероида попал внутрь треугольника 123 (рис. 3).

Последовательность вычисления прямой сфероидической засечки обоими указанными способами достаточно подробно изложена в де-

лянке 6, но только в данных примерах вместо частных разложений были взяты разложения общего вида [Дел. 7; (2а)], так как на дугах  $\Delta\Gamma_{1.3}$  и  $\Delta\Gamma_{2.3}$  лежат северные вершины  $O_{1.3}$  и  $O_{2.3}$  выравненных кривых  $\Gamma_{1.3}$ ,  $\Gamma_{2.3}$ . Здесь же мы ограничимся лишь отдельными замечаниями.

1. При вычислении прямой засечки по первому способу начальное значение  $B_3^{(0)}$  широты определяемой точки 3 было получено ре-



Рис. 3.

шением засечки на шаре с 5 десятичными знаками. Для вычисления координат  $B_3$ ,  $L_3$  точки 3 на сфероиде с 8—9 знаками потребовалось два полных приближения (одно — с 6 знаками, другое—с 8—9 знаками) и одно поверочное неполное приближение.

2. При вычислении прямой засечки по второму способу начальные значения  $\sigma_{1.3}^{(0)}$ .  $\sigma_{2.3}^{(0)}$  засекающих сторон 1.3, 2.3 в дуговой мере были получены 5-значным решением засечки на шаре. Но дальше требовалось найти соответствующие начальные значения  $s_{1.3}^{(0)}$ ,  $s_{2.3}^{(0)}$  длин этих сторон на сфероиде. С этой целью была вычерчена мелкая картографическая сетка северного полушария в полярной стереографической проекции (рис. 3), на которой затем было построено равноугольное изображение 1' 2' 3' соответствующего сферического треугольника 1°2°3°. Разбив каждую засекающую сторону i'3' = 1'3', 2'3' треугольника 1'2'3' на четыре части, определили по картографической сетке с точностью

Приложение 1

Решение прямой задачи для выравненной дуги  $\Delta \Gamma_{1.2}$ 

|                                         |                          | K6                                | 0.000.000236     |                              |               |
|-----------------------------------------|--------------------------|-----------------------------------|------------------|------------------------------|---------------|
| 1. Исходные данные.                     |                          | K8                                | 0.000 000280     | 3. Вычис.                    | ление $B_2$ . |
|                                         |                          | 'n                                | 0.000 0000015    |                              |               |
| $B_1$                                   | 68°34′15′′.739           |                                   | <b>科学校会会</b>     | lg s <sub>1.2</sub>          | 7.4090 69146  |
| $L_1$                                   | 29°42′16′′.347           | lg sin B <sub>1</sub>             | 9.968 88962      | $\lg \sqrt{1-e^2\gamma^2}$   | 9.9998 88636  |
| A <sub>1.2</sub>                        | 229°03′15′′.460          | lg τ                              | 0.017 19304      | $- \lg(1 - e^2)a^2$          | 6.8017 84509  |
| s <sub>1.2</sub>                        | 25 648 923.7             | Ig sin $\varphi_1$                | 9.986 08266      | $-\lg C_0$                   | 0.0020 21260  |
|                                         |                          | φ1                                | 75°34′19′′.741   | lg Q <sup>1</sup>            | 0.6051 52013  |
| 2. Вычисле                              | ние величин:             |                                   | - 11 - The Start | Q                            | 4.028 58019   |
| $\nu, \kappa^2, \tau^2,$                | $\varphi, C_0, D_{2\mu}$ | a said the                        |                  | $(\pi + \varphi_1)$          | 4.460 57550   |
|                                         | 1                        | 1                                 | 1.000 000000     | (0)                          | 0.431 00531   |
|                                         |                          | *) C <sub>02</sub> K <sup>2</sup> | 0.004 637921     | $\varphi_2$                  | -0.401 33501  |
| lg sin $A_{1,2}$                        | 9.878 13727n             | $C_{04} \ \kappa^4$               | 0.000 026888     | =                            | -24°45′05′′.4 |
| lg cos $B_1$                            | 9.562 70597              | C06K <sup>6</sup>                 | 161              | (0)                          |               |
| $-\lg V_1$                              | -0.000 19522             | $c_{08}\kappa^8$                  | 1                | $\sin 2\varphi_2^{(0)}$      | -0.760 440    |
| $-\lg \sqrt{1-e^2}$                     | -9.998 54166             | $C_0$                             | +1.004 664971    | $+$ sin $2\varphi_1$         | +0.482 605    |
| lg v                                    | 9.442 10636n             |                                   |                  | $\sin 4\varphi_2^{(0)}$      | -0.9877       |
| $1\sigma v^2$                           | 8 884 21272              | $c_{22}\kappa^2$                  | -0.002 318961    | $+$ sin $4\varphi_1$         | -0.8454       |
| 10 02                                   | 7.825.64818              | $c_{24}\kappa^4$                  | -0.000 017925    | $\sin 6\varphi_2^{(0)}$      | -0.52         |
| 10 02v2                                 | 6 709 86000              | $C_{26}\kappa^6$                  | 121              | $+$ sin $6\varphi_1$         | +1.00         |
| 1g e /-                                 | 0.703 00030              | $c_{28}\kappa^8$                  | - 1              | ε <sup>(0)</sup>             | -0.277 835    |
| $e^2$                                   | 0.006 693422             | C <sub>2</sub>                    | -0.002 337008    | ε <sup>(0)</sup>             | -1.8331       |
| $e^2\gamma^2$                           | 0.000 512697             |                                   |                  | (0)                          | +0.48         |
| $\gamma^2$                              | 0.076 59717              | $C_{44}K^4$                       | +0.000 002242    | $-D_2\varepsilon_2^{(0)}$    | -0.000 646289 |
| $e^2 - e^2 \gamma^2$                    | 0.006 180725             | $C_{46}\kappa^6$                  | + 24             | $-D_4 \varepsilon_4^{(0)}$   | +0.000 004134 |
| $1 - e^{2} v^{2}$                       | 0.999 48730              | C <sub>4</sub>                    | +0.000 002266    | $-D_6 \varepsilon_6^{(0)}$   | + 13          |
| $1 - v^2$                               | 0.923 40283              | in the second                     |                  | δφ(0)                        | -0.000 642142 |
| $\left[\lg(e^2-e^{2\nu^2})\right]$      | 7.791 03942              | $C_6 = c_{66} \kappa^6$           | -0.000 000027    | 12                           | 0.000 012112  |
| $\int \frac{1}{1} g(1 - e^{2\gamma^2})$ | 9.999 77728              |                                   |                  | $\cos 2\varphi_2^{(0)}$      | 10.649.408    |
| $l = lg(1-v^2)$                         | 9.965 39120              | $C_2:C_0=D_2$                     | -0.002 326156    | $\cos 4\varphi_2^{(0)}$      | -0.15654      |
| $lg \kappa^2$                           | 7.791 26214              | $C_4:C_0=D_4$                     | +0.000 002255    | $\cos 6\varphi_2^{(0)}$      | -0.060        |
| lg $\tau^2$                             | 0.034 38608              | $C_6:C_0=D_6$                     | -0.000 000027    | $-2D_2\cos 2\varphi_2^{(0)}$ | +0.003 02125  |
| $\kappa^2$                              | 0.006 183895             |                                   | 2.1914月3         | $-4D_4\cos 4\varphi_2^{(0)}$ | +0.000 00141  |
| K <sup>4</sup>                          | 0.000 038241             |                                   | TEN 44           | $-6D_6\cos(\varphi_0^{(0)})$ | + 1           |
|                                         | 5.000 000211             |                                   |                  | x                            | +0.003 02267  |
|                                         |                          | and the second                    |                  |                              | 1 01000 02201 |

) Значения чисел с 2и·2), даны в приложении 3.

|                                                         | Share In States          | 7.1.1                                                                                                     |                               | No. of the South                            | No. of the second second                |
|---------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------|---------------------------------------------|-----------------------------------------|
| $1-x=x_1$                                               | +0.996 97733             | p                                                                                                         | 0.275 90490                   |                                             |                                         |
| $\delta \varphi_2^{(0)} : x_1 = \Delta \varphi_2^{(0)}$ | -0.000 644089            | $\int_{\omega}^{\infty} \sqrt{1-e^2}$                                                                     | -0.996 6477                   |                                             |                                         |
| $\varphi_2^{(0)}$                                       | 0.431 99531              | vµ                                                                                                        | -0.274 9800                   | $\epsilon_2 = \epsilon_2^{(1)}$             | -0.2787                                 |
| φ <sub>2</sub> <sup>(1)</sup>                           | -0.432 63940             |                                                                                                           |                               | $-1/2\varepsilon_2$                         | +0.1394                                 |
|                                                         |                          | $\pi + \varphi_1$                                                                                         | 4.460 576                     | +<br>$\Delta \varphi_{1,\overline{2}}$      | +4.0279                                 |
|                                                         |                          | φ_                                                                                                        | -0.432 639                    | σ2                                          | +4.1673                                 |
| sin $2\varphi_2^{(1)}$                                  | -0.761 276               | $\Delta \varphi_{1,2}$                                                                                    | +4.027 937                    | ×<br>$3/16e^2\kappa^2$ νμ.                  | - 0.00000 21341                         |
| $\sin 4\varphi_2^{(1)}$                                 | -0.9873                  | يام ×                                                                                                     | -0.274 9800                   | $\Delta R(1)$                               | -0.00000 8893                           |
| $\sin 6\varphi_2^{(1)}$                                 | 0.52                     | 6                                                                                                         | -1.107 602                    |                                             |                                         |
| ε <sup>(1)</sup>                                        | -0.278 671               |                                                                                                           | F                             | 3/4e <sup>2</sup>                           | 0.005 020 1                             |
| ε <sub>4</sub> <sup>(1)</sup>                           | -1.8327                  | lgtgq <sub>2</sub>                                                                                        | 9.664 47223 <i>n</i>          | R(1)                                        | 0.009 0854                              |
| ε <sup>(1)</sup>                                        | +0.48                    | lgp                                                                                                       | 9 440 75941                   | $3/4\rho^2 R(1)$                            | -0.000 045610                           |
| $-D_2 \varepsilon_2^{(1)}$                              | -0.000 648232            | lgtgq1                                                                                                    | 0.589 60696                   | $-\Delta R(1)$                              | +0.000 008893                           |
| $-D_4 \varepsilon_4^{(1)}$                              | +0.000 004133            | lg tg(pt <sub>z</sub> )                                                                                   | 9.105 23164n                  | F(2) = R(2)                                 | -0.000 037717                           |
| $-D_6 \varepsilon_6^{(1)}$                              | + 13                     | $\log \left( \frac{pt_1}{pt_2} \right)$                                                                   | 0.030 36637                   |                                             |                                         |
| $\Delta \varphi_2^{(0)}$                                | 644086                   | $pt_{-}=\vartheta_{\pi}$                                                                                  | -7°15′41′′.038                | $\epsilon_{i} = \epsilon^{(1)}$             | -1.8327                                 |
| $\varphi_2^{(0)}$                                       | -0.431 99531             | nt - 9                                                                                                    | +47°00′05′′.268               | $\frac{3/8}{2}$                             | +1.5105                                 |
| $\varphi_2^{(1)} = \varphi_{-}$                         | 0.400.60040              |                                                                                                           | 219°44′24′′ 230               |                                             | +0.0697                                 |
| =                                                       | $-24^{\circ}47'18''.282$ | $\begin{bmatrix} 180^\circ + (\vartheta_1 + \vartheta_2) \\ \Delta \vartheta_1 \\ \hline 2 \end{bmatrix}$ | 3.835 18761                   | $-1/4\varepsilon_2$<br>$+1/32\varepsilon_4$ | -0.0573                                 |
|                                                         |                          | $\times$                                                                                                  | -0.996 64767                  | σ,                                          | +1.5229                                 |
| $1g \sin \varphi_{\overline{2}}$                        | 9.622 49221 <i>n</i>     | $\nabla \mu F(0) = R(0)$                                                                                  | -3.822 33080                  | $\times$ 5/16 $e^2\kappa^4\gamma\mu$        | -0.00000 00220                          |
| —lg τ                                                   | 0.017 19304              | 6—                                                                                                        | +1.107 602                    | $\Delta R(2)$                               | $\frac{-0.000\ 000034}{-0.000\ 000034}$ |
| $\lg \sin B_2$                                          | 9.605 29917n             | σ <sub>0</sub><br>×                                                                                       | -2.714 729                    |                                             |                                         |
| $B_{\overline{2}}$                                      | -23°45′55′′.858          | $e^{2}/2$                                                                                                 | 0.003 346711                  | $5/6e^{2}$                                  | 0.005 578                               |
| 9 D                                                     |                          | u F(1) = R(1)                                                                                             | -0.009 085413                 | $\times$ R(2)                               | - 0.000 037717                          |
| <b>Э. ДЫ</b> Ч                                          | исление L <sub>2</sub>   |                                                                                                           |                               | $5/6e^2R(2)$                                | - 0.000 000210                          |
|                                                         |                          | $3/16e^{2}$                                                                                               | 0.001 2550                    | $-\Delta R(2)$                              | + 34                                    |
| $\omega = \frac{v}{ v } = \omega$                       | -1                       | $5/16e^{2}$                                                                                               | 0.002 2092                    | $\gamma\mu F(3) = R(3)$                     | -0.000 000176                           |
|                                                         |                          | $3/16e^{2}\kappa^{2}$                                                                                     | 0.00000 77608                 | <i>R</i> (2)                                |                                         |
| $1g\frac{\omega}{\tau} =$                               |                          | vir                                                                                                       | -0.27 498                     | <i>R</i> (1)                                | -0.009 085413                           |
| $= \lg \sin B_0$                                        | 9.982 80696n             | $5/16e^2\kappa^4$                                                                                         | 0.00000 00800                 | R(0)                                        | -3.822 33080                            |
| $B_0$                                                   | -73°59′02′′.590          | $3/16e^2\kappa^2$ νμ.                                                                                     | -0.00000 21341                | $\Delta L_{1,\overline{2}}$                 | -3.831 45411                            |
| $\lg \cos B_0 = \lg p$                                  | 9.440 75941              | $5/16e^{2}\kappa^{4}$ יןי                                                                                 | -0.00000 00220                | - 12                                        |                                         |
|                                                         |                          |                                                                                                           | N. M. Kars                    |                                             |                                         |
| 2                                                       |                          |                                                                                                           | Contract of the second second | and the second second                       |                                         |

| $\Delta L_{\overline{1.2}}$ | -219°31′34″.139        |
|-----------------------------|------------------------|
| $+$ $L_1$                   | 29°42′16′′.347         |
| $L_{\overline{2}}$          | <u>170°10′42′′.208</u> |

