И З В Е С Т И Я томского ордена трудового красного знамени политехнического института имени С. М. Кирова

Том 137

1965

РАСЧЕТ ПЕРЕГРЕВА ПОВЕРХНОСТИ ОБМОТКИ ДОБАВОЧНЫХ СОПРОТИВЛЕНИЙ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫХ ПРИБОРОВ

Г. И. ФУКС, А. С. ЛЯЛИКОВ

1. Добавочное сопротивление находится в невентилируемом корпусе (рис. 1).

Сопротивление обмотки R ом, сила тока I a полная наружная поверхность добавочного сопротивления F_1 M^2 , внутренняя и наружная поверхности корпуса F'_{κ} и F''_{κ} M^2 , его толщина Δ_{κ} м и коэффициент

теплопроводности $\lambda_{\kappa} \frac{Bm}{M \cdot cpad}$ известны.

Необходимо определить перегрев поверхности обмотки $\vartheta = t_1 - t_f^{\circ} C$ при стационарном тепловом режиме прибора.

2. На основании общих положений теории теплообмена при стационарном тепловом режиме тепло, отдаваемое корпусом в окружаю-

Рис. 1.

щую среду, передаваемое через стенку корпуса и поступающее от катушки на внутреннюю поверхность корпуса, одинаково. Это позволяет записать три уравнения:

$$P = \alpha'' \left(t_3 - t_f \right) F_{\kappa}^{''}, \ \delta m, \tag{1}$$

$$P = \frac{\lambda_{\kappa}}{\Delta_{\kappa}} (t_2 - t_3) \frac{F'_{\kappa} + F''_{\kappa}}{2}, \quad \textit{em}, \qquad (2)$$

3

$$P = \frac{\lambda_{\mathfrak{H}}}{\delta_{\mathfrak{H}}} (t_1 - t_2) \sqrt{F_1 \cdot F_{\kappa}} + \varepsilon C_0 F_1 \left[\left(\frac{T_1}{100} \right)^4 - \left(\frac{T_2}{100} \right)^4 \right],$$

или

$$P = (t_1 - t_2) \left(\frac{\lambda_9}{\delta_9} \sqrt{F_1 \cdot F_\kappa'} + \varepsilon \cdot C_0 F_1 \Theta \right), \ \delta m.$$
(3)

Обозначено:

α"=α_к + α_л — суммарный коэффициент теплоотдачи конвекцией и излучением с поверхности корпуса, <u>вт</u>;

$$M^2 \cdot rpad$$

*t*₂ и *t*₃ — температура внутренней и наружной поверхности корпуса, °C;

$$\Theta = \frac{\left(\frac{T_{1}}{100}\right)^{4} - \left(\frac{T_{2}}{100}\right)^{4}}{T_{1} - T_{2}},$$

где

4

 T_1 и T_2 — температуры t_1 и t_2 в абсолютной шкале, °К. λ_3 — эквивалентный коэффициент теплопроводности прослойки воздуха между катушкой и корпу-

сом (с учетом конвекции), $\frac{BM}{M \cdot rpad}$;

δ_э — условная эквивалентная толщина воздушной прослойки между катушкой и корпусом, *м*; √ F₁·F[']_κ — среднегеометрическая площадь эквивалентной

воздушной прослоики,
$$m^{-}$$
;
 $C_0 = 5,7 - коэффициент излучения абсолютно черного $m$$

тела,
$$\frac{\partial m}{m^2 \cdot r p a \partial K^4};$$

 ε_1 и ε'' — степень черноты катушки и корпуса;

$$\varepsilon = \frac{1}{\frac{1}{\varepsilon_1} + \frac{F_1}{F_{\kappa}^{''}} \left(\frac{1}{\varepsilon''} - 1\right)}$$
 - степень черноты системы катушка-корпус.

В уравнении (3) первое слагаемое правой части представляет тепло, передаваемое конвекцией, а второе—излучением.

На основании уравнений (1), (2) и (3) можно наметить следующий путь нахождения t_1 и ϑ .

Из уравнения (1) и (2) соответственно получаем

$$t_3 = t_f + \frac{P}{\alpha'' \cdot F_{\kappa}'}, \qquad (4)$$

$$t_2 = t_3 + \frac{2P}{\frac{\lambda_{\kappa}}{\Delta_{\kappa}} \left(F'_{\kappa} + F''_{\kappa}\right)}$$
(5)

Найдя t_2 , следует воспользоваться уравнением (3) для определения t_1 . Предварительно необходимо вычислить δ_9' и λ_9 .

