Том 138

1965

ЭКВИВАЛЕНТНЫЕ ТЕПЛОВЫЕ СХЕМЫ ТЕЛ С ОДНОМЕРНЫМ ТЕМПЕРАТУРНЫМ ПОЛЕМ

Д. И. САННИКОВ

(Представлена научным семинаром кафедр электрических машин и общей электротехники)

Решение различных задач по расчету нагрева электрических машин ввиду сложности температурного поля оказывается возможным только при использовании приближенных методов. К ним относятся, например, приведение трехмерного поля в какой-либо части машины к одномерному и метод эквивалентных тепловых схем. Объединение обоих методов позволяет избежать некоторых недостатков, свойственных каждому из них в отдельности.

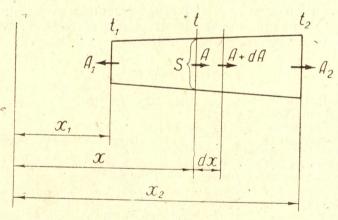


Рис. 1.

Рассмотрим общий случай стационарного температурного поля в стержне с внутренними источниками тепла при передаче тепла вдоль оси x (рис. 1). Пусть сечение стержня s(x), объемная плотность источников тепла $\sigma(x)$ и теплопроводность $\lambda(x)$ меняются по длине стержня и не зависят от температуры. Тепловой поток вдоль стержня

$$A = -\lambda s \frac{dt}{dx}. ag{1}$$

На основании теплового баланса для элемента dx имеем

$$dA = \sigma s \, dx. \tag{2}$$

Исключая А и вводя обозначения:

тепловое сопротивление на единицу длины

$$r = \frac{1}{\lambda s},\tag{3}$$

линейная плотность источников тепла (потерь)

$$q = \sigma s,$$
 (4)

получаем дифференциальное уравнение теплопроводности

$$\frac{d}{dx}\left(\frac{1}{r}\frac{dt}{dx}\right) + q = 0,\tag{5}$$

решение которого может быть записано в виде

$$t(x) = t_{q}(x, q) + t_{1} \cdot f_{1}(x) + t_{2} \cdot f_{2}(x), \tag{6}$$

где

$$f_1(x) = \frac{R(x_2) - R(x)}{R(x_2) - R(x_1)},$$
(7)

$$f_2(x) = \frac{R(x) - R(x_1)}{R(x_2) - R(x_1)} = 1 - f_1(x), \tag{8}$$

$$R(x) = \int_0^x dx, \tag{9}$$

$$t_q(x, q) = -\Theta(x) + \Theta(x_1) \cdot f_1(x) + \Theta(x_2) \cdot f_2(x),$$
 (10)

$$\Theta(x) = \int_{0}^{x} r\left(\int_{0}^{x} q \, dx\right) dx. \tag{11}$$

Таким образом, температура складывается из трех составляющих: $t_q\left(x,\,q\right) - \text{зависящей от потерь,} \\ t_1\cdot f_1\left(x\right) \text{ и } t_2\cdot f_2\left(x\right) - \text{зависящих от граничных условий.}$

На основании общего выражения для теплового потока

$$A = -\frac{1}{r} \frac{dt}{dx} = \int_{0}^{x} q \, dx + \frac{\Theta(x_{1}) - \Theta(x_{2})}{R(x_{2}) - R(x_{1})} + \frac{t_{1} - t_{2}}{R(x_{2}) - R(x_{1})}$$
(12)

находим потоки, выходящие из торцевых сечений,

$$A_1 = -A_{(x=x_1)} = Q_1 + \frac{t_2 - t_1}{R}, \qquad (13)$$

$$A_2 = A_{(x=x_2)} = Q_2 + \frac{t_1 - t_2}{R} \,, \tag{14}$$

где

$$Q_{1} = -\int_{0}^{x_{1}} q \, dx + \frac{\Theta(x_{2}) - \Theta(x_{1})}{R}, \qquad (15)$$

$$Q_{2} = \int_{0}^{x_{2}} q \, dx - \frac{\Theta(x_{2}) - \Theta(x_{1})}{R}, \qquad (16)$$

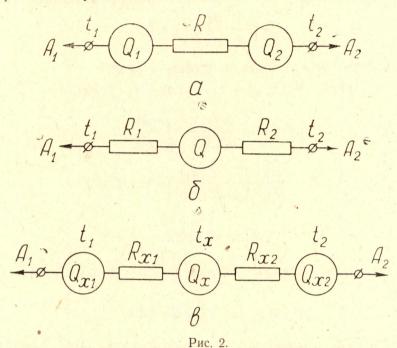
$$R = R(x_2) - R(x_1) - \tag{17}$$

полное тепловое сопротивление стержня.

$$Q_1 + Q_2 = \int_{x_1}^{x_2} q \, dx = Q - \tag{18}$$

общие потери в стержне.