## 4. Вычисление A<sub>2.1</sub>

| $lg\sqrt{1-e^2}$                | 9.998 54166          |
|---------------------------------|----------------------|
| lg v                            | 9.442 10636n         |
| lg $V_{\overline{2}}$           | 0.001 22217          |
| $-\lg\cos B_{\overline{2}}$     | -9.961 51714         |
| $\lim \sin A'_{\frac{1}{2}, 1}$ | 9.480 35305 <i>n</i> |
| $A'_{\overline{2.1}}$           | 342°24′27′′.940      |
| $A_{\overline{2,1}}$            | 162°24′27′′.940      |

## Продолжение приложения 1

## Приложение 2

Решение обратной задачи для выравненной дуги ΔГ<sub>1.2</sub>

| . Исходни                        | ые данные                         | $\pi_1 - \pi_2$                                      | +0.63 169           | $e^2$                               | 0.00 6693        |
|----------------------------------|-----------------------------------|------------------------------------------------------|---------------------|-------------------------------------|------------------|
| $B_{\overline{2}}$               | -31°13′27″.653                    | $\sin \Delta L_{1,\overline{2}}$                     | -0.39 998           | $\tau^2$                            | 1.03 973         |
| $B_1$                            | + 68°34′15′′.739                  | ctg $\alpha_{\overline{1.2}}$                        | -1.57 930           | $e^2$ : $	au^2$ = $\kappa^2$        | 0.00 6438        |
| $L_{\overline{2}}$<br>$L_1$      | 233°16′53′′.814<br>29°42′16′′.347 | $\alpha_{1,\overline{2}} = A_{1,\overline{2}}^{(0)}$ | 147°39′30′′         | $\underset{\times}{\text{sin }B_2}$ | <u>-0.51</u> 839 |
| $\Delta L_{1.\overline{2}}$      | 203°34′37′′.467                   | 3. Вычисле                                           | ение $p = \cos B_0$ | τ                                   | +1.01 967        |
| -                                | 3,553 09023                       | а) Приближение 1                                     |                     | sin $B_1$                           | +0.93 087        |
|                                  | (0)                               | sin $A_{1.\overline{2}}^{(0)}$                       | +0.53 496           | sinợ₂                               | -0.52 859        |
| 2. Вычис                         | сление $A_{1,2}^{(0)}$            | $\cos B_1$                                           | +0.36 535           | sin φ1                              | +0.94 918        |
| tg B <sub>2</sub>                | -0.60 621                         | $\cos B_0^{(0)} = p^{(0)}$                           | +0.19 545           | φ <sub>2</sub>                      | -31°54′.36′′     |
| $\times$ $\cos B_1$              | +0.36535                          | $\times$<br>$\frac{v}{1}\sqrt{1-e^2}$                | +0.99 665           | - φ1                                | +71°39′18′′      |
| $\cos \Delta L_{1,\overline{2}}$ | -0.91 653                         | v  V 1—e-<br>vµ                                      | +0.19 480           | $180^{\circ}+(\varphi_1+\varphi_2)$ | 219°45′42′′      |
| $\sin B_1$                       | +0.93 087                         | B <sub>0</sub>                                       | +78°43′44′′         | $=\Delta \varphi_{1,\overline{2}}$  | +3.83527         |
| п1                               | -0.22 148                         | $\csc B_0 = \tau$                                    | 1.01 967            | ×<br>×                              | +0.19 480        |
| $\Pi_2$                          | -0.85317                          |                                                      |                     | δ                                   | +0.74 171        |

| the second s | THE RESIDENCE AND ADDRESS OF THE OWNER OF THE OWNER OF THE OWNER | Contract of the Owner of the Ow | CONTRACTOR OF THE OWNER WAS DREAMINED IN THE OWNER OF THE OWNER | and the subscription of the subscription of the subscription of the |                                         |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------|
| $\Delta L_{1\overline{2}}$                                                                                     | +3.553 090                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     |                                         |
| X                                                                                                              | 1.0.006 648                                                      | tg $\varphi_{\overline{2}} = t_{\overline{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.62 269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lg tg φ <sub>2</sub>                                                | 9.794 39292 <i>n</i>                    |
| $V 1 - e^2$                                                                                                    | + 2 541 180                                                      | $- \left  \begin{array}{c} \mathrm{tg}\varphi_1 = t_1 \\ (t_1 + t_2) \end{array} \right $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +3.0158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $- \lim_{n \to \infty} p$                                           | 9.293 28519                             |
| $\forall \mu F(0) = R(0)$                                                                                      | +3.541 180                                                       | $\times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +2.3931                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1g ιg φ <sub>1</sub>                                                | 0.480 30178                             |
| 6—                                                                                                             | -0.747 11                                                        | $\frac{v}{ v } \tau^2 \sqrt{1-e^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{1}{2}$ +1.03 623                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $lgtg(pt_2)$                                                        | 9.08767811 <i>n</i>                     |
|                                                                                                                | a strafter                                                       | (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\lg \lg (pt_1)$                                                    | 9.773 58697                             |
| σ <sub>0</sub>                                                                                                 | +2.794 07                                                        | $\frac{dw}{dp} = \chi^{(0)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +2.4798                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     |                                         |
| $\times e^{2/2}$                                                                                               | 0.003 3467                                                       | $p^{(0)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +0.195 450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $pt_{\overline{2}} = \vartheta_{\overline{2}}$                      | -6°58′35′′.936                          |
|                                                                                                                |                                                                  | $-w^{(0)}:x=$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 1 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $pt - \theta_t$                                                     | 1 30°41/55// 590                        |
| $\forall \mu F(1) = R(1)$                                                                                      | ) $+0.009\ 351$                                                  | $=\Delta p^{(0)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + 1 015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $p_{i_1=0_1}$<br>180°+(9,+9)                                        | +304135.329                             |
|                                                                                                                |                                                                  | p <sup>(1)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10 196 465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $100^{-1}(01+0\overline{2})$                                        | 200 40 19 .090                          |
| $\sin 2\varphi_{\overline{2}}$                                                                                 | -0.8974                                                          | - Contraine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.0.130 405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $=\Delta \vartheta_{+} =$                                           | +3,55562156                             |
| +                                                                                                              |                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I a start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\times$ <sup>1.2</sup>                                             | - ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( |
| $\sin 2\varphi_1$                                                                                              | +0.5975                                                          | б) Приб                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | лижение 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{v}{ v }\sqrt{1-e^2}$                                         | +0.996 64767                            |
| ε2                                                                                                             | -0.2999                                                          | $p^{(1)} = \cos B_0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +0.196 46500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | νμ $F(0) = R(0)$                                                    | +3.543 70194                            |
| $-\frac{1}{2} \varepsilon_2$                                                                                   | +0.1500                                                          | $\lg p^{(1)} = \lg p$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.293 28519                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | . —6                                                                | -0.751 066                              |
| + 2 -2                                                                                                         | 1                                                                | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | σ <sub>0</sub>                                                      | +2.792 636                              |
| $\Delta \varphi_{\overline{1.2}}$                                                                              | +3.8353                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | +78°40′10′′.857                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $e^{2/2}$                                                           | 0.003 34671                             |
| σ2                                                                                                             | +3.9853                                                          | $lgcscB_0 = lg\tau$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.008 54760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | νμ $F(1)=R(1)$                                                      | +0.009 34614                            |
|                                                                                                                |                                                                  | Y T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                     |                                         |
| 3/16 e <sup>2</sup>                                                                                            | 0.001 255                                                        | $\bigvee$ $V = 1 - e^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | +0.996 648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |                                         |
| $3/16 e^2 \kappa^2$                                                                                            | 0.0000 08079                                                     | ^ p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +0.196~465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $e^{2}$ : $	au^{2}$ = $\kappa^{2}$                                  | 0.006 435                               |
| $3/16e^{2\kappa^{2}\nu\mu}$                                                                                    | $+0\ 0000\ 01574$                                                | νμ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $+0.195\ 806$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mathcal{K}^4$                                                     | 0.0000 4141                             |
| $\times$ $\sigma_2$                                                                                            | +3.9853                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $3/16 e^2$                                                          | 0.001 255                               |
| $\Delta R(1)$                                                                                                  | 0.0000 0627                                                      | lg sin $B_{\overline{a}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.714 65700 <i>n</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $5/16 e^2$                                                          | 0.002 092                               |
|                                                                                                                |                                                                  | lg τ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.008 54760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $3/16 e^{2}\kappa^{2}$                                              | 0.0000 08076                            |
| $3, 4 e^2$                                                                                                     | 0.005 020                                                        | lg sin $B_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.968 88962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~ νμ                                                                | +0.19 581                               |
| $\times R(1)$                                                                                                  | +0.009 351                                                       | lg sin 95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.723 20460 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{\times}{5/16} e^2 \kappa^4$                                  | 0.0000 000866                           |
| $3/4 o^2 P(1)$                                                                                                 | +0.000.047                                                       | lg sin o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9 977 43722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                     | см. дальше                              |
| $-\Delta R(1)$                                                                                                 | -0.000 006                                                       | φ <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -31°55′02′′.186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | sin 2q <sub>2</sub>                                                 | -0.8975                                 |
| $v_{\mu}F(2) = R(2)$                                                                                           | $+0.000\ 041$                                                    | φ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | +71°41′26′′.029                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $+$ sin $2\varphi_1$                                                | +0.5965                                 |
|                                                                                                                |                                                                  | $180^\circ + (\varphi_1 + \varphi_{\overline{\alpha}})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 219°46′23′′.843                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ε2                                                                  | -0.3010                                 |
| R(0)                                                                                                           | +3.541 180                                                       | $=\Delta \varphi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +3.83576731                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-1/2 \epsilon_2$                                                   | +0.1505                                 |
|                                                                                                                | 10,000,051                                                       | × '1.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 105 806                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $+ \Delta \varphi_{1,2}$                                            | +3.8358                                 |
| R(1)                                                                                                           | $+0.009\ 351$                                                    | 5<br>vh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\pm 0.751.066$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | σ <sub>2</sub>                                                      | +3.9863                                 |
| R(2)                                                                                                           | + 41                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | T 0.731 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ×<br>3/16c <sup>2</sup> c <sup>2</sup> ····                         | 0.0000.01591                            |
| $\Delta L_{1,2}$                                                                                               | +3.550572                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0/10e-K-vp                                                          | T0.0000 01301                           |
| $\Delta L_{1,\overline{2}}$                                                                                    | +3.553 090                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\Delta R(1)$                                                       | +0.0000 06302                           |
| w <sup>(0)</sup>                                                                                               | - 2 518                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | An and a light                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                     |                                         |