А. Для определения δ_э рассмотрим случай расположения одного тела внутри другого, когда форма обоих тел шаровая (рис. 2, *a*).

$$\delta_{\vartheta} = \frac{D - d_2}{2} \,. \tag{a}$$

Объем воздуха между внутренним шаром и шаровой оболочкой

$$V = \frac{\pi}{6} \left(D^3 - d_2^3 \right), \tag{6}$$

а сумма поверхностей F_1 и F'_{ν}

$$F_1 + F'_{\kappa} = \pi \left(D^2 + d_2^2 \right). \tag{6}$$

Отношение (б) и (в) дает

$$\frac{V}{F_1 + F'_{\kappa}} = \frac{1}{6} \frac{(D^3 - d_2^3)}{(D^2 + d_2^2)} = \frac{2}{6} \frac{D^2 + Dd_2 + d_2^2}{D^2 + d_2^2} \cdot \frac{D - d_2}{2} \cdot$$
(2)

Из (г) можно записать

$$\delta_{\mathfrak{g}} = \frac{D - d_2}{2} = 3 \frac{D^2 + d_2^2}{D^2 + Dd_2 + d_2^2} \cdot \frac{V}{F_1 + F_{\kappa}'} = K_{\Phi} \cdot \frac{V}{F_1 + F_{\kappa}'}, \qquad (6)$$

где

$$K_{\Phi} = 3 \frac{D^2 + d_2^2}{D^2 + D \cdot d_2 + d_2^2}.$$
(7)

Выражая d_2 в долях от $D\left(d_2=xD, x=rac{d_2}{D}, 0{<}x{<}1
ight)$ и подставляя $d_2 = xD$ в (7), получим

$$K_{\Phi} = \frac{3\left(1+x^2\right)}{\left(1+x+x^2\right)} \,. \tag{8}$$

Как видно из (8), Ко-геометрический фактор, характеризующий соотношение размеров добавочного сопротивления и корпуса, величи-

Рис. 2.

на безразмерная. Если d_2 и D близки по величине $(d_2 \rightarrow D, x \rightarrow 1)$, то $K_{\Phi} \rightarrow 2$; если d_2 мало по сравнению с $D(d_2 \rightarrow 0$ или $D \rightarrow \infty, x \rightarrow 0)$, то $K_{\Phi} \rightarrow 3$. При промежуточных значениях x = 0,1; 0,2...0,9 величина Кф принимает промежуточные значения

$$2 < K_{\phi} < 3. \tag{9}$$

Рассмотрение случаев "куб в кубе" и "цилиндр в цилиндре". (рис. 2, б, в) приводит к тем же результатам.

Таким образом, для пар шаровых, кубических и цилиндрических тел при симметричном расположении сопротивления в корпусе эквивалентная толщина воздушной прослойки δ_9 может быть найдена через объем воздуха внутри корпуса V и сумму поверхностей F_1 и F'_{κ} с помощью соотношения (6), при этом K_{Φ} вычисляется по (8).

При неодноименной форме сопротивления и корпуса (цилиндр в кубе или в прямоугольном параллелепипеде и т. п.) возможно отклонение K_{ϕ} от указанных значений, но есть основания утверждать, что оно будет несущественным, так как в соотношении (8) для шаровых, кубических и цилиндрических тел влияние формы не проявилось.

Б. Эквивалентный коэффициент теплопроводности прослойки воздуха $\lambda_{9} = \varepsilon_{\kappa}\lambda$, где ε_{κ} — коэффициент конвекции. Для плоских (вертикальных и горизонтальных), цилиндрических и шаровых прослоек ε_{κ} может быть определен из критериальных уравнений [1]

$$\varepsilon_{\kappa} = 0,105 \; (\mathrm{Gr} \cdot \mathrm{Pr})_m^{0,3} \; \mathrm{при} \; 10^3 < \mathrm{Gr} \cdot \mathrm{Pr} < 10^6,$$
 (∂)

 $\varepsilon_{\kappa} = 0,40$ (Gr · Pr)^{0,2}_m при $10^6 < \Pr \cdot Gr < 10^{10}$.

Здесь

6

 $Gr = \frac{\delta_{9}^{3}gv'}{v^{2}} \beta$ — критерий Грасгофа;

 $\Pr = \frac{v}{a}$ — критерий Прандтля;

}'	$= t_1 - t_2$	— разность температур по стенкам газовой прослойки
		(в рассматриваемом случае сопротивления и внут-
		ренней поверхности корпуса), °С;
g.	= 9,81	— ускорение от сил тяжести, <i>м/сек</i> ² ;
v		— коэффициент кинематической вязкости воздуха,

- а м²/сек; - коэффициент температуропроводности воздуха, м²/час;
- β коэффициент объемного расширения, для газов $\beta = \frac{1}{T}, \frac{1}{\circ K}.$

Индекс *m* означает, что все физические константы, входящие в Gr и Pr, берутся при средней температуре прослойки газа $t_m = \frac{t_1 + t_2}{2}$.