Выражениям (13) и (14) соответствует эквивалентная схема (рис. 2a), которая позволяет определить температуры t_1 и t_2 при любых граничных условиях.



Если потери удобнее отнести к одному узлу, схема преобразуется виду (рис. 26). Здесь

$$R_1 = R \frac{Q_2}{Q} \,, \tag{19}$$

$$R_2 = R \frac{Q_1}{Q}. \tag{20}$$

Температуру в любом сечении x можно найти как с помощью выражения (6), так и непосредственно из схемы, разделив стержень на две части сечением x (рис. 2 θ). Параметры левой части схемы определяются из выражений (15—17) путем замены x_2 на x; для правой части — заменой x_1 на x. Средний источник тепла

$$Q_x = Q - Q_{x1} - Q_{x2}. (21)$$

Средняя температура тела также может быть определена с помощью эквивалентных схем (рис. 3).

$$\overline{t} = \frac{\int_{x_1}^{x_2} t \cdot s \cdot dx}{V} = \overline{t}_q + t_1 \cdot \overline{f}_1 + t_2 \cdot \overline{f}_2, \tag{22}$$

где

$$V = \int_{r}^{x_2} s \cdot dx. \tag{23}$$

Вводя обозначения

$$\overline{\Theta} = \frac{1}{V} \int_{x_1}^{x_2} s \cdot \Theta(x) \cdot dx, \tag{24}$$

$$\bar{R} = \frac{1}{V} \int_{x_1}^{x_2} s \cdot R(x) \cdot dx, \qquad (25)$$

можно записать

$$\overline{t}_q = -\overline{\Theta} + \Theta(x_1) \cdot \overline{f}_1 + \Theta(x_2) \cdot \overline{f}_2,$$
 (26)

$$\overline{f_1} = \frac{R(x_2) - \overline{R}}{R},\tag{27}$$

$$\bar{f_2} = \frac{-R(x_1) + \bar{R}}{R} = 1 - \bar{f_1}.$$
(28)

Составив по схеме (рис. 3a) выражения для A_1 , A_2 и \overline{t} и приравняв коэффициенты в этих выражениях и (13), (14) и (22), определяем параметры схемы:

$$R_1' = -R(x_1) + \overline{R},\tag{29}$$

$$R'_{2} = R(x_{2}) - \bar{R} = R - R'_{1},$$
 (30)

$$Q'_{1} = -\int_{0}^{x_{1}} q \, dx + \left[\overline{\Theta} - \Theta\left(x_{1}\right)\right] \frac{1}{R'_{1}}, \tag{31}$$

$$Q_{2}' = \int_{0}^{x_{2}} q \, dx + \left[\overline{\Theta} - \Theta\left(x_{2}\right)\right] \frac{1}{R_{2}'}, \qquad (32)$$

$$Q' = Q - Q_1' - Q_2'. (33)$$

Вторую разновидность схемы для определения средней температуры стержня получим, отнеся общие потери к одному узлу (рис. 36). Ее параметры определяются аналогичным путем:

$$R_0 = \frac{\overline{t}_q}{Q} - \frac{R_1' \cdot R_2'}{R} \,, \tag{34}$$

$$Q'' = Q_1 - Q \cdot \overline{f}_1 = -Q_2 + Q \cdot \overline{f}_2. \tag{35}$$

Третья разновидность схемы получается путем преобразования звезды в треугольник (рис. 3θ):

$$\bar{R}_1 = \frac{\bar{t}_q}{Q \cdot \bar{f}_1} \,, \tag{36}$$

$$\overline{R}_2 = \frac{\overline{t}_q}{Q \cdot \overline{f}_2} \,, \tag{37}$$

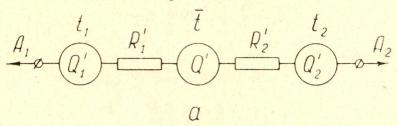
$$R'' = \frac{1}{\frac{1}{R} - \frac{1}{\bar{R}_1 + \bar{R}_2}} \tag{38}$$