|                                       | The second s | and the second | States in the same of the second states in the | and the property of the second              | a state of the sta |
|---------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3/4 e <sup>2</sup>                    | 0.005 020                                                                                                      | $tg \varphi_{\overline{2}} = t_{\overline{2}}$                                                                   | -0.62 286                                      | $180^{\circ} + (\vartheta_1 + \vartheta_2)$ | 203°43′19″.871                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $\times R(1)$                         | +0.009 346                                                                                                     | tg $\varphi_1 = t_1$                                                                                             | +3 02 188                                      | $=\Delta \vartheta_{1,\overline{2}}$        | +3.555 62291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $3/4 e^2 R(1)$                        | +0.00004692                                                                                                    | 0.11                                                                                                             |                                                | X                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $-\Delta R$ (1)                       | -0.0000 0630                                                                                                   | $(t_1+t_2)$                                                                                                      | +2.39902                                       | $\frac{v}{ v }\sqrt{1-e^2}$                 | +0.996 64767                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\nu \mu F(2) = R(2)$                 | +0.00004062                                                                                                    | $\frac{1}{\sqrt{2}}\tau^2 \sqrt{1-e^2}$                                                                          | +1.03 666                                      | אָע $F(0) = R(0)$                           | +3.54370328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       | 1. 67 1.                                                                                                       |                                                                                                                  |                                                | 6—                                          | -0.751 070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                       |                                                                                                                | $\frac{dw^{(1)}}{dx} = \chi^{(1)}$                                                                               | +2.48 70                                       | $\times \sigma_0$                           | +2.792638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       |                                                                                                                | (1) $(1)$                                                                                                        | a har the                                      | $e^2/2$                                     | 0.003 34671                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                                                                                                                | $-w': \chi' = $                                                                                                  | 52                                             | $\nu\mu F(1) = R(1)$                        | +0.009 34613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\sin 4\varphi_2$                     | -0.7916                                                                                                        | $= \Delta p$                                                                                                     | + 55 $+$ 0 196 46500                           |                                             | Contract Contraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| sin 4q1                               | -0.9575                                                                                                        | (2)                                                                                                              | + 0.106 46552                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| σ4                                    | -1.7491                                                                                                        | p = p                                                                                                            | +0.19040333                                    |                                             | a a start a st                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                       |                                                                                                                | 4. Поверочни                                                                                                     | ый расчет для р                                | <i>R</i> (0)                                | +3.54370328                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $3/8 \Delta \varphi_{\overline{1.2}}$ | +1.4384                                                                                                        | $p = \cos B_0$                                                                                                   | + 0.196 46553                                  | R (1)                                       | +0.009 34613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $-1/4 \epsilon_2$                     | +0.0753                                                                                                        | lg p                                                                                                             | 9.293 28636                                    | R (2)                                       | + 04062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $+1/32 \epsilon_4$                    | -0.0547                                                                                                        | $B_0$                                                                                                            | 78°40′10′′.746                                 | R (3)                                       | + 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $\times$ $\sigma_4$                   | +1.4590                                                                                                        | lg sin $B_{\bar{2}}$                                                                                             | 9.714 65700 <i>n</i>                           | $\Delta L_{1.2}^{(2)}$                      | $+3.553\ 09023$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $5/16 e^{2\kappa^{4}\nu\mu}$          | $+0.0000\ 000170$                                                                                              | $\lg csc B_0 = \lg \tau$                                                                                         | 0.008 54765                                    | $\Delta L_{1.\overline{2}}$                 | +3.553 09023                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\Delta R$ (2)                        | +0.0000 000248                                                                                                 | lg sin $B_1$                                                                                                     | 9.968 88962                                    | w <sup>(2)</sup>                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 512 0                                 | There are an                                                                                                   | $\lg \sin \varphi_2$                                                                                             | 9.723 20465 <i>n</i>                           | 7. S. P. M.                                 | and for the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\times 5/6 e^2$                      | 0.005 578                                                                                                      | lg sin $\varphi_1$                                                                                               | 9.977 43727                                    | 5. Вычисле                                  | ние А 1.2 и А 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| R (2)                                 | +0.0000 4062                                                                                                   | φ <sub>2</sub>                                                                                                   | -31°55′ 02″.201                                | $\lg \frac{v}{ v } p$                       | 9.923 28636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $5/6 \ e^2 R$ (2)                     | +0.0000 00227                                                                                                  | φ1                                                                                                               | +71°41′26′′.100                                | $\lg V_1$                                   | 0.000 19522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $-\Delta R(2)$                        | 025                                                                                                            | $180^{\circ}+(\varphi_{1}+\varphi_{\overline{2}})$                                                               | 219°46′23′′.899                                | $-\lg V_0$                                  | -0.000 05647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| νμ $F(3)=R(3)$                        | +0.0000 0020                                                                                                   | $=\Delta \varphi_{1,\overline{2}}$                                                                               | +3.835 76799                                   | $-\lg \cos B_1$                             | -9.562 70597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                       |                                                                                                                | X vhr                                                                                                            | +0.195 807                                     | $\lg \sin A_{1\overline{2}}$                | 9.730 71914                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| R (0)                                 | +3.54370194                                                                                                    | 6                                                                                                                | +0.750070                                      | $A_{1\overline{2}}$                         | 147°27′27′′.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| R (1)                                 | +0.009 34614                                                                                                   |                                                                                                                  |                                                | 1.2                                         | 1. 1. 1. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| R (2)                                 | + 4062                                                                                                         | lg tg $\varphi_{\overline{x}}$                                                                                   | 9.794 39299                                    | $\lg \frac{v}{ v } p$                       | 9.923 28636                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| R (3)                                 | + 20                                                                                                           | lg p                                                                                                             | 9.293 28636                                    | $\lg V_{\overline{2}}$                      | 0.001 06741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\Delta L_{1.2}^{(1)}$                | +3.55308890                                                                                                    | lg tg φ1                                                                                                         | 0.480 30229                                    | $-\lg V_0$                                  | -0.000 05647                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\Delta L_{1,\overline{2}}$           | +3.553 09023                                                                                                   | $\lg pt_{\overline{2}}$                                                                                          | 9.087 67935                                    | $-\log \cos B_2$                            | -9.932 03927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| w <sup>(1)</sup>                      | - 133                                                                                                          | lg $pt_1$                                                                                                        | 9.773 58865                                    | lg sin $A'_{-2,1}$                          | 9.362 25803                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                       |                                                                                                                | $pt_{\overline{2}} = \vartheta_{\overline{2}}$                                                                   | -6°58′36′′.008                                 | $A'_{\overline{2}_1}$                       | 13°18′49′′.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                       | The Low                                                                                                        | $pt_1 = \vartheta_1$                                                                                             | +30°41′55′′.879                                | $A_{\overline{2}1}$                         | 193°18′49′′.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                       | Contra provincia de la contra de | A Star Net And                                                                                                   | No. The State of State                         | . 2.1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

5\*.

f ...t

### Окончание прилож. 2.

Приложение 3

| 6. Вычисление s <sub>1.2</sub> . |               | $\sin 2\varphi_{\frac{1}{2}}$         | -0.897 524                | Значение чисел                                                                                          |
|----------------------------------|---------------|---------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------|
| $lg(1-e^2)$                      | 9.997 083312  | $+$ sin $2\varphi_1$                  | +0.596 488                | $C_{0.2\lambda}, C_{2\mathfrak{u}.2\lambda}.$                                                           |
| $+$ lg $V_0$                     | 0.000 056473  | $\sin 4\varphi_{-}$                   | -0.7916                   | $\begin{pmatrix} -3/2\\ 2 \end{pmatrix} \begin{pmatrix} 2\lambda\\ 2 \end{pmatrix}$                     |
| lg μ.                            | 9.997 139785  | $+ \sin 4\varphi_1$                   | - 0.9575                  | 1) $c_{0.2\lambda} = (-1)^{\lambda} \frac{\langle \kappa \rangle \langle \kappa \rangle}{2^{2\lambda}}$ |
| $\lg a$                          | 6.804 701197  | $\sin 6\varphi_{\frac{1}{2}}$         | +0.21                     | $2) c_{2u,2\lambda} = (-1)^{\lambda-u} \cdot$                                                           |
| 1g ap.                           | 6.801 840982  | $+$ sin 6 $\varphi_1$                 | +0.87                     | $\left(\frac{-3/2}{2}\right)\left(\frac{2\lambda}{2\lambda}\right)$                                     |
|                                  |               | ε2                                    | -0.301 036                | $\frac{(\lambda)}{\lambda^{2\lambda}}$                                                                  |
| $\lg e^2$                        | 7.825 64818   | ε4                                    | -1.7491                   | (u, ) - 12 $n: u < ))$                                                                                  |
| $-$ lg $\tau^2$                  | 0.017 09530   | ε <sub>6</sub>                        | +1.08                     | $(u, n-1, 2, \dots, n, u \leq n)$                                                                       |
| $\lg k^2$                        | 7.808 55288   | $C_2 \varepsilon_2$                   | +0.000732330              | $c_{02} = +0.75$ $c_{22} = -0.375$                                                                      |
| $k^2$                            | 0.00643 50641 | $+C_4 \varepsilon_4$                  | - 4291                    | $c_{04} = +0.703125 \ c_{24} = -0468750$                                                                |
| $k^4$                            | 0.00004 14100 | $C_6 \varepsilon_6$                   |                           | $c_{06} = +0.6836$ $c_{26} = -0.5127$                                                                   |
| $k^6$                            | 0.00000 02665 | $\Delta \sigma_{1,\overline{2}}$      | +0.000 72802              | $c_{08} = +0.63$ $c_{28} = -0.54$                                                                       |
| k <sup>8</sup>                   | 0.00000 00017 | $\lg \Delta \sigma_{1.2}$             | 6.86214_10                |                                                                                                         |
|                                  |               | 1g αμ.                                | 6.80 184                  | $c_{44} = +0.058594$ $c_{66} = -0.116$                                                                  |
| 1                                | 1.000 000000  | $1g\Delta s_{1.2}^{(0)}$              | 3.66 398                  | $c_{4.6} = +0.1025$ $c_{68} = -0.03$                                                                    |
| *) $c_{02} k^2$                  | 0.004 826298  | $\Delta s_{1.\bar{2}}^{(0)}$          | +461 <b>3</b> .0 <i>м</i> | $c_{4.8} = +0.13$                                                                                       |
| $c_{04} k^4$                     | 0.000 029116  |                                       |                           |                                                                                                         |
| $c_{06} k^{6}$                   | 0.000 000 187 | $\log C_0$                            | 0.002 103657              | $c_{88} = +0.0517$                                                                                      |
| $c_{08} k^8$                     | 01            | $\lg \Delta \varphi_{1,\overline{2}}$ | 0.583 852331              |                                                                                                         |
| $C_0$                            | ÷1.004 85560  | lg au                                 | 6.801 840982              |                                                                                                         |
|                                  |               | $\lg s_{1,\overline{2}}^{(0)}$        | 7.387 796970              |                                                                                                         |
| $c_{22} k^2$                     | -0.002 413149 | $s_{1.\overline{2}}^{(0)}$            | 24 422 885.1              |                                                                                                         |
| $c_{24}  k^4$                    | — 019411      | $\Delta s_{1,\bar{2}}^{(0)}$          | 4613.0                    |                                                                                                         |
| $c_{26}  k^6$                    | 137           | s <sub>1.2</sub>                      | 24 427 488.1              |                                                                                                         |
| $C_2$                            | -0,002 43270  |                                       |                           |                                                                                                         |
|                                  |               |                                       |                           |                                                                                                         |
| $c_{44} k^4$                     | +0.000 002426 |                                       |                           |                                                                                                         |
| $c_{46} k^6$                     | + 27          |                                       |                           |                                                                                                         |
| C4                               | +0.000 002453 |                                       |                           |                                                                                                         |
| $c_{66} k^{6} = C_{6}$           | -0.000 000031 |                                       |                           |                                                                                                         |

C. (

\*) См. Приложение 3.

Приложение 4

| ТСШС                          | ппе примон в                   | bipablicillos                              | ryacbon sacen  | ин (первын                   | (1000)            |
|-------------------------------|--------------------------------|--------------------------------------------|----------------|------------------------------|-------------------|
| 1. Исходи                     | ные данные.                    | $\sim$ ctgA <sub>1.3</sub>                 | - 2.9410       | $ctgA_{2,3}$                 | + 0.75 101        |
|                               |                                | $$ sin $\Theta_2$                          | + 0.69 202     | $sin\Delta L_{2,3}$          | + 0.97 053        |
| $B_1$                         | 67°28′52″.763                  | : $\sin \Theta_1$                          | + 0.38 298     | $\cos \Theta_2$              | + 0.72 188        |
| · L <sub>1</sub>              | 36°54′39″.412                  | ctgA <sub>2.3</sub>                        | + 0.75 101     | $\times \cos \Delta L_{2.3}$ | - 0.24 099        |
|                               | 0.644 21757                    | $\times \cos \Delta L_{1.2}$               | - 0.16 004     | Ж1                           | +0.72888          |
| A1.3                          | 341° <b>1</b> 3′15″.376        | $\cos \Theta_2$                            | +0.72 188      | ж2                           | 0.17 397          |
|                               |                                | $\times$ sin $\Delta L_{1,2}$              | + 0.98 711     | $x_1 + x_2$                  | +0.55491          |
| $B_2$                         | 46°12′34″.548                  | + H1                                       | - 5.31 420     | : $\sin \Theta_2$            | + 0.69 202        |
| $L_2$                         | 136°07′13″.693                 | — H <sub>2</sub>                           | + 0.12 019     | $tgB_{3}^{(0)}$              | +0.80 187         |
|                               | 2.375 75039                    | — Нз                                       | 0.71 257       |                              | 20240/07//        |
| $A_{2.3}$                     | 53°05′34″.727                  | в                                          | - 5.90 658     | $B_3^{(0)} \approx B_3$      | 38°43′27″         |
|                               | 1                              | a (0)                                      | 0.42 766       |                              |                   |
| 2. Вычисле                    | ние $B_{3}^{(0)}, L_{3}^{(0)}$ | $\overline{b} = \mathrm{tg}\Delta L_{1.3}$ | + 0.12 100     |                              |                   |
|                               |                                | $\Delta L(0) = 1.3$                        | 203°09′16″     |                              |                   |
| $90^{\circ}-B_1=\Theta_1$     | 22°31′07″                      | $+ L_{1}$                                  | 36°54′39″      |                              | Sec. Wester       |
| $90^{\circ}-B_2=\Theta_2$     | 43°47′25″                      | $L^{(0)}_{3}$                              | 240°03′55″     |                              |                   |
| $\Delta L_{1.2}$              | 99°12′34″                      | $-L_2$                                     | 136°07′14″     | 1. 1. 1.                     |                   |
|                               |                                | $\Delta L^{(0)}_{2.3}$                     | 103°56′41″     |                              | Charles ?         |
| $\cos \Theta_2$               | +0.72 188                      | Superior States                            |                |                              |                   |
| $\times$ cos $\Delta L_{1,2}$ | 0.16_004                       | ctgA1.3                                    | - 2.9410       |                              |                   |
| ctgA2.3                       | +0.75101                       | $\times$<br>$\sin \Delta L^{(0)}$          | - 0.39 321     |                              |                   |
| $\times$ sin $\Delta L_{1,2}$ | + 0.98 711                     | $\cos \Theta_1$                            | +0.92 376      |                              |                   |
| ctg01                         | +2.41 200                      | $\times \cos \Delta L_{1,3}^{(0)}$         | 0.91_945       |                              |                   |
| $\times$ sin $\Theta_2$       | +0.69202                       | Γ <sub>1</sub>                             | +1.15643       |                              | S. C. S. S. S. S. |
| $+ \pi_1$                     | - 0.11 553                     | $\Gamma_2$                                 | - 0.81 935     | A WEARE                      |                   |
| $- \Pi_2$                     | - 0.74 133                     | $\Gamma_1 + \Gamma_2$                      | +0.30708       |                              | Barris and S      |
| — Пз                          | - 1.66 915                     | : $\sin \Theta_1$ /                        | + 0.38 298     |                              |                   |
| a                             | - 2.52 601                     | $tgB_{3}^{(0)}$                            | +0.80 182      | 11 夏山北市                      | Star Set 1 4 1    |
|                               |                                | 1. 12 16                                   | and the second |                              |                   |
|                               |                                | A BULL BULLE                               |                |                              |                   |