Уравнения (1), (2) и (3) и соображения по определению $\delta_{\mathfrak{s}}$ и $\lambda_{\mathfrak{s}}$, изложенные выше, представляют основу теоретического подхода к определению температуры поверхности обмотки t_1 .

3. При использовании уравнений (1), (2) и (3) для расчета t_1 возникают трудности, состоящие в том, что в уравнения (1) и (3) входят величины α'' и λ_3 , определяемые через искомые температуры t_3 и t_1 .

А. Так $\alpha'' = \alpha_{\kappa} + \alpha_{\pi}$. Входящий сюда α_{π} определяется как

$$\alpha_{\pi} = \frac{\varepsilon'' \cdot C_0 \left[\left(\frac{T_3}{100} \right)^4 - \left(\frac{T_f}{100} \right)^4 \right]}{T_3 - T_f} \cdot$$
(e)

Таким образом, α_n зависит от искомой величины t_3 . Значение α_k определяется с помощью критериальных уравнений [1]

$$\mathrm{Nu}_f = 0,47 \ \mathrm{Gr}_f^{0,25} \tag{\mathcal{HC}}$$

$$Nu_m = 0,54 \ (Gr \cdot Pr)_m^{0,25}.$$
 (3)

В данном случае критерии Нуссельта, Грасгофа и Прандтля выражаются

Nu =
$$\frac{\alpha_{\kappa} \cdot D}{\lambda_{\kappa}}$$
; Gr = $\frac{D^3 g (t_3 - t_f)}{\nu^2} \cdot \beta$; Pr = $\frac{\nu}{a} \cdot \beta$

Индекс f указывает, что физические параметры воздуха, входящие в критерии, определяются при температуре окружающего воздуха, а индекс m — при средней температуре пограничного слоя воздуха $t_m = \frac{t_3 + t_f}{2}$.

Поскольку в критерий Грасгофа входит t_3 , то очевидно, что α_{κ} так же, как и α_n , в любом случае зависит от искомой величины t_3 , что приводит к необходимости решать уравнение (4) подбором. Многократные вычисления $\alpha'' = \alpha_n + \alpha_{\kappa}$ с помощью (e) и (\mathcal{H}) или (3) весьма громоздки и трудоемки. Сокращение громоздкости и трудоемкости, а также исключение подбора t_3 , может быть достигнуто табулированием и номографированием выражения (4). Уравнение (1) перепишем в виде

$$\frac{P}{F_{\kappa}^{"}} = \alpha^{\prime\prime} \left(t_3 - t_f \right) = P_{\kappa}^{"} = \alpha^{\prime\prime} \vartheta_3 = f(\varepsilon^{\prime\prime}, \vartheta_3, t_f, D).$$
(10)

Здесь *P* и *P*_к["] – соответственно полная мощность сопротивления и удельная мощность рассеяния на корпусе.

Степень черноты є для пластмасс и поверхностей, покрытых лаками и масляными красками различных цветов, может быть принята є = 0,9. Если принять температуру окружающей среды $t_f = 20^{\circ}$ С, то

$$P_{\kappa}^{"} = f_1(\vartheta_3, D). \tag{10'}$$

Задаваясь разностью температур корпуса и окружающей среды ϑ_3 и придавая D различные значения, можно вычислить соответствующие P''_{κ} . По этим данным строится номограмма, которая позволяет найти ϑ_3 , если известны D и P''_{κ} , и далее определить $t_3 = \vartheta_3 - t_f$. Такая номограмма построена и приводится на рис. 3.

При построении номограммы рис. З расчет ак проводился по уравнению (з), а_л — по уравнению (е).