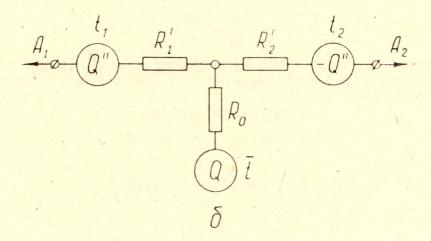
Рассмотрим применение данного метода к конкретным телам. 1. Полый цилиндр (на единицу длины)

$$s = 2\pi x$$
, $\sigma = \text{const}$, $\lambda = \text{const}$.

$$r = \frac{1}{2\pi\lambda x},\tag{39}$$

$$q = 2\pi\sigma x. \tag{40}$$





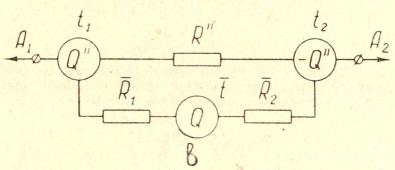


Рис. 3.

Для схем (рис. 26, 36)

$$Q = \pi \sigma (x_2^2 - x_1^2). \tag{41}$$

$$Q'' = 0, \tag{42}$$

$$Q'' = 0, (42)$$

$$R_{1} = R'_{1} = \frac{1}{2\pi\lambda} \left(\frac{x_{2}^{2}}{x_{2}^{2} - x_{1}^{2}} \cdot \ln \frac{x_{2}}{x_{1}} - \frac{1}{2} \right), \tag{43}$$

$$R_2 = R_2' = \frac{1}{2\pi\lambda} \left(-\frac{x_1^2}{x_2^2 - x_1^2} \cdot \ln\frac{x_2}{x_1} + \frac{1}{2} \right),\tag{44}$$

$$R_0 = -\frac{1}{2\pi\lambda \left(x_2^2 - x_1^2\right)} \left[\frac{1}{4} \left(x_2^2 + x_1^2\right) - \frac{x_1^2 x_2^2}{x_2^2 + x_1^2} \ln \frac{x_2}{x_1} \right]. \tag{45}$$

2. Стержень постоянного сечения или плоская стенка с равномерным распределением потерь

$$s = \text{const}, \ \sigma = \text{const}, \ \lambda = \text{const}.$$

$$x_1 = 0, \quad x_2 = l.$$

Для рис. 2, а и 2, б получаем обычные выражения:

$$R = rl,$$
 (46)

$$Q = ql, (47)$$

$$Q_1 = Q_2 = \frac{Q}{2} \,, \tag{48}$$

$$R_1 = R_2 = \frac{R}{2} \,. \tag{49}$$

Для рис. 3, а

$$R_1' = R_2' = \frac{R}{2} \,, \tag{50}$$

$$Q_1' = Q_2' = Q' = \frac{Q}{3} \,. \tag{51}$$

Для рис. 3, б

$$R_0 = -\frac{R}{6} \,, \tag{52}$$

$$Q'' = 0. (53)$$

Для рис. 3, в

$$\overline{R}_1 = \overline{R_2} = \frac{R}{6} \,, \tag{54}$$

$$R'' = -\frac{R}{2} {.} {(55)}$$

При простейших граничных условиях на основании данных схем получаются известные выражения для внутреннего сопротивления тела с параболическим распределением температуры:

при симметричном охлаждении (рис. 3, в)

$$A_1 = A_2, t_1 = t_2,$$

$$\overline{t} - t_2 = Q \frac{\overline{R}_1 \cdot \overline{R}_2}{\overline{R}_1 + \overline{R}_2} = Q \frac{R}{12};$$

при одностороннем охлаждении

$$A_{1} = 0,$$

$$t - t_{2} = Q \frac{\overline{R_{2}}(\overline{R_{1}} + R'')}{\overline{R_{1}} + \overline{R_{2}} + R''} = Q \frac{R}{3};$$

при отсутствии внутренних источников тепла

$$Q = 0, -A_1 = A_2,$$

$$\overline{t} - t_2 = A_2 \frac{R'' \cdot \overline{R}_2}{\overline{R}_1 + \overline{R}_2 + R''} = A_2 \frac{R}{2} \cdot \overline{t}$$

Полученные схемы позволяют рассчитать среднюю температуру и температуру в крайних точках тела в самом общем случае — при не-

симметричном охлаждении и граничных условиях любого вида — более просто по сравнению с существующими методами.