Решение прямой выравненнолучевой засечки (первый способ)

| 3. Расчет в                                 | еличин <sub>Уіз</sub> , к                               | 2 <sub>i3</sub> , τ <sub>i3</sub> , p <sub>i3</sub> , | р                                                       | 0.123 23565            | 0.553 02697                                        |
|---------------------------------------------|---------------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------|------------------------|----------------------------------------------------|
|                                             | $\gamma_{i3}\mu_{i3}$ , $\varphi_i^3$ , $\vartheta_i^3$ | ; $(i = 1,2)$                                         | $\omega \sqrt{1-e^2}$                                   | -0.996 64767           | + 0.996 64767                                      |
|                                             |                                                         |                                                       | vir                                                     | -0.122 8226            | + 0.551 1730                                       |
| - lg sinA <sub>i3</sub>                     | 9.507 74760 n                                           | 9.902 87881                                           |                                                         |                        |                                                    |
| $lgcosB_i$                                  | 9.583 18128                                             | 9.840 12007                                           | lgsinB <sub>3</sub>                                     | 9.965 55668            | 9.858 46269                                        |
| $-\lg V_i$                                  | -0.000 21452                                            | -0.000 69961                                          | $+$ $\lg \tau_{i3}$                                     | 0.003 32312            | 0.079 26984                                        |
| $-\lg\sqrt{1-e^2}$                          | 9.998 54166                                             | -9.998 54166                                          | lgsin¢ <sup>3</sup>                                     | 9.968 87980            | 9.937 73253                                        |
| lgv <sub>i3</sub>                           | 9.092 17270 n                                           | 9.743 75761                                           | φ <sup>3</sup> .                                        | 68°34′03″.855          | 60°02′46″.239                                      |
| lgv²                                        | 8.184 34540                                             | 9.487 51522                                           | lgtgq <sup>3</sup>                                      | 0.406 11008            | 0.239 36934                                        |
| $1 \mathrm{g} e^2$                          | 7.825 64818                                             | 7.82564818                                            | $+$ lg $p_{i3}$                                         | 9.090 73637            | 9.742 74631                                        |
| $1 g e^2 v^2$                               | 6.009 99358                                             | 7.313 16340                                           | lgtgϑ³                                                  | 9.496 84645            | <b>9</b> .982 11565                                |
|                                             |                                                         |                                                       | 93<br>i                                                 | 17°25′44″.940          | 43°49′14″.183                                      |
|                                             | 0.006 603422                                            | 0.006 603422                                          |                                                         | and the second         |                                                    |
| $e^2 \gamma^2$                              | 0.000 102328                                            | 0.002 056664                                          | 4. Перво                                                | ре приближени          | едля <i>В</i> <sub>3</sub> , <i>L</i> <sub>3</sub> |
| $\nu^2$                                     | 0.015 28781                                             | 0.307 26650                                           | $\mathbf{D}(0) = \mathbf{D}$                            | 20042/07//             |                                                    |
| $e^2 - e^2 \gamma^2$                        | 0.006 591094                                            | 0.004 636758                                          | $B_3^{(c)} \approx B_1$                                 | 38°43'27"              |                                                    |
| $1 - e^{2\gamma^2}$                         | 0.999 89767                                             | 0.997 94334                                           | lgsinB <sub>3</sub>                                     | 9.796 277              | 9.796 277                                          |
| $1-\gamma^2$                                | 0.984 71219                                             | 0.692 73350                                           | lgt <sub>i3</sub>                                       | 0.003 323              | 0.079 270                                          |
| $\frac{\lg(v^2 - e^2 v^2)}{-}$              | 7.818 95750                                             | 7.666 21443                                           | lgsin¢ <sup>i</sup> <sub>3</sub>                        | 9.799 600              | 9,875 547                                          |
| $= lg(1 - e^{2\nu^2})$                      | 9.999 95556                                             | 9.999 10588                                           | φ <sup>i</sup> <sub>3</sub>                             | 39°04′40″.4            | 48°39′47″.2                                        |
| $\left\lfloor \lg(1-\gamma^2)\right\rfloor$ | 9.993 30932                                             | 9.840 56619                                           | φ <sup>3</sup> <sub>i</sub>                             | <u>68°34′03″.9</u>     | <u>60°02′46″.2</u>                                 |
| $1\mathrm{g}k^2$                            | 7.819 00194                                             | 7.667 10855                                           | $180^{\circ}-(\varphi_i^3+\varphi_3^i)$                 | $+72^{\circ}21'15''.7$ | $+71^{\circ}17'26''.6$                             |
| $1 g \tau^2$                                | 0.006 64624                                             | 0.158 53969                                           | $\pi - (\varphi_i^3 + \varphi_3^i)$                     | +1.262 822             | + 1.244 258                                        |
| $-k^2$                                      | 0.006 591768                                            | 0.004 646314                                          | imes vhr                                                | 0.122 82               | + 0.551 17                                         |
| $k^4$                                       | 0.000 043451                                            | 0.000 021588                                          | 6                                                       | - 0.15 510             | +0.68580                                           |
| <i>k</i> <sup>6</sup>                       | 0.000 000286                                            | 0.000 000100                                          |                                                         | 0.000 576              | 0.055 691                                          |
| R <sup>o</sup>                              | 0.000 0000019                                           | 0.000 0000005                                         | $lgtg\varphi_3^i$                                       | 9.909 570              | 0.055 084                                          |
|                                             | NE STA                                                  |                                                       | 1gpi3                                                   | 9.090 736              | 9.742 746                                          |
| $\lg_{\tau}^{1} = \lg \sin B_{0}$           | 9.996 67688                                             | 9.920 73016                                           | lgtg∂ <sup>i</sup> <sub>3</sub>                         | 9.000 312              | 9.798 430                                          |
| $B_0$                                       | 82°55′16″.038                                           | 56°25′30″.272                                         | $\vartheta_i$                                           | 5°42′52″.8             | 32°09′24″.5                                        |
| $\lg \cos B_0 = \lg p_0$                    | 9.090 73637                                             | 9.742 74631                                           | 93<br>1                                                 | 17°25′44″.9            | 43°49′14″.2                                        |
| $\frac{v}{ v } = \omega$                    | - 1                                                     | +1                                                    | $180^{\circ} - (\vartheta_{i}^{3} + \vartheta_{3}^{i})$ | 156°51′22″.3           | 104°01′21″.3                                       |

|                                           | and we have not set of a second s |                 |                                                                                      | Construction of the other states of the second stat | A REAL PROPERTY AND A REAL |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\pi - (\vartheta_i^3 + \vartheta_i^i)_3$ | 2.737 6571                                                                                                     | 1.815 5367      | $\lg\sqrt{1-e^2}$                                                                    | 9.99 854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.99 854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\times$                                  | - 0.996 64767                                                                                                  | +0.99664767     | 194.0                                                                                | 9.09 217 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.74 376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| F(0) - R(0)                               | - 2.728 4796                                                                                                   | +1.8094504      | 1 g V2                                                                               | 0.00 089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                           | + 0.155 10                                                                                                     | - 0,685 80      | $-\log v_3$                                                                          | - 9.89 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | - 9.89 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| σο                                        | - 2.57 338                                                                                                     | +1.12365        | lgsinA'                                                                              | 9.19 941 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.85 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\times_{e^{2/2}}$                        | 0.003 3467                                                                                                     | 0.003 3467      | $A_{3i}^{\prime}$                                                                    | 189°06'24″                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 134°48′00″                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| νμ $F(1) = R(1)$                          | - 0.008 6123                                                                                                   | +0 003 7605     | $lgtgA'_{3i}$                                                                        | 9.20 491                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.00 303 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.11.0                                    | 0.001.9550                                                                                                     | 0.001.2550      | $-1\sigma V_{a}^{2}$                                                                 | -0.00 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 0.00 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $3/16 e^2$                                | 0.001 2550                                                                                                     | 0.001 2000      | $-1g\cos B_2$                                                                        | -9.89219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 9.89 219                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\int \sin 2\varphi_3^i$                  | + 0.979                                                                                                        | +0.992          | $\lg \frac{\partial L_3^i}{\partial l_3} = \lg a_{13}$                               | 9.31 094                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.10 906 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $-$ + $\sin 2\sigma^3$                    |                                                                                                                | +0.865          | $\partial B_3$                                                                       | 1.0.00461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 99 541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2311241                                   | + 0.000                                                                                                        | 1.057           | $a_{i3}$                                                                             | + 0.20401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | - 1.20 041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                                         | - 1.6.79                                                                                                       | - 1.007         | $v = u_{1.3} - u_{2.3}$                                                              | +1.4901                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $-\frac{1}{2}\varepsilon_2$               | + 0.830                                                                                                        | +0.928          | (1 2)                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\pi - (\varphi_i^3 + \varphi_3^i)$       | + 1.263                                                                                                        | + 1.244         | $\left(\frac{\partial L_3^1}{\partial R} - \frac{\partial L_3^2}{\partial R}\right)$ | $\delta B_3^{(0)} + w_L^{(0)} = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| σ2                                        | +2.093                                                                                                         | + 2.172         | $\langle 0D_3  0D_3 \rangle$                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $3/16 \ e^2 k^2$ vy.                      | - 0.000 00102                                                                                                  | $+0.000\ 00321$ | + 1.49001                                                                            | $\delta B_3^{(0)} + 267''.46 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\Delta R(1)$ .                           | - 0.000 0021                                                                                                   | + 0.000 0070    |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                                                                                                                |                 | $\delta B_3^{(0)}$                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 02'59".50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $3/4 e^2$                                 | + 0.005 020                                                                                                    | + 0.005 020     | $B_{3}^{(0)}$                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38°43′27″.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\times$ R(1)                             | - 0.008 612                                                                                                    | + 0.003 761     | $B_{2}^{(1)}$                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 38°40′27″.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $3/4 e^2 R(1)$                            | - 0.000 0432                                                                                                   | + 0.000 0189    |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $-\Delta R(1)$                            | + 21                                                                                                           | 70              | <i>a</i> <sub>i3</sub>                                                               | +0.20461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - 1.28 541                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                           | - 0.000 0411                                                                                                   | +0.000 0119     | $\times \delta B^{(0)}$                                                              | - 0.000 87024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 0.000 87024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <i>R</i> (1)                              | - 0.008 6123                                                                                                   | + 0.0037605     | $\mathcal{O}^{(0)}$                                                                  | -0.000 1781                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | + 0.001 1186                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| R(0)                                      | - 2.728 4796                                                                                                   | + 1.809 4504    | $+ \frac{3}{3}$                                                                      | 4,190,2699                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4 188 0739                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\nabla L(0)$ , $\Delta L(0)$             | - 2.737 1330                                                                                                   | +1.813 2228     | $L_{3}^{(0)}$                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.100 5702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $L_1 + 2\pi$ L                            | + 6.927 4029                                                                                                   | +2.375 7504     | $(1) \simeq I_{2}$                                                                   | 1100 0010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $L_1 + L_2, L_2$ $L_1^{(0)}$              | 4.190 2699                                                                                                     | 4.188 9732      | $Li$ $\sim L_3$                                                                      | 4.190 0918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4.190 0918                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3<br>w(0)                                 | 0.001 2967                                                                                                     | + 267".46       |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A Carl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1                                         |                                                                                                                | No State        |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                                                                                                                |                 | 2.4                                                                                  | and the second in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                                                                                                                |                 |                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           |                                                                                                                |                 |                                                                                      | A CARLES AND A CARLES AND A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a land and a start of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

|                                     |                             |                              | Lein 2n <sup>i</sup>                 | + 0.9783       | +0.9922        |
|-------------------------------------|-----------------------------|------------------------------|--------------------------------------|----------------|----------------|
| 5. Второ                            | е приближени                | е для $B_3, L_3$             | -  +                                 | + 0.6803       | + 0.8652       |
| $B(1) \sim B_{0}$                   | 38°40′27″ 5                 |                              | $L_{\sin 2\varphi_i^3}$              | + 0.0003       |                |
| $D(\frac{1}{3}) \sim D_3$           | 00 +0 21 .0                 |                              | $\int \sin 4\varphi_3^i$             | + 0.405        | - 0.248        |
| lgsinB <sub>3</sub>                 | 9.795 80539                 | 9.795 80539                  | $\left -\right _{\sin 4\varphi_i^3}$ | 0.997          | - 0.868        |
| lgτ <sub>i3</sub>                   | 0.003 32312                 | 0.079 26984                  | ε2                                   | - 1.6586       | - 1.8574       |
| lgsin $\varphi_3^i$                 | 9.799 12851                 | 9.875 07523                  | ε4                                   | + 0.592        | + 1116         |
| φ <sup>i</sup> <sub>3</sub>         | 39°01′38″.777               | 48°35′32″.882                |                                      |                |                |
| $\varphi^3_i$                       | <u>68°34′03″.855</u>        | 60°02′46″.239                | $-\frac{1}{2}\varepsilon_2$          | + 0.8293       | + 0.9287       |
| $180^{\circ} - (\varphi_i^3 +$      | 72°24′17″.308               | 71°21′40″.879                | + 2 + 2                              |                | Senates a      |
| $+ \varphi_3^i$ )                   |                             | 13.14                        | $\pi - (\varphi_i^3 + \varphi_3^i)$  | +1.2637        | + 1.2455       |
| $\pi - (\varphi_i^3 + \varphi_3^i)$ | 1.263 70258                 | 1.24549061                   | $\times^{\sigma_2}$                  | +2.0930        | +2.1742        |
| X vµ                                | -0.122 8220                 | + 0.551 1730                 | $3/16 \ e^2 k^2 v\mu$                | - 0.000 001016 | + 0.000 003214 |
| 6                                   | - 0.155 2113                | + 0.686 4808                 | $\Delta R(1)$                        | 0.000 002126   | + 0.000 006988 |
| $1 \operatorname{gtg} \varphi_3^i$  | 9.908 79441                 | 0.054 60416                  | $3/4 e^2$                            | 0.005 0200     | 0.005 0200     |
| $lgp_{i3}$                          | 9.090 73637                 | 9.742 74631                  | $\bigwedge$ R(1)                     | -0.008 61258   | 0.003 76199    |
| $lgtg \vartheta_3^i$                | 8.999 53078                 | 9.797 35047                  | $3/4 e^2 R(1)$                       | - 0.000 043235 | +0.000 018885  |
| $\vartheta_3^l$                     | 5°42′16″.082                | 32°05′33″.491                | $-\Delta R(1)$                       | + 0.000 002126 | 0.000006988    |
| $\vartheta_i^3$                     | 17°25′44″.940               | 43°49′14″.183                | אָע $F(2)=R(2)$                      | - 0.000 041109 | +0.000 011897  |
| $180^{\circ} - (\vartheta_i^3 +$    | 156°51′58″.968              | 104°05′12″.326               | $\frac{3}{2} [\pi - (\varphi_i^3 +$  |                |                |
| $+\vartheta_3$ )                    | a sha carara                |                              | $+ \varphi_3^i)$                     | + 0.474        | + 0.467        |
| $\pi - (\vartheta_i + \vartheta_3)$ | 2.737 834817                | 1.816 656621                 | $-\frac{1}{\epsilon_2}$              | + 0415         | +0.464         |
| $\omega \sqrt{1-e^2}$               | - 0,996 647670              | +0.996 647670                | 4 -                                  |                |                |
| νμ $F(0)=R(0)$                      | - 2.728 656691              | +1.810 566589                | $+\frac{1}{32}\varepsilon_4$         | + 0.019        | + 0.035        |
| - δ <sub>0</sub>                    | - 0.155 2113                | 0.686 4808                   | σ4                                   | + 0.908        | + 0.966        |
| $\times e^2$                        | -2.573 4454<br>0.003 346711 | + 1.124 0856<br>0 003 346711 | $5/16 e^{2k^4}$ yr                   | 0.000_000011   | +0.000 000025  |
| $v\mu F(1) = R(1)$                  | -0.008 612578               | +0.003 761989                | $\Delta R(2)$                        | - 0.000 000010 | +0.000000024   |
|                                     |                             |                              |                                      |                |                |
|                                     |                             |                              |                                      |                |                |
|                                     | A STATIST                   |                              | $\sim$ 5/6 $e^2$ $\bullet$           | 0.005 578      | 0.005 578      |
| $3/16e^2$ , $5/16e^2$               | 0.000 12550                 | 0.000 20917                  | $^{\sim} R(2)$                       | - 0.000 04111  | + 0 CO0 01190  |
| $\frac{3}{16e^2k^2}$                | 0.000 008273                | 0.000 005831                 | $5/6e^2R(2)$                         | - 0.000 000229 | +0.000 000066  |
| $\frac{5}{16}e^2k^4$                | 0.000 000091                | 0.000 000045                 | $-\Delta R(2)$                       | + 10           | — 24           |
|                                     | 1. A. A.                    |                              | $ v\mu F(3) = R(3)$                  | - 0.000 000219 | +0.000 000042  |