Б. Как видно из уравнения (3), с учетом (∂) и выражения для Θ температура обмотки t_1 определяется через величины, зависимые от искомой температуры t_1 непосредственно (Θ) или в виде $\vartheta' = t_1 - t_2$ и $t_m = \frac{t_1 + t_2}{2}$ (ε_{κ} и $\lambda_9 = \varepsilon_{\kappa} \cdot \lambda$). И здесь возникает необходимость решать уравнение (3) подбором. Сокращение громоздкости и трудоемкости здесь также может быть достигнуто номографированием $\Theta = f_2 (T_1, T_2)$ и $\varepsilon_{\kappa} = f_3 (\text{Gr} \cdot \text{Pr})_m = f_4 (\delta_9, \vartheta', t_m)$. Номограмма для определения Θ приводится на рис. 4. Для определения ε_{κ} строится несколько номограмм, отличающихся диапазоном δ_9 и областью значений (Gr · Pr). Одна из таких номограмм приведена на рис. 5. Если известно δ_9 и уже вычислено t_2 то, залаваясь t'_1 находят

$$\vartheta' = t'_1 - t_2$$
 и $t_m = \frac{t'_1 + t_2}{2}$, а далее из номограммы ε_{κ} , затем $\lambda_{\vartheta} = \varepsilon_{\kappa} \cdot \lambda$

 $\theta = f(t_i, t_z)$

Рис. 4.

Рис. 5.

и по уравнению (3) вычисляют P. Подбор t_1 повторяется до совпадения P, полученного по уравнению (3), с значением действительного тепловыделения обмотки $P = I^2 R$.

4. С целью проверки согласования предлагаемого метода расчета с опытом, была проведена экспериментальная проверка. Схема ведения опытов представлена на рис. 6.

Добавочные сопротивления (катушка № 1 $d_2=10$ мм и l=14,8 мм и катушка № 2 $d_2=21,5$ мм и l=22 мм) помещались под цилиндрический корпус из плексигласа, покрытый черной масляной краской. Мощность рассеяния определялась по падению напряжения на обмотке катушки и ее сопротивлению. Температура измерялась на верхней образующей цилиндрической поверхности обмотки в средней ее части (максимальная температура поверхности обмотки) с помощью медь-

константановой термопары. Результаты опытной проверки метода расчета характеризуются табл. 1. На основании таблицы построен график расхождения расчетных и опытных значений перегрева в зависимости от $\frac{F_1}{F_{\kappa}}$, из которого установлено, что при $\frac{F_1}{F_{\kappa}} > 0,08$ согласование расчетов и опыта удовлетворительное (расхождения не превышают 14—15%). При меньших значениях $\frac{F_1}{F_{\kappa}}$ расхождения резко увеличиваются. Причиной этого, по нашему мнению, является то, что по мере увеличения корпуса ме-

11

няется характер процессов теплообмена — от явления теплообмена в замкнутом объеме происходит переход к теплообмену в неограниченном объеме.

Таблица 1

	ð.	Катушка № 1				Катушка № 2			
Режи	мм	h=2, мм	$\frac{F_1}{F'_{\rm K}}$	$\left \begin{array}{c}h=50,\\ \mathcal{MM}\end{array}\right $	$\frac{F_1}{F'_{\kappa}}$	h=2, MM	$\frac{F_1}{F'_{\kappa}}$	$\begin{vmatrix} h = 50, \\ MM \end{vmatrix}$	$\frac{F_{1}}{F_{\kappa}^{'}}$
	2	+4,2	0,565	-2,5	0,1965	+7,4	0,492	+14,4	0,214
	5	6,0	0,354	-4,9	0,1273	+9,7	0,393	+8,9	0,1605
·	15	-5,4	0,1292	- 17,4	0,056	+8,7	0,1817	-1,0	0,0883
	30	- 15,9	0,0524	-27,8	0,0272	+6,3	0,0845	-7,9	0,0487
	50	- 34,4	0,02405	- 42,3	0,0144	- 9,9	0,0435	$-16,2^{*}$	0,0303
	2	+9,6	0,565	-3,2	0,1965	_		_	
13.3.4.10	5	+1,8	0,354	-0,2	0,1273	+13,0	0,393	+14,6	0,1605
II ·	15	+2,5	0,1292	- 8,5	0,056	+14,7	0,1817	-3,3	0,0883
	30	- 16,8	0,0524	- 28,2	.0,0272	+2,7	0,0845	- 12,3	0,0487
	50	- 35,0	0,02405	- 39,3	0,0144	- 14,7	0,0435	- 10,3*	0,0303
the second		1. 2	3. Sec. 19.5.	1. 1. 1. 1.	10 52 A TO				

Расхождение расчетных перегревов с опытными (в %)

I — режим по току соответствует перегреву № ≈ 80° в условиях свободного охлаждения;

II — режим — то же, $\vartheta \approx 40^{\circ}$. Примечание: * — корпус с $\delta = 44$ мм и h = 65 мм.

ЛИТЕРАТУРА

1. М. А. Михеев. Основы теплопередачи. 1956.