Аналогичные схемы могут быть составлены для стержня, охлаждаемого по длине, с учетом зависимости потерь от температуры. Пусть для стержня (рис. 4);

$$r = \text{Const},$$

$$q = q_0 (1 + \alpha_0 t),$$
(56)

 q_0 — потери при температуре Θ , принятой за уровень отсчета, α_0 — температурный коэффициент потерь.

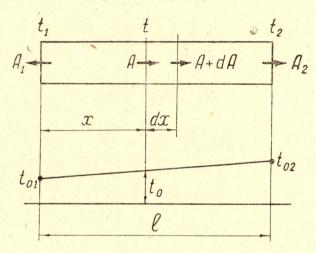


Рис 4.

Тепловая проводимость между стержнем и окружающей средой на единицу длины $\Lambda={\rm const};$ температура окружающей среды изменяется линейно по длине, например, вследствие подогрева охлаждающего потока

$$t_0 = t_{01} \left(1 - \frac{x}{l} \right) + t_{02} \frac{x}{l} . \tag{57}$$

На основании теплового баланса для элемента dx получаем уравнение теплопроводности

$$\frac{1}{r} \frac{d^2t}{dx^2} - \Lambda (t - t_0) + q = 0. \tag{58}$$

Подставляя выражения (56) и (57), приводим уравнение к виду

$$\frac{d^2t}{dx^2} = r \left[\left(\Lambda - \alpha_0 q_0 \right) t - \Lambda \cdot t_{01} \frac{l - x}{l} - \Lambda \cdot t_{02} \frac{x}{l} - q_0 \right], \tag{59}$$

решением которого служит выражение

$$t = (t_{1} - t_{q} - kt_{01}) \frac{\sinh \beta (l - x)}{\sinh \beta l} + (t_{2} - t_{q} - kt_{02}) \frac{\sinh \beta x}{\sinh \beta l} + kt_{01} \frac{l - x}{l} + kt_{02} \frac{x}{l} + t_{q},$$

$$(60)$$

где

$$\beta = \sqrt{\Lambda' r}; \quad \Lambda' = \Lambda - \alpha_0 q_0; \tag{61, 62}$$

$$t_q = \frac{q_0}{\Lambda'} \; ; \quad k = \frac{\Lambda}{\Lambda'} \; . \tag{63, 64}$$

Средняя температура стержня

$$\overline{t} = (t_1 + t_2)\zeta + \left[(t_{01} + t_{02}) \frac{k}{2} + t_q \right] (1 - 2\zeta),$$
 (65)

где

$$\zeta = \frac{\operatorname{ch} \beta l - 1}{\beta l \operatorname{sh} \beta l} \,. \tag{66}$$

Возможный вариант схемы, соответствующий данному случаю, приведен на рис. 5. Проводимости схемы определяются путем приравни-

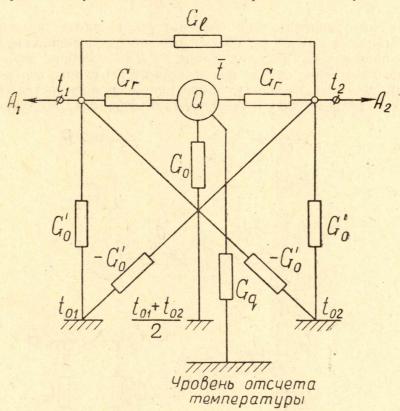


Рис. 5.