|  | ожения 4 | прил | жение | Продол |  |
|--|----------|------|-------|--------|--|
|--|----------|------|-------|--------|--|

| Transmission of the second sec | and the second |               |                                                                                                                                                                                                             |                 | And the rest states are an end of the state |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 2.728 656691                                                                                                   | +1.810 566589 | 6. П                                                                                                                                                                                                        | оверочный расче | ет для В <sub>3</sub> , L <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| R(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 0.008 612578                                                                                                   | +0.003 761989 | B.                                                                                                                                                                                                          | 38°40′27″ 310   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| R(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | - 41109                                                                                                          | + 11897       | losinB.                                                                                                                                                                                                     | 9 795 80489     | 0.705 80480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| R(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 219                                                                                                              | + 42          | lgt <sub>13</sub>                                                                                                                                                                                           | 0.003 32312     | 9.795 80489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\nabla L_{1.3}, \nabla L_{2.3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.737 310597                                                                                                    | +1.814340517  |                                                                                                                                                                                                             | 0.500 02012     | 0.079 20984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $L_1+2\pi, L_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + 6.927 402876                                                                                                   | +2.375750387  | ig siny <sub>3</sub>                                                                                                                                                                                        | 9.799 12801     | 9.875 07473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $L_{i}^{(1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | + 4.190 092279                                                                                                   | +4.190090904  | Ψ3                                                                                                                                                                                                          | 39°01′38″.585   | 48°35′32″.613                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 3<br>(I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.000.001275                                                                                                     | 1 0// 2026    | $\varphi_i^{3}$                                                                                                                                                                                             | 68°34′03″.855   | 60°02′46″.239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| w'L'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | + 0.000 001373                                                                                                   | +0.2000       | (3 + i)                                                                                                                                                                                                     | 1 2 24 17 .500  | 1 045 401012                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |               | $ \begin{array}{c} \pi - (\varphi_i^{\circ} + \varphi_{S}^{\circ}) \\ \times \qquad \qquad$ | 1.263 703511    | 1.245 491913                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $1gv_{i3}V_3V\overline{1-e^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.09 060 n                                                                                                       | 9.74 319      | ò                                                                                                                                                                                                           | 0.155 0114      | + 0.551 1155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $-\lg \cos B_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 9.89 239                                                                                                       | 9.89 239      |                                                                                                                                                                                                             | $-0.155\ 2114$  | +0.0304813                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| lgsin $A'_{3i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 9.19 921 n                                                                                                       | 9.85 080      | $  _{+}$ lgtg $\varphi_{3}^{i}$                                                                                                                                                                             | 9.908 79359     | 0.054 60302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $A_{3i}^{'}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 189°06′09″                                                                                                       | 134°49′32″    | lgp <sub>i3</sub>                                                                                                                                                                                           | 9.090 73637     | 9.742 74631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |               | lgtg $\vartheta_3^i$                                                                                                                                                                                        | 8.999 52996     | 9.797 34933                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $lgtgA'_{3i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.20 471                                                                                                         | 0.00 264 n    | $\vartheta_3^i$                                                                                                                                                                                             | 5°42′16″.044    | 32°05′33″.248                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $-1gV_{3}^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | - 0.00 178                                                                                                       | - 0.00 178    | $\vartheta_i^3$                                                                                                                                                                                             | 17°25′44″.946   | 43'49'14".183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $-\lg \cos B_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 9.89 239                                                                                                       | - 9.89 239    | $180^{\circ} - (\vartheta_i^3 + \vartheta_3^i)$                                                                                                                                                             | 156°51′59″.010  | 104°05′12″.569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\lg \frac{\partial L_3^i}{\partial B_3} = \lg a_{i3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.31 054                                                                                                         | 0.10 847 n    | $\times^{\pi - (\vartheta_i^3 + \vartheta_3^i)}$                                                                                                                                                            | 2.737 835020    | 1.816 657 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| a <sub>i3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + 0.20443                                                                                                        | - 1.2837      | $\omega \sqrt{1+e^2}$                                                                                                                                                                                       | - 0.996 647670  | + 0.996 647670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $b = a_{1.3} - a_{2.3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + 1.4881                                                                                                         |               | νμ $F(0) = R(0)$                                                                                                                                                                                            | - 2.728 656894  | +1.810 567 764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <br> ,                                                                                                           |               | - õ                                                                                                                                                                                                         | + 0.155 2114    | - 0.686 4815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.4881 8B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 + 0''.2836 = 0                                                                                                 |               | σ0                                                                                                                                                                                                          | - 2.573 4455    | + 1.1240863                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $\delta B_3^{(1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 0.000 000924                                                                                                   | - 0".1905     | $^{\sim}e^{2}/2$                                                                                                                                                                                            | 0.003 346711    | 0.003 346711                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $B_3^{(1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | 38°40′27″.500 | $ u \mu F(1) = R(1)$                                                                                                                                                                                        | - 0.008 612576  | + 0.003 761991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $B_{3}^{(2)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  | 38°40′27″.310 | <i>R</i> (0)                                                                                                                                                                                                | - 2.728 656894  | + 1.810 567764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <i>a</i> <sub>i3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +0.20443                                                                                                         | - 1.2837      | <i>R</i> (1)                                                                                                                                                                                                | - 0.008 612576  | + 0.003 761 991                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $	imes$ $\delta B_3^{(1)}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - <b>0</b> 000 000924                                                                                            | -0.000000924  | <i>R</i> (2)                                                                                                                                                                                                | - 41109         | + 11897                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\delta L \overset{(1)}{i}_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 0.000 <b>0</b> 00189                                                                                           | +0.000001186  | R(3)                                                                                                                                                                                                        | 219             | + 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $L^{(1)}_{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.190 09 2279                                                                                                    | 4.190 090 904 | $\Delta L \stackrel{(2)}{1}, \Delta L \stackrel{(2)}{2}{}_{3}$                                                                                                                                              | - 2.737 310798  | + 1.814 341694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | State The                                                                                                        |               | $L_1+2\pi, L_2$                                                                                                                                                                                             | +6.927 402876   | + 2.375 750387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.190 092 090                                                                                                    | 4 190 092 090 | Li                                                                                                                                                                                                          | 4.190 092078    | 4.190 092 081                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                  | 240°04′28″533 | $w_L^{(2)}$                                                                                                                                                                                                 | + 0.000 000003  | + 0".0006                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                  |               | $L_3$                                                                                                                                                                                                       | 4.190 092 080   | 240°04′28″.531                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Приложение 5

| and an an and the                        |                                        |                                                                                                                | North Contraction |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1. Исхол                                 | ные данные                             | α <sub>1.2</sub>                                                                                               | 44°58′14″         | lg cos $\delta \gamma_{1,2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.99 992          |
| Т. ИСХОДІ                                | пыс данные                             | $\pm \delta \alpha_{1,2}$                                                                                      | 16°01′22″         | $-\lg \cos \gamma_{1,2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.19 877          |
| $B_1$                                    | 67°28′52″.763                          | α1                                                                                                             | 60°59′36″         | lg ctg do1,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.68 198          |
| L <sub>1</sub>                           | 34°54′39″.412                          | $\alpha_2$                                                                                                     | 28°56′52″         | lg tg s <sub>i.3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.48 313          |
| =<br>A <sub>1.3</sub>                    | 0.644 217568<br>341°13′15″.376         | $\alpha_2$                                                                                                     | 28°56′52″         | σ <sub>i3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 71°48′06″         |
|                                          | N. States and                          | A <sub>2.3</sub>                                                                                               | 53°05′35″         | ±<br>δσ <sub>i3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0°33′08″          |
| $B_2$                                    | 46°12′34″.548                          | α1                                                                                                             | 60°59′36″         | σ <sub>1.3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72°21′14″         |
| $L_2$                                    | 136°07′13″.693                         | $-A_{1.3}$                                                                                                     | 341°13′15″        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.262 8136        |
| · =                                      | 2.375 750387                           | γı                                                                                                             | 82°02′27″         | σ <sub>2.3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 71°14′58″         |
| A <sub>2.3</sub>                         | 53°05′34″.727                          | γ2                                                                                                             | 79°46′21″         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.243 5374        |
|                                          |                                        | $\frac{1}{2}(\gamma_1+\gamma_2)=\gamma_{1\cdot 2}$                                                             | 80°54'24"         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 2. Вычисл                                | ение <sub>513</sub> , 5 <sub>2.3</sub> | $\frac{1}{2} \left( \gamma_1 \!-\! \gamma_2 \right) \!=\! \gamma_1 \!\cdot\! _2$                               | 1°J8′03″          | lg sin $\gamma_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.99 305          |
|                                          |                                        | C. Caler                                                                                                       |                   | $\lg \sin \sigma_{2.3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 9.97 632          |
| $90^{\circ}-B_2=\Theta_2$                | 43°47′25″                              | lg sin $\Theta_1$                                                                                              | 9.58 318          | lg sin $\gamma_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.99 580          |
| $\partial 0^{\circ} - B_1 = \Theta_1$    | 22°31′07″                              | $lg \sin \alpha_2$                                                                                             | 9.68 486          | $-$ lg sin $\sigma_{1,3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9.97 907          |
| $\frac{1}{2}(\Theta_2 + \Theta_1) =$     |                                        | lg sin $\Theta_2$                                                                                              | 9.84 012          | $\lg n_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01 673          |
| $\xi = \Theta_{1,2}$                     | 33°09′16″                              | lg sin $\alpha_1$                                                                                              | 9.94 179          | lg sin $\sigma_{1.2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.89 269          |
| $\frac{1}{2}(\Theta_2-\Theta_1)=$        |                                        | $\lg m_1$                                                                                                      | 9.89 832          | $lg n_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.01 673          |
| $=\delta\Theta_{1.2}$                    | 10°38'09"                              | lg sin $\Delta L_{1,2}$                                                                                        | 9.99 437          | $\lg \sin \gamma_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.90 942          |
| $\Delta L_{1.2}$                         | 99°12′34″                              | $\lg m_2$                                                                                                      | 9.89 833          | γ3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ~ 54°16′00″       |
| $\frac{1}{2}\Delta L_{1,2} =$            |                                        | $\lg \sin \sigma_{1.2}$                                                                                        | 9.89 269          | $\gamma_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82°02′27″         |
| $=\delta L_{1.2}$                        | 49°36′17″                              | σ <sub>1.2</sub>                                                                                               | 51°21′30″         | γ1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>79°46′</b> 21″ |
|                                          | 0.06 615                               | $\frac{1}{2}\sigma_{1.2} = \delta\sigma_{1.2}$                                                                 | 25°40′45″         | $\sum_{i=1}^{3} \gamma_i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 216°04′48″        |
|                                          | 9.20 615                               | Same Int                                                                                                       | Service and       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 36°04′48″         |
| $- \log \sin \Theta_{1,2}$               | - 9.73 788                             |                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| ig cig oL <sub>1.2</sub>                 | 9.92 989                               |                                                                                                                |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| 1g tg δα <sub>1.2</sub>                  | 9.45 816                               | lg sin δγ <sub>1.2</sub>                                                                                       | 8.29 653          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| $\log \cos \delta \Theta_{1,2}$          | 9.99 248                               | $lg \sin \gamma_{1,2}$                                                                                         | 9.99 451          | 12111131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0                 |
| $-\lg\cos\Theta_{1,2}$                   | -9.92 283                              | lg tg δσ1.2                                                                                                    | 9.68 198          | 1 Aller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |
| $\log \operatorname{ctg} \delta L_{1,2}$ | 9.92 989                               | lg tg δσ <sub>i3</sub>                                                                                         | 7.98 400          | N. LATY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sec. and Sec.     |
| $\log \log \alpha_{1:2}$                 | 9.99 954                               | de la com                                                                                                      |                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
|                                          | the second of the second second        | the second s |                   | State of the second sec |                   |