вания коэффициентов в выражениях для \dot{Q} , A_1 и A_2 , составленных по схеме и полученных на основании выражений (60) и (65):

$$G_0 = \Lambda l, \tag{67}$$

$$G_q = -\alpha_0 q_0 l, \tag{68}$$

$$G_r = \Lambda' l \gamma,$$
 (69)

$$G_l = \frac{\beta}{r} \frac{1}{\sinh \beta l} - G_r \zeta, \qquad (70)$$

$$G_0' = \frac{k}{2rl\gamma},\tag{71}$$

$$Q = q_0 l. (72)$$

Здесь

$$\gamma = \frac{\zeta}{1 - 2\zeta} \tag{73}$$

161

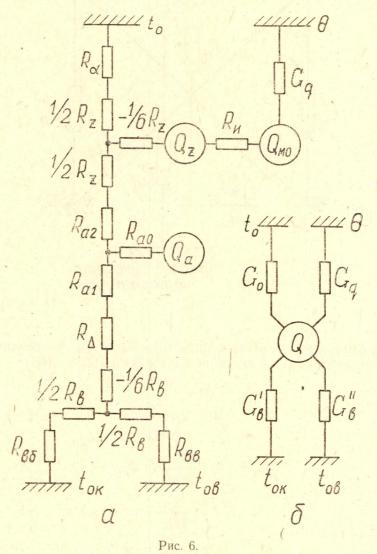
В целях упрощения выражений (69—71) можно представить их в виде рядов. Взяв два первых члена ряда, получаем:

$$G_r = \frac{6}{rl} + \Lambda' \frac{l}{10} \tag{74}$$

$$G_l = -\frac{2}{rl} + \Lambda' \frac{l}{30} \tag{75}$$

$$G_0' = \frac{\Lambda l}{12} \left(1 - \frac{\Lambda' r l^2}{60} \right) \tag{76}$$

При расчете распределения температуры по длине обмоток электрических машин в случае l < 60~cм погрешность упрощенных формул обычно не превосходит 5%; при длине l < 25~cм можно ограничиться первым членом. В этом случае вид и параметры схемы соответствуют рис. 3, s при q=const, r=const с добавлением проводимостей $G_{\rm o}$ и $G_{\rm q}$, отнесенных к среднему узлу и учитывающих сток тепла по длине стерж-



ия и увеличение потерь с ростом температуры, и проводимостей $G_{\rm o}'$ и $(-G_{\rm o}')$, отнесенных к крайним узлам и учитывающих влияние подогрева охлаждающего потока по длине стержня.

В качестве примера рассмотрим использование полученных эквивалентных схем для расчета распределения температуры по длине обмотки якоря машины постоянного тока при аксиальной системе вентиляции и отсутствии вентиляционных каналов в якоре. Тепловые связи между отдельными телами, входящими в активную часть якоря, можно представить в виде схемы (рис. 6, а) с использованием схем (рис. 3, б) и формул (43—47, 50, 52, 53).

 $Q_{\text{мо}}$ — потери в пазовой части обмотки при температуре окружающей среды Θ , принятой в качестве базы для отсчета пере-

 Q_z и Q_a — потери в стали зубцов и спинки.

Тепловые сопротивления:

 $R_{\rm a}$ — от поверхности якоря к охлаждающему воздуху, R_z — по высоте зубца, $R_{\rm u}$ — по толщине изоляции обмотки, $R_{\rm a1}$, $R_{\rm a2}$ и $R_{\rm a0}$ — по высоте спинки,

 R_{Δ} — в зазоре между сердечником и валом,

 $R_{\rm B}$ — сопротивление вала по активной длине якоря l,

 $R_{\scriptscriptstyle
m BB}$ и $R_{\scriptscriptstyle
m BG}$ — сопротивления на пути отвода тепла от вала через поверхности вентилятора и балансировочного кольца,

 $t_{\text{ок}}$ и $t_{\text{ов}}$ — перегрев внутреннего воздуха у поверхности коллектора и у вентилятора.

Зависимость потерь в обмотке от температуры учитывается проводимостью

$$G_q = -\frac{Q_{\text{MO}}}{235 + \Theta}. (77)$$

Схема приводится к простейшему виду (рис. 6, б) с одним источником тепла, отнесенным к обмотке,

$$Q = Q_{\text{MO}} + \left[Q_z \left(\frac{R_{\text{H}}}{R_{z\text{M}}} - \frac{R_z}{6} G_z \right) + Q_a \left(1 - \frac{0.5R_z + R_{az}}{R_{z\text{M}}} \right) \right] \frac{1}{R_{z\text{M}}G_z}$$
 (78)