Решение прямой выравненнолучевой засечки (второй способ)

| 3. Расчет-                          | величин у <sub>із</sub> , $k_{i3}^3$ ,                  | τ <sub>i3</sub> , p <sub>i3</sub> | 1                                                            | 1.000 000000   | 1.000 000000  |
|-------------------------------------|---------------------------------------------------------|-----------------------------------|--------------------------------------------------------------|----------------|---------------|
| $C_0^i, D_{2u}^i,$                  | $Q_{i3}, \varphi_i^3, \vartheta_i^3, \nu_{i3} \mu_{i3}$ | 3.                                | *) $c_{02} k^2$                                              | 0.004 943826   | 0.003 484736  |
|                                     |                                                         | 1. S. C. S.                       | $c_{04} k^4$                                                 | 0.000 030551   | 0.000 015179  |
| $\lg \sin A_{i3}$                   | 9.507 74760 n                                           | 9.902 87881                       | $c_{06} k^{6}$                                               | 196            | 68            |
| $\lg \cos B_i$                      | 9.583 18128                                             | 9.840 12007                       | $c_{08} k^8$                                                 | _              | 0             |
| $-\lg V_i$                          | -9.998 54166                                            | -9.998 54166                      | $C_0^{\iota}$                                                | +1.004 974574  | +1.003 499983 |
| $-\lg \sqrt{1-e^2}$                 | -0.000 21452                                            | -0.000 69961                      |                                                              | <u> </u>       | 0.001 740000  |
| 1g v <sub>i3</sub>                  | 9.092 17270 n                                           | 9.743 75761                       | $c_{22}  k^2$                                                | -0.002 471913  | -0.001 742368 |
| $\lg v_{i3}^2$                      | 8.184 34540                                             | 9.487 51522                       | $c_{24} R^4$                                                 | -0.000 020368  | -0.000 010119 |
| lg e <sup>2</sup>                   | 7.825 64818                                             | 7.825 64818                       | $C_{26} R^6$                                                 | - 147          | - 51          |
| $1ge^2 v_{i3}^2$                    | 6.009 99358                                             | 7 313 16340                       | $c_{28}k^8$                                                  |                | 0             |
| Charles Market                      | N. Starter                                              |                                   | $C_2^i$                                                      | -0.002 492429  | -0.001 752538 |
|                                     | 0.006 693422                                            | 0.006 693422                      |                                                              | Star Parts     |               |
| $e^2 \gamma^2$                      | 0.000 102328                                            | 0.002 056664                      | $c_{44}  k^4$                                                | +0.000 002546  | -0.000 001265 |
| $\gamma^2$                          | 0.015 28781                                             | 0.307 26650                       | $c_{46}k^6$                                                  | + 29           | + 10          |
| $e^2 - e^2 \gamma^2$                | 0.006 591094                                            | 0.004 636758                      | $c_{48}  k^8$                                                | + 0            | + 0           |
| $1-e^2 v^2$                         | 0.999 89767                                             | 9.997 94334                       | $C_4^i$                                                      | +0.000 002575  | +0.000 001275 |
| $-1-v^{2}$                          | 0.984 71219                                             | 0 692 73350                       | -                                                            |                |               |
| $\Gamma^{1g}(e^2-e^2\nu^2)$         | 7.818 95750                                             | 7.666 21443                       | c <sub>66</sub> k <sup>6</sup>                               | -0.000 000033  | -0.000 000012 |
| $\lim_{n \to \infty} (1 - e^2 v^2)$ | 9.999 95556                                             | 9.999 10588                       | $-c_{68} k^8$                                                | 0              | 0             |
| [                                   |                                                         |                                   |                                                              |                |               |
| $\int \lg (1-v^2)$                  | 9.993 30932                                             | 9.840 56619                       | $C_6^i$                                                      | -0.000 000033  | -0.000 000012 |
| 1g k <sup>2</sup>                   | 7.819 00194                                             | 7.667 10855                       | and the second                                               | The second     |               |
| $\log \tau^2$                       | 0.006 64624                                             | 0.158 53969                       | $C_{2}^{i}: C_{0}^{i} = D_{2}^{i}$                           | -0.002 480092  | -0.001 746426 |
| $k^2$                               | 0.006 591768                                            | 0.004 646314                      | $C^i: C^i = D^i$                                             | +0.000 002562  | +0.000 001271 |
| $k^4$                               | 0.000 043451                                            | 0.000 021588                      | $\begin{bmatrix} 4 & 0 & 4 \\ C^i : C^i = D^i \end{bmatrix}$ | -0.000 000033  | -0.000 000012 |
| $k^6$                               | 0.000 000286                                            | 0.000 000100                      | 6 0 6                                                        | and the second |               |
|                                     | 0.000 000019                                            | 0.000 000005                      | $lg(1-e^2)a$                                                 | 6.8017 84509   | 6.8017 84509  |
| A. S. S. A. S.                      |                                                         |                                   | lg Vi                                                        | 0.0000 22221   | 0.0004 47059  |
| $\frac{1}{1g^2} = \lg \sin B_0$     | 9.996 67688                                             | 9.920 73016                       | $\log C_0^i$                                                 | 0.0021 55074   | 0.0015 17369  |
| B <sub>0</sub>                      | 82° <b>5</b> 5′16″.038                                  | 56°25′30″.272                     | 1g Q <sub>i3</sub>                                           | 6.8039 61804   | 6.8037 48937  |
| $\lg \cos B_0 = \lg p$              | 9.090 73637                                             | 9.742 74631                       |                                                              |                |               |
| р                                   | 0.123 23565                                             | 0.553 02697                       | $\frac{v}{ v } = \omega$                                     | -1             | +1            |
|                                     |                                                         |                                   | •                                                            |                |               |

\*) См. Приложение 3.

|                                                             |                                    | A REAL PROPERTY IN COMPANY OF THE OWNER OWN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A DESCRIPTION OF THE OWNER OWNER   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |
|-------------------------------------------------------------|------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| <i>p</i> <sub><i>i</i>3</sub>                               | 0.123 23565                        | 0.553 02697                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\int \sin 4\varphi_3^i$                                                                                         | +0.418                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.243                     |
| $\omega \sqrt{1-e^2}$                                       |                                    | +0.996 6476                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $7 - 4 + \frac{1}{2} \sin 4\varphi_i^3$                                                                          | -0.997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |
| Y13 (413                                                    | -0.122 8226                        | +0.551 1730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ε(00)                                                                                                            | -1.65705                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -1.85711                   |
| 101 15                                                      |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ε (00)                                                                                                           | +0.579                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +1.111                     |
| lg sin $B_i$                                                | 9.965 55668                        | 9.858 46269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $D_2 \varepsilon_2^{(00)}$                                                                                       | +0.004 1096                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.003 2444                |
| lg τ <sub>i3</sub>                                          | 0.003 32312                        | 0.079 26984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $D_4 \epsilon_4^{(00)}$                                                                                          | + 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | + 14                       |
| $\lg \sin \varphi_i^3$                                      | 9.968 87980                        | 9.937 7325                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | δφ <sup>(00)</sup>                                                                                               | +0.004 1111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.003 2458                |
| φį                                                          | 68°34′03″.855                      | 60°02′46″.239                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.10.025                   |
| $1\sigma$ to $\sigma^3$                                     | 0.406 11008                        | 0 239 36934                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\cos 2\varphi_3^i$                                                                                              | +0.21420                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.12 235<br>-0.970        |
| +                                                           | 0.000 72627                        | 0.749.74621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\cos 4\varphi_3$                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000 4974                 |
| $\frac{1g p_{i3}}{1 r t r \theta^3}$                        | 9.090 73037                        | 9.742 7403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-2D_2\cos 2\varphi_3^*$                                                                                         | +0.0010025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
|                                                             | 9.490 84045                        | 9.902 11000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4D_4\cos 4\varphi_3$                                                                                            | + 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |
| υi                                                          | 17 25 44 .940                      | 45-49-14 .183                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1-x=x                                                                                                            | +0.0010718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.000 4223<br>+1.000 4225 |
| 4. Первое                                                   | приближение лля                    | Isia Ro Lo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $a_{00}^{(00)} = -1 a_{00}^{(00)}$                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1 0.002 2444               |
|                                                             | -P                                 | . 013, 123, 123.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\psi_1$ $\chi_1 = \Delta \psi_1$                                                                                | +0.0041155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +0.003 2444                |
| а) Вычи                                                     | сление $w_B^{(0)}$                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\varphi_{i}^{(00)}$                                                                                             | $+0.677\ 4641$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $+0.846\ 7253$             |
| <i>B<sub>ik</sub></i> -с чертеж                             | a 75°, 72°, 62°, 46                | <sup>°</sup> 49°, 53°, 50°, 43°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\varphi_{i}^{(0)} \approx \varphi_{i3}$                                                                         | +0.681 5796                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.849 9697                |
| $R_{i1}, R_{i2}$                                            | 6397, 6397                         | 6381, 6384                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | =                                                                                                                | +39°03′05″.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +48°41′58″.8               |
| $R_{i3}, R_{i4}$                                            | 6390, 6378                         | 6383, 6377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |
| $\overline{R}_{i3} = \frac{1}{4} \sum_{\kappa} R_{i\kappa}$ | 6390500 м                          | 6381 300 м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\sin 2\varphi_3^l$                                                                                              | +0.97 852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +0.99 167                  |
| × <sub>σi3</sub>                                            | 1.262 8136                         | 1.243 5374                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\sin 4\varphi_3^i$                                                                                              | +0.404                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.255                      |
| $s_{I3}^{(0)}$                                              | 80700 010 M                        | 7935 385 м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ε <sub>2</sub> (0)                                                                                               | +1.65 878                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +1.85 689                  |
| $\lg s_{i3}^{(0)}$                                          | 6.906 87407                        | 6.899 56800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ε <sup>(0)</sup>                                                                                                 | +0.593                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +1.123                     |
| $-$ lg $Q_{i3}$                                             | 6.803 96180                        | 6.803 74894                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $D_2arepsilon_2^{(0)}$ -                                                                                         | +0.004 1139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + <b>0</b> .003 2429       |
| $\lg \tilde{\sigma}_{i3}^{(0)}$                             | 0.102 91227                        | 0.095 81906                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $+ D_4 \epsilon_4^{(0)}$                                                                                         | + 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | + 14                       |
| $-\widetilde{\sigma}_{i3}^{(0)}$                            | -1.267 3958                        | -1.246 8639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\Delta \varphi_i^{(0)} pprox \Delta \varphi_i^{(00)}$                                                           | +0.004 1154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.003 2443                |
| +<br>$\pi-\varphi_i^3$                                      | +1.944 8599                        | +2.0935892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | J J                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |
| $\varphi_{i_{3}}^{(00)} \approx \varphi_{3}^{i}$            | +0.677 4641                        | +0.8467253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\lg \sin \varphi_i^{(0)}$                                                                                       | 9.799 354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.875 791                  |
|                                                             | +38°48′57″                         | +48°30′50″                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-$ lg $\tau_{i3}$                                                                                               | 0.003 323                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.079 270                  |
|                                                             |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\lg \sin B_i^{(0)}$                                                                                             | 9.796 031                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.796 521                  |
| $\int \sin 2\varphi_3^i$                                    | +0.97 679                          | +0.99 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $B_{i}^{(0)}$                                                                                                    | 38°41′53″.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>38°45′00″</b> .0        |
| $- \left[ \frac{+}{\sin 2\varphi_i^3} \right]$              | +0.68 026                          | +0.86 522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | w <sup>(0)</sup> <sub>B</sub>                                                                                    | -0.000 9051                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -3'06".7                   |
|                                                             | NOT A LANGE AND A COURT HAVE NOT A | Carden and a state of the state | and the second | A COLORADO AND A |                            |

| I | L | D | 0 | Л | 0 | Л   | ж   | e | Н  | И  | e | П  | D | И | Л | 0 | ж   | e | H   | И  | Я  | 5 |  |
|---|---|---|---|---|---|-----|-----|---|----|----|---|----|---|---|---|---|-----|---|-----|----|----|---|--|
| - | • | P | V | 4 | U | e.r | 117 | - | ** | ** | C | ** | P |   |   | 0 | 111 | ~ | ~ ~ | ** | 11 | 0 |  |

|                                               |                         |                 | and the second second being a second s | and the second se | and an an additional sector and the sector of the sector o |
|-----------------------------------------------|-------------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| б) Вычи                                       | сление w <sup>(0)</sup> |                 | $3/4 e^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.005 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.005 020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\pi - \varphi_t^3$                           | 1.944 8599              | 2.093 5892      | $\times$ R(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.008 612                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.003 760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $-\varphi_3^l$                                | 0.681 5795              | 0.849 9696      | $3/4 e^2 R(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -0.000 0432                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +0.000 0189                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\pi - (\varphi_i^3 + \varphi_3^i)$           | ) -1.263 2804           | 1.243 6196      | $-\Delta R$ (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ×<br>νμ                                       | -0.122 8226             | +0.551 1730     | νμ $F(2) = R(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.000 0411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +0.000 0119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6                                             | -0.155 159              | +0.685 449      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Constant of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                               | Las francis a           | Last Ma         | R (0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -2.728 5719                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +1.808 8730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\lg tg \varphi_3^i$                          | 9.909 169               | 0.056 243       | <i>R</i> ,(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -0.008 6124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +0.003 7598                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\lg p_{i3}$                                  | 9.090 736               | 9.742 746       | R (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.000 0411                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | +0.000 0119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| lg tg $\vartheta_3^i$                         | 8.999 905               | 9.798 989       | $\Delta L_{1.3}^{(0)}, \ \Delta L_{2.3}^{(0)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -2.737 2254                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +1.812 6447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\vartheta_3^t$                               | 5°42′33″.7              | 32°11′24″.0     | $L_1 + 2\pi, L_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $+6.927\ 4029$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | +2.3757504                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\vartheta_i^3$                               | 17°25′44″.9             | 43°49′14″.2     | $L_i^{(0)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +4.190 1775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +4.188 3951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $180^\circ = (\vartheta_i^3 + \vartheta_3^i)$ | 156°51′41″.4            | 103°59′21″.8    | $w_L^{(0)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +0.0017824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + 6'07".65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\pi - (\vartheta_i^3 + \vartheta_3^i)$       | 2.737 7497              | 1.814 9573      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\propto \omega \sqrt{1-e^2}$                 | 0.996 64767             | +0.996 64767    | в) Вычисле                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ние велич                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ин $\frac{\partial B_3^i}{\partial s_{i2}}, \frac{\partial L_3^i}{\partial s_{i2}};$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| אָע $F(0) = R(0)$                             | -2.728 5719             | +1.808 8730     | $\delta s_{i2}^{(0)}, \ \delta B_i^{(0)}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\delta L_i^{(0)}$ : $s_{i0}^{(1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $B_{2}^{(1)}$ $L_{3}^{(1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 6 —                                           | $+0.155\ 159$           | -0.685 449      | 23 3,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>3</sup> , <sup>13</sup> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -3, 20,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| σ <sub>0</sub>                                | -2.573 413              | +1.123 424      | $B_i^{(0)} \approx B_3^i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 38°41′53″.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38°45′00″.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\times e^{2/2}$                              | 0.003 3467              | 0.003 3467      | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| אָע $F(1) = R(1)$                             | -0.008 6124             | +0.0037598      | $\log \sqrt{1-e^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 9.99 854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.99 854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -174                                          |                         |                 | 1g v <sub>i3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.09 217 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.74 376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 3/16 e <sup>2</sup>                           | 0.001 255               | 0.001 255       | $\lg V_3^i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00 089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00 089                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $3/16 e^2 k^2$                                | 0.000 00827             | 0.000 00583     | $-\lg \cos B_3^i$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -9.89 234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -9.89 203                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ε <sub>2</sub> <sup>(0)</sup>                 | —1.657                  |                 | lg sin $A_{3i}'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9.19 926 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.85 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                               |                         |                 | A' <sub>31</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 189°06′13″                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 134°46′42″                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $-\frac{1}{2}\epsilon_{2}^{(0)}$              | +0.828                  | +0.929          | $\lg \cos A'_{3i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.99 450 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.84 780 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\pi - (\varphi_i^3 + \varphi_3^i)$           | +1.263                  | +1.244          | $+ lg(1)_{2}^{i}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.51 093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.51 093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| σ2                                            | +2.091                  | +2.173          | дВ <sup>i</sup> <sub>3</sub> сек                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{1}{3/16} e^2 k^2 v\mu$                 | -0.000 00102            | $+0.000\ 00321$ | $\log \frac{1}{Os_{i3}} \frac{1}{\kappa M}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.50 543 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.35 873 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\Delta R(1)$                                 | -0.000 0021             | +0.000 0070     | $a_{i3} = \frac{\partial B_3^i}{\partial s_{i3}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -22.842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| XI STATIST                                    |                         |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| in the second | and the second se |                      |      |
|-----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------|
| si n $A'_{3i}$                                                                                                  | 9.19 926 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9.85 116             |      |
| $lg(2)_{3}^{i}$                                                                                                 | 8.50 915                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.50 915             |      |
| $-\lg \cos B_3^i$                                                                                               | -9.89 234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -9.89 203            |      |
| $\lg \frac{\partial L_3^i}{\partial s_{i3}} \frac{ce\kappa}{\kappa M}$                                          | 0.81 607 n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1.46 828             |      |
| $b_{i3} = \frac{\partial L_3^i}{\partial s_{i3}}$                                                               | -6.547                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +29.395              |      |
| $\frac{\partial B_3^1}{\partial s_{1,3}} \delta s_{1,3}^{(0)} -$                                                | $-\frac{\partial B_3^2}{\partial s_{2.3}} \delta s_{2.3}^{(0)} + w_B^{(0)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9 = 0                |      |
| $\frac{\partial L_3^1}{\partial s_{1,3}}$ $\delta s_{1,3}^{(0)} -$                                              | $-\frac{\partial L_3^2}{\partial s_{2.3}}\delta s_{2.3}^{(0)}+w_L^{(0)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ))=0                 |      |
| $-32.021 \ \delta s_{1.3}^{(0)}$ $-6.547 \ \delta s_{1.3}^{(0)}$                                                | + 22.842 $\delta s_{2.3}^{(0)}$ =<br>- 29.395 $\delta s_{2.3}^{(0)}$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | =+186".7<br>- 367".7 | lg   |
| $\Delta = +1$                                                                                                   | 090.804; $\Delta_1 = +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2910.96;             | 1g   |
| $s_{1.3}^{(0)} = +2.668$                                                                                        | $\Delta_2 = +12990.43$<br>86 км; $\delta s_{2.3}^{(0)} = +1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.9145 км.          |      |
| $B_{\frac{1}{3}}^{(0)} = -85''.$                                                                                | 5; $\delta B_3^{(0)} = -272''$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | .2.                  |      |
| $L_{\frac{1}{3}}^{(0)} = -17''.$                                                                                | 471; $\delta L_{3}^{(0)} = +350$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | )″.227.              | -1   |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |      |
| $s_{i3}^{(0)}$                                                                                                  | 8070 010 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.935 385 м          | -    |
| ds(0)                                                                                                           | +2 669 м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +11 915 м            | [    |
| $s_{i3}^{(1)}$                                                                                                  | 8.072 679 м                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.947 300 м          | -    |
| $B_{i}^{(0)}_{3}$                                                                                               | 38°41′53″.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38°45′00″.0          |      |
| $\delta B_i^{(0)}$                                                                                              | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4'32".2              | 1-12 |
| $B_3^{(1)}$                                                                                                     | 38° 40′ 27″.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 38°40′27″.8          |      |
| $L_{i}^{(0)}_{3}$                                                                                               | 4.190 1775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.1883951            |      |
| $\delta L_i^{(0)}$                                                                                              | -0.000 0847                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +0 001 6979          |      |
| $L_{3}^{(1)}$                                                                                                   | 4.190 0928                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4.190 0930           |      |
|                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |      |

## 5. Второе приближение.

а) Вычисление  $w_B^{(1)}$ 

| $\lg s_{i3}^{(1)}$                                  | 6.907 017684  | 6.900 219607   |
|-----------------------------------------------------|---------------|----------------|
| lg Q <sub>i3</sub>                                  | 6.803 961804  | 6.803 748937   |
| $\lg \tilde{\sigma}_{i3}^{(1)}$                     | 0.103 055880  | 0.096 470670   |
| $-\sigma_{i3}$                                      | -1.267 814983 | -1.248 736109  |
| $\pi - \varphi_i^3$                                 | +1.944 859873 | +2.093 589153  |
| $\varphi_{i}^{(10)}$                                | +0.677 044890 | +0.844 853044  |
| $\sin B_3^{(1)}$                                    | 9.795 807     | 9.795 807      |
| lg τ <sub>i3</sub>                                  | 0.003 323     | 0.079 270      |
| $sin \varphi_i^{(1)}$                               | 9.799 130     | 0.875 077      |
| $\varphi_{i_{3}}^{(1)} \approx \varphi_{3}^{i_{3}}$ | 39°01′39.2    | 48°35′33″.3    |
| sin $2\varphi_3^i$                                  | +0.978347     | +0.992 150     |
| +<br>sin $2\varphi_i^3$                             | +0.680 267    | +0.865 218     |
| $\sin 4\varphi_3^i$                                 | +0.4050       | -0.2482        |
| $+$ sin $4\varphi_i^3$                              | -0.9972       | -0.8676        |
| $\sin 6\varphi_3^i$                                 | -0.81         | -0.93          |
| $\sin 6\varphi_i^3$                                 | +0.78         | +0.00          |
| $\varepsilon_2^{(1)}$                               | -1.658614     | -1.857 368     |
| $\epsilon_4^{(1)}$                                  | +0.5922       | +1.1158        |
| ε <sup>(1)</sup>                                    | +0.03         | ÷0.93          |
| $D_2 \varepsilon_2^{(1)}$                           | +0,004 113515 | +0.003 243756  |
| $D_4  arepsilon_4^{(1)}$                            | +0.000 001517 | +0.000 001418  |
| $D_6 \varepsilon_6^{(1)}$                           | - 1           | 11             |
| $\Delta \varphi_i^{(1)}$                            | +0.004 115031 | +0.003 245163  |
| $\varphi_{i}^{(10)}_{3}$                            | +0.677 044890 | +0.844 85 3044 |
| $\varphi_i^{(1)} \approx \varphi_3^i$               | +0.681159921  | +0.848 098207  |
| -                                                   | 39°01′39″.319 | 48°35′32″.813  |

8

8

| $\sin 2\varphi_2^i$                                                                     | +0.978 348     | +0.992150          | $3/16 e^2$ , $5/16 e^2$                  | 0.000 12550    | 0.000 20917                 |
|-----------------------------------------------------------------------------------------|----------------|--------------------|------------------------------------------|----------------|-----------------------------|
| ε <sub>0</sub> <sup>(1)</sup>                                                           | -1.658 615     |                    | $3/16 \ e^2 \ k^2$                       | 0.000 008273   | 0.000 005831                |
| $D_2 \varepsilon_2^{(1)}$                                                               | +0.004 113518  | +0.003243756       | $5/16 e^2 k^4$                           | 0.000 000091   | 0.000 000045                |
| $\Delta \varphi_{i}^{(1)}$                                                              | +0.004 115034  | +0.003 245163      |                                          | 2              |                             |
| $\varphi_{i_3}^{(1)} \approx \varphi_3^i$                                               | 0.681 159 924  | +0.848 098207      | $-\frac{1}{2}\epsilon_{2}^{(1)}$         | +0.8293        | +0.9287                     |
|                                                                                         | 39°01′39″.320  | 48°35′32″.813      | $\pi$ — ( $\varphi_i^3 + \varphi_3^i$ )  | +1.2637        | +1.2455                     |
| $lg s_i n \varphi_i^{(1)}$                                                              | 9.799 12992    | 9.875 07510        | σ2                                       | +2.0930        | +2.1742                     |
| $-\lg \tau_{i3}$                                                                        | 0.003 32312    | 0.079 26984        | $\times$ $3/16 e^2 k^2$ vp.              | -0.000 001016  | +0.000 003214               |
| $\limsup_{3}^{1} B_{i_{3}}^{(1)}$                                                       | 9.795 80680    | 9.795 80526        | $\Delta R$ (1)                           | -0.000 002128  | +0.000 006988               |
| $B_{i}^{(1)}_{3}$                                                                       | 38°40′28″.038  | 38°40′27″.452      |                                          |                |                             |
| $w_B^{(1)}$                                                                             | +0.000 002841  | +0''.586           | $3/4 e^2$                                | 0.005 0200     | 0.005 0200                  |
|                                                                                         |                |                    | $\times R(1)$<br>3/4 $e^2 R(1)$          | -0.000 043235  | +0.00376199<br>+0.000018885 |
| б)Вы                                                                                    | числение то    | 1)                 | $-\Delta R(1)$                           | +0.000 002126  | -0.000 006988               |
| $\pi - \varphi_{i}^{3}$                                                                 | 1.944 8599     | 2.093 5892         | νμ. $FR(2) = R(2)$                       | - 0.000 041109 | +0.000 011897               |
| $-\varphi_3^i$                                                                          | 0.681 1599     | -0.848 0982        |                                          |                |                             |
| $\pi - (\varphi_i^3 + \varphi_3^i)$                                                     | 1.263 7000     | 1.245 4910         | $3/8[\pi - (\varphi_i^3 + \varphi_3^i)]$ | +0.474         | +0.467                      |
| Χ νμ                                                                                    | -0.122 8226    | +0.551 1730        | $-1/4 \epsilon_{0}^{(1)}$                | $\pm 0.415$    | $\pm 0.464$                 |
| δ                                                                                       | -0.155 2109    | +0.686 4810        | 1                                        | -0.113         | 10.101                      |
| lg tg $\varphi_3^i$                                                                     | 9.908 79075    | 0.034 00387        | $+\frac{1}{32}\epsilon_{4}^{(1)}$        | +0.019         | +0.035                      |
| $\lg p_i$                                                                               | 9.090 73637    | 9.742 74631        | $\sigma_4$                               | +0.908         | $\div 0.966$                |
| lg tg $\vartheta_3^i$                                                                   | 9.999 53312    | 9.797 35018        | 5/16 e2 k4 vp.                           | -0.000 000011  | +0.000 000025               |
| $\vartheta_3^i$                                                                         | 5°42′16″.192   | 32°05′33″.430      | $\Delta R(2)$                            | -0.000 000010  | +0.000 000024               |
| $\vartheta_i^3$                                                                         | 17°25′44″.946  | 43°49′14″.183      |                                          |                |                             |
| $\frac{180^{\circ} - (\vartheta_i^3 + \vartheta_3^i)}{(\vartheta_i^3 + \vartheta_i^i)}$ | 2.737 834304   | 4.816 656917       |                                          | 0.005 578      | 0.005 578                   |
| $\times^{\pi-(\vartheta_i^*+\vartheta_3^*)}$                                            | -0.996 647 670 | $\pm 0.996.647670$ | $\times 5/6 e^2$<br>R (2)                | 0.000 04111    | +0.000 01190                |
| $\omega \sqrt{1-e^2}$                                                                   | -2.728 656180  | +1.810 566884      | $5/6 e^2 R(2)$                           | 0.000.000220   |                             |
| $\nabla \mu F(0) = R(0)$                                                                | +0.155 2109    | -0.686 4810        | $-\Delta R$ (2)                          | + 10           | 24                          |
| σ <sub>0</sub>                                                                          | -2.573 4453    | +1.124 0859        | עני $FR(3) = R(3)$                       | -0.000 000219  | +0.000 000042               |
| $\times e^{2/2}$                                                                        | 0.003 346711   | 0.003 346711       |                                          |                |                             |
| $\forall \mu F(1) = R(1)$                                                               | -0.008 612578  | +0.003 764991      |                                          | States and     |                             |
|                                                                                         |                |                    |                                          |                |                             |
|                                                                                         |                |                    |                                          |                |                             |