и параметрами

$$G_0 = \frac{1}{(R_\alpha + 0.5 R_z) R_{zM} G_z}; \tag{79}$$

$$G'_{s} = \frac{1}{R_{zM}R_{zs}G_{z}} \cdot \frac{R''_{s}}{R'_{s} + R''_{s}};$$
(80)

$$G_{s}'' = \frac{1}{R_{zM}R_{zs}G_{z}} \cdot \frac{R_{s}'}{R_{s}' + R_{s}''}, \tag{81}$$

где

$$R_{zM} = R_{H} - \frac{R_{z}}{6}$$
, (82)

$$R_{z_{\beta}} = 0.5R_{z} + R_{a2} + R_{a1} + R_{\Delta} - \frac{R_{\beta}}{6} + \frac{R'_{\beta} \cdot R''_{\beta}}{R'_{\beta} + R''_{\beta}}, \tag{83}$$

$$R_{s}' = 0.5 R_{s} + R_{s0},$$
 (84)

$$R_{\mathfrak{s}}'' = 0.5 R_{\mathfrak{s}} + R_{\mathfrak{s}\mathfrak{s}}, \tag{85}$$

$$G_z = \frac{1}{R_\alpha + 0.5R_z} + \frac{1}{R_{zM}} + \frac{1}{R_{zR}}.$$
 (86)

Далее можно представить якорь в виде стержня с равномерно распределенными потерями q = Q/l, охлаждаемого по длине, обладающего сопротивлением на единицу длины г, равным аксиальному сопротивлению обмотки, и соединенного последовательно с двумя стержнями, представляющими лобовые части. На основе схем (рис. 5) и (рис. 6, б) составляется полная эквивалентная схема якоря (рис. 7). Проводимости G'_{o} схемы (рис. 5) в данном случае могут не учитываться.

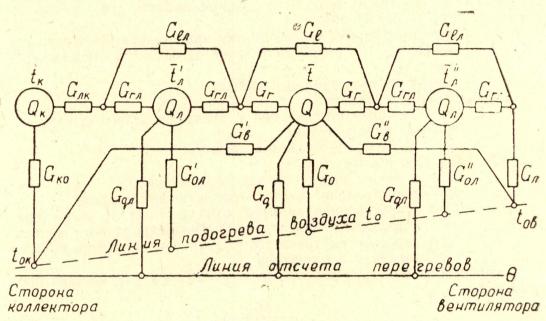


Рис. 7.

Параметры лобовых частей:

 $Q_{\scriptscriptstyle \Lambda}$ — потери в одной лобовой части при температуре Θ ; $G_{\scriptscriptstyle \gamma \Lambda},~G_{\scriptscriptstyle l \Lambda},~G_{\scriptscriptstyle q \Lambda}$ рассчитываются аналогично соответствующим параметрам активной части через $Q_{\scriptscriptstyle \Lambda},~l_{\scriptscriptstyle \Lambda}/2$ и τ ;

 $G_{
m on}^{'}$ и $G_{
m on}^{''}$ — проводимости между лобовыми частями и воздухом рассчитываются с учетом температурного перепада в витковой изоляции по 1/6 толщины обмотки и в изоляции бандажей; кроме того, $G'_{\text{ол}}$ учитывает отвод тепла с половины поверхности, образованной выводами секций, а проводимость $G_{0\pi}^{"}$ — отвод тепла с внутренней поверхности обмоткодержателя;

 $G_{\rm n}$ — проводимость от торца лобовых частей к воздуху.

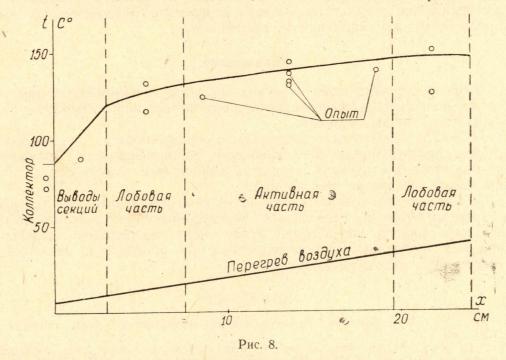
Поскольку схемой учитывается тепловая связь между обмоткой и коллектором через выводы секций — $G_{n \kappa}$, то в нее входят такие параметры, как Q_{κ} — коллекторные потери и $G_{\kappa o}$ — проводимость от поверхности коллектора и половины поверхности соединительных выводов к воздуху.