| Іродолж                                                         | ение при л                   | ожения 5       |  |  |  |  |
|-----------------------------------------------------------------|------------------------------|----------------|--|--|--|--|
| $\delta s_{1,3}^{(1)} = +22.669  \delta s_{2,3}^{(1)} = +6.120$ |                              |                |  |  |  |  |
| $\delta B_1^{(1)} = -0''.726;  \delta B_2^{(1)} = -0''.140$     |                              |                |  |  |  |  |
| $\delta L_{1}^{(1)} = -$                                        | $-0''.1484 \delta L_2^{(1)}$ | =+0".1796      |  |  |  |  |
| 3                                                               | 3                            |                |  |  |  |  |
| $s_{i3}^{(1)}$                                                  | 8 072 679.0                  | 7.947 300.0    |  |  |  |  |
| $\delta s_{i3}^{(1)}$                                           | +22.7                        | +6.1           |  |  |  |  |
| $s_{i3}^{(2)}$                                                  | 8 072 701.7                  | 7 947 306.1    |  |  |  |  |
|                                                                 |                              |                |  |  |  |  |
| $B_{i}^{(1)}$                                                   | 38°40′28″.038                | 38°40′27″.452  |  |  |  |  |
| $\delta B_i^{(1)}$                                              | -0".726                      | -0.140         |  |  |  |  |
| $B_{3}^{(2)}$                                                   | 38°40′27″.312                | 38°40′27″.312  |  |  |  |  |
|                                                                 |                              |                |  |  |  |  |
| $L_{i_{3}}^{(1)}$                                               | 4.190 092790                 | 4.190 091201   |  |  |  |  |
| $\delta L_i^{(1)}$                                              | -0.000 000719                | +0.000 000871  |  |  |  |  |
| $L_i^{(2)}$                                                     | 4.190 092071                 | 4.190 09272    |  |  |  |  |
|                                                                 |                              | 240°04′28″.529 |  |  |  |  |

## 6. Поверочный расчет

## а) Определение $w_B^{(2)}$

| $\lg s_{i3}^{(2)}$                  | 6.907 018905  | 6.900 219941  |
|-------------------------------------|---------------|---------------|
| $\lim_{n \to \infty} Q_{i3} \cdot$  | 6.803 961804  | 6.803 748937  |
| $\log \sigma_{i3}^{(2)}$            | 0.103 057101  | 0.096 471004  |
| $- \widetilde{\sigma}_{i3}^{(2)}$   | -1.267818547  | -1.248 737069 |
| $\pi - \varphi_i^3$                 | +1.944 859873 | +2.093 589153 |
| φi                                  | 0.677 041326  | 0.844 852084  |
| + $\Delta \varphi_{i}^{(2)}_{3}$    | +0.004 115034 | +0.003 245163 |
| $\varphi_{i_2}^{(2)} = \varphi_3^i$ | +681 156360   | +0.848 097247 |
| 5 =                                 | 39°01′38″.583 | 48°35′32″.614 |
|                                     |               |               |
| $lg \sin \varphi_i^{(2)}$           | 9.799 12801   | 9.875 07473   |
| $\lg \tau_{i3}$                     | 0.003 32312   | 0.079 26984   |
| $\limsup_{3}^{(2)} B_{i_{3}}^{(2)}$ | 9.795 80489   | 9.795 80489   |
|                                     |               |               |

| D (0)                                                                         | 9 700 656100                        |                                                                                     |  |  |  |  |
|-------------------------------------------------------------------------------|-------------------------------------|-------------------------------------------------------------------------------------|--|--|--|--|
| R(0)                                                                          | -2.728 050180                       | +1.810 566884                                                                       |  |  |  |  |
| R(1)                                                                          | $-0.008 \ 612578$                   | +0.003761991                                                                        |  |  |  |  |
| R 2)                                                                          | — 41109                             | + 1189                                                                              |  |  |  |  |
| R (3)                                                                         | - 219                               | + 42                                                                                |  |  |  |  |
| $\nabla L_{1.3}^{(1)}, \Delta L_{2.3}^{(1)}$                                  | -2.737 310086                       | +1.814 340814                                                                       |  |  |  |  |
| $L_1 + 2\pi, L_2$                                                             | +6.927 402876                       | +3.375 750387                                                                       |  |  |  |  |
| $L_i^{(1)}$                                                                   | 4.190 092790                        | 4.190 091 <b>2</b> 0                                                                |  |  |  |  |
| $w_L^{(1)}$                                                                   | +0.000 001591                       | + 0".328                                                                            |  |  |  |  |
|                                                                               |                                     |                                                                                     |  |  |  |  |
| в) Вычисл                                                                     | ение величи                         | $H \frac{\partial B_3^i}{\partial s_{i3}}, \frac{\partial L_3^i}{\partial s_{i3}},$ |  |  |  |  |
| $\delta s_{i3}^{(1)}$ , $\delta B_{i_3}^{(1)}$                                | $\delta L_{3}^{(1)}, s_{i3}^{(2)},$ | $B_3^{(2)}, L_3^{(2)}.$                                                             |  |  |  |  |
| $\lg v_{i3} V_3^i$ .                                                          | S. F. Martin                        |                                                                                     |  |  |  |  |
| $\cdot \sqrt{1-e^2}$                                                          | 9.09 160 n                          | 9.74 319                                                                            |  |  |  |  |
| $\lg \cos B_3^i$                                                              | 9.89 239                            | 9.89 239                                                                            |  |  |  |  |
| lg sin $A'_{3i}$                                                              | 9.19 921 n                          | 9.85 080                                                                            |  |  |  |  |
| A' <sub>3i</sub>                                                              | 189°06′09″                          | 134°49′32″                                                                          |  |  |  |  |
| $\lg \cos A'_{3i}$                                                            | 9.99 450 n                          | 9.84 816 n                                                                          |  |  |  |  |
| $lg(1)_{3}^{i}$                                                               | 8.51 093                            | 8.51 093                                                                            |  |  |  |  |
| $lg \frac{\partial B_3^i}{\partial s_{i3}} \frac{ce\kappa}{100 \ M}$          | 0.50 543 n                          | 0.35 909 n                                                                          |  |  |  |  |
| $a_{i3} = \frac{\partial B_3^i}{\partial s_{i3}}$                             | —3.2021                             | -2.2860                                                                             |  |  |  |  |
| lg sin $A'_{3i}$                                                              | 9.19 921 n                          | 9.85 080                                                                            |  |  |  |  |
| $lg (2)_3^i$                                                                  | 8.50 915                            | 8.50 915                                                                            |  |  |  |  |
| $-\log \cos B_3^i$                                                            | 9.89 239                            | 9.89 239                                                                            |  |  |  |  |
| $\lg \frac{\partial L_3^i}{\partial s_{i3}} \frac{ce\kappa}{100 \ M}$         | 7.81 597 n                          | 8.46 756                                                                            |  |  |  |  |
| $b_{i3} = \frac{\partial L_3^i}{\partial s_{i3}}$                             | 0.6546                              | +2.9347                                                                             |  |  |  |  |
| $3.2021 \ \delta s_{1.3}^{(1)} + 2.2860 \ \delta s_{2.3}^{(1)} + 0''.586 = 0$ |                                     |                                                                                     |  |  |  |  |

 $-0.6546 \delta s_{1.3}^{(1)} - 2.9347 \delta s_{2.3}^{(1)} + 0''.328 = 0$  $\Delta = \pm 10.8936; \ \Delta_1 = \pm 2.4695; \ \Delta_2 = \pm 0.66669$ 80

lg

Окончание приложения 5

| $B_{i_{2}}^{(2)}$                          | 38°40′27″.312  | 38°40′27″.312  | $\pi - (\vartheta_i^3 + \vartheta_3^i)$      | 2.737 835025                                                                                                   | 1.816 657799  |
|--------------------------------------------|----------------|----------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|
| $w_B^{(2)}$                                |                | 0″.000         | $\times$ $\sqrt{1-e^2}$                      | -0.996 647670                                                                                                  | 0.996 647670  |
|                                            | and the state  |                | νμ $F(0) = R(0)$                             | -2.728 656899                                                                                                  | +1.810 567763 |
| б) Оп                                      | ределение      | $w_L^{(2)}$    | 6—                                           | +0.155 2114                                                                                                    | -0.686 4816   |
| $\pi - \varphi_1^3$                        | 1.944 8599     | 2.093 5892     | σ <sub>0</sub>                               | -2.573 4455                                                                                                    | +1.124 0862   |
| $-\varphi_3^i$                             | -0.681 1564    |                | $\sim e^2$                                   | 0.003 346711                                                                                                   | 0.003 346711  |
| (3, 1)                                     | 1.000.7005     | 1.045 4000     | 2<br>(1) D(1)                                | 0.009619579                                                                                                    | +0.003 761992 |
| $\pi - (\varphi_i^* + \varphi_3^*) \times$ | 1.263 7035     | 1.245 4920     | $v\mu F(1) = R(1)$                           | -0.008012578                                                                                                   | +0.003 101332 |
| vh                                         | 0.122 8226     | +0.551 1730    |                                              |                                                                                                                |               |
| 6                                          | -0.155 2114    | +0.686 4816    | R (0)                                        | -2.728656899                                                                                                   | +1.810 567763 |
|                                            |                |                | R (1)                                        | -0.008 612578                                                                                                  | +0.003 761992 |
| $\log tg \varphi_3^i$                      | 9.908 79358    | 0.054 60302    | R (2)                                        | - 41109                                                                                                        | + 11897       |
| $\lg p_{i3}$                               | 9.090 73637    | 9.742 74631    | R (3)                                        | - 219                                                                                                          | <u>-+- 42</u> |
| lg tg $\vartheta_3^i$                      | 9.999 52995    | 9.797 34933    | $\nabla L_{1,3}^{(2)}, \Delta L_{2,3}^{(2)}$ | -2.737 310805                                                                                                  | +1.814 341692 |
| $\vartheta_3^i$                            | 5°42′16″.043   | 32°05′33″.248  | $L_1+2\pi$ , $L_2$                           | +6.927402876                                                                                                   | +2.375 750387 |
| $\vartheta_i^3$                            | 17°25′44″.946  | 43°49′14″.183  | $L_{i}^{(2)}$                                | 4.190 092071                                                                                                   | 4.190 092081  |
| $180^{\circ} - (\vartheta_{i}^{3} +$       |                |                |                                              |                                                                                                                |               |
| $+\vartheta_3^i)$                          | 156°51′59″.011 | 104°05′12″ 569 | $w_L^{(2)}$                                  | -0.000 000010                                                                                                  | -0".0021      |
|                                            |                |                |                                              | The second s |               |

до 1-3° среднюю широту Вік каждой такой части и выписали отвечающее  $B_{i\kappa}$  значение  $R_{i\kappa}$  среднего радиуса кривизны (с точностью до 1 км). Теперь уже можно было подсчитать искомые начальные значения s<sup>(0)</sup> длин засекающих сторон i3 на сфероиде, приняв

$$s_{i3}^{(0)} = \left(\frac{1}{4}\sum_{\kappa} R_{i\kappa}\right)\sigma_{i3}^{(0)}, \quad (i=1,2).$$

Последующие вычисления выполнялись так, как это описано в [Дел. 6,Б], причем выяснилось, что несмотря на кажущуюся грубость изложенного выше расчета длин  $s_{i3}^{(0)}$  ошибки  $\nabla s_{i3}^{(0)}$  этих длин оказались сравнительно малыми:

- а)  $\nabla s_{i3}^{(0)} = -2.7 \ \kappa M$  при  $s_{1.3} = 8072 \cdot 7 \ \kappa M;$
- б)  $\nabla S_{2,3}^{(0)} = -11.9 \ \kappa M$  при  $S_{2,3} = 7947.3 \ \kappa M$ .

Для нахождения на сфероиде длин s<sub>i,3</sub> с точностью до 0,2 *м* и координат B<sub>3</sub>, L<sub>3</sub> с точностью до 0".001-0".002 потребовалось два полных приближения (одно-с 6 знаками, другое-с 8-9 знаками) и одно неполное, поверочное приближение.

3. Сопоставляя значения координат В<sub>3</sub>, L<sub>3</sub> определяемой точки 3, найденные обоими способами, убеждаемся в их хорошей сходимости

1-й способ:  $B_3 = 38^{\circ}40'27'' \cdot 310; \quad L_3 = 240^{\circ}04'28'' \cdot 531.$ 

2-й способ: 
$$B_3 = 48^{\circ}40'27'' \cdot 312$$
;  $L_3 = 240^{\circ}04'28'' \cdot 529$ .

Возникающие при этом расхождения не выходят из пределов точности вычисления по 8-значным таблицам логарифмов.

#### ЛИТЕРАТУРА

F. W. Bessel, Ueber die Berechnung der geographischen Längen und Breiten aus geodetischen Vermessungen. Astr. Nachr., Bd. 4, № 86, 1826.
 Ю. С. Сикорский, Элементы теории эллиптических функций. ОНТИ, 1936.
 В. П. Ветчинкин. Новые формулы и таблицы эллиптических интегралов и функций. Изд. BBA PKKA, М., 1935.

4. Ф. А. Слудский. Лекции по высшей геодезии. М., 1894.

4. Ф. А. Слудский. Лекции по высшей геодезии. М., 1854. 5. Ф. Н. Красовский. Курс высшей геодезии. Ч. 2, М., 1942. 6. Б. Ф. Крутой. Общие способы решения основных расчетных задач на зем-ном сфероиде (краткое сообщение). Известия ТПИ, т. 118, 1963.