Проводимости, отводящие тепло к охлаждающему потоку воздуха, присоединяются на схеме к точкам с фиксированным температурным потенциалом, который рассчитывается в предположении линейности изменения температуры потока вследствие его подогрева при прохождении через машину.

Расчет схемы удобно производить методом узловых потенциалов. После определения средних перегревов t, t'_n и t''_n и перегревов на концах участков может быть построена кривая распределения перегрева с помощью формулы (60) или формулы эквивалентной параболы

$$t = t_1 \frac{l - x}{l} + t_2 \frac{x}{l} + 3(2\overline{t} - t_1 - t_2) \frac{x}{l} \cdot \frac{l - x}{l}.$$
 (87)

На рис. 8 дана расчетная кривая распределения перегрева t по длине обмотки якоря двигателя постоянного тока, 4,5 квт, 1500 об/мин. Коэффициенты теплоотдачи и теплопроводности взяты из [1], потери и перегрев внутреннего воздуха определены расчетным путем. Полученная кривая удовлетворительно согласуется с показаниями термопар (точки на рис. 8), заложенных в различных местах поперечного сече-



ния пазовой и лобовой части обмотки при тепловых испытаниях двигателя. Разброс показаний термопар объясняется неравномерностью распределения температуры по сечению, а также по отдельным пазам.

Расчеты, выполненные при различных изменениях схемы, показывают следующее:

- 1) учет проводимостей G_o (рис. 5) дает снижение перегрева со стороны коллектора не более 0.5° и повышение с противоположной стороны не более 0.7° ; следовательно, отказ от учета G_o является оправданным;
- 2) пренебрежение тепловой связью между обмоткой и коллектором приводит к значительному повышению расчетного перегрева обмотки (в среднем на 30°) и его выравниванию;
- 3) расчет в предположении постоянства перегрева воздуха по длине дает уменьшение разности перегревов лобовых частей на 4°; таким образом, неравномерность распределения перегрева по длине обмотки объясняется, в первую очередь, влиянием коллектора, а влияние подогрева воздуха является второстепенным;

4) пренебрежение теплоотдачей через вал (проводимостями $G'_{\mathfrak{g}}$ и $G''_{\mathfrak{g}}$) приводит к повышению расчетного перепрева в среднем на 13° ; следовательно, учет отвода тепла через вал, вентилятор и балансировочное кольцо необходим;

5) исключение проводимостей G_{l} и $G_{l,i}$ приводит к схеме, которая применяется некоторыми авторами для учета аксиального сопротивления обмотки; однако, в данном случае максимальный расчетный перегрев уменьшается на 8° ;

- 6) если, кроме того, отбросить сопротивления $(-R_z/6)$ и $(-R_s/6)$ на рис. 6 и принять $G_r = 2/rt$, то это будет равносильно часто использующемуся допущению о том, что потери в каждом теле сосредоточены в его центре; это приводит к повышению расчетного перегрева для данной машины на 4°;
- 7) при увеличении мощности, размеров и скорости вращения машин искажение результатов расчета вследствие рассмотренных выше упрощений схемы существенно увеличивается.

Заключение

1. Тело с внутренними источниками тепла и одномерным температурным полем изображается эквивалентной тепловой схемой, не зависящей от граничных условий.

2. Вид и параметры тепловых схем определяются на основании решения дифференциальных уравнений теплопроводности. Выражения для параметров в случаях, имеющих наибольшее практическое значе-

ние, имеют достаточно простой вид.

3. Составление тепловых схем замещения для электрических машин по данному принципу обеспечивает точность и полноту результатов расчета, характерную для метода, основанного на решении дифференциальных уравнений теплопроводности, при простоте и наглядности, свойственных методу тепловых схем.

ЛИТЕРАТУРА

1. И. М. Постников. Проектирование электрических машин. Гостехиздат УССР, 1960.

2. И. Хак. Метод эквивалентных тепловых схем. Ч. 1, Тех. отчет Моравского

эксп. завода, Перевод ЦБТИ НИИ электропромышленности П.-4937, 1959.
3. И. Хак. Теплопередача в электрических машинах. Ч. 1—3, Тех. отчет Моравского эксп. завода, Перевод ЦБТИ НИИ электропромышленности, П-4929—4931, 1959.