Коновалов Константин Борисович, аспирант кафедры органической химии органического технологии синтеза Института физики высоких технологий ТПУ. E-mail: konoko@tpu.ru Область научных интересов: синтез И применение сверхвысокомолекулярных полимеров.

Несын Георгий Викторович, главный специалист ООО «НИИ транспорта нефти и нефтепродуктов», г. Москва. E-mail:

nesyngv@niitnn.transneft.ru Область научных интересов: химия полимеров.

Полякова Надежда Михайловна, ст. научн. сотр. кафедры химической технологии топлива Института природных ресурсов ТПУ. Е-mail: tomskpkv@mail.ru
Область научных интересов: синтез и исследование высокомолекулярных соединений.

Станкевич Владислав

Сергеевич, инженер-

проектировщик ООО «Научноисследователь-ская организация «Сибур-Томскнефтехим», город Томск.

E-mail: svse@niost.ru
Область научных интересов: проектирование химических процессов.

УДК 665.7.038:66.011

РАЗРАБОТКА ТЕХНОЛОГИИ И ОЦЕНКА ЭФФЕКТИВНОСТИ ПРОИЗВОДСТВА АНТИТУРБУЛЕНТНОЙ ПРИСАДКИ СУСПЕНЗИОННОГО ТИПА

К.Б. Коновалов, Г.В. Несын*, Н.М. Полякова, В.С. Станкевич**

Томский политехнический университет *ООО «НИИ транспорта нефти и нефтепродуктов», г. Москва

**OOO «Научно-исследовательская организация «Сибур-Томскнефтехим», г. Томск E-mail: konoko@mail.tpu.ru

Проведена оценка эффективности проекта производства антитурбулентной присадки для нефти и нефтепродуктов в форме суспензии, рассчитаны основные технико-экономические показатели производства присадки на отечественном сырье, в том числе себестоимость и срок окупаемости проекта.

Ключевые слова:

Антитурбулентная присадка, эффект Томса, нефть, суспензия, полимеры и сополимеры высших α -олефинов.

Key words:

Drag reducing additives, Toms effect, oil, suspension, polymers and copolymers of high α -olefins.

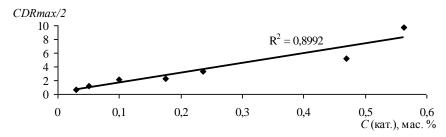
Постановка задачи

В основу разработки положено использование эффекта Томса, состоящего в значительном снижении турбулентности потока жидкости в трубопроводе при вводе в этот поток антитурбулентной присадки (АТП) [1]. При турбулентном режиме течения жидкости значительная часть энергии тратится на перемешивание. В присутствии антитурбулентной присадки происходит частичная ламинаризация потока и, как следствие, увеличение пропускной способности трубопровода на 20...50 %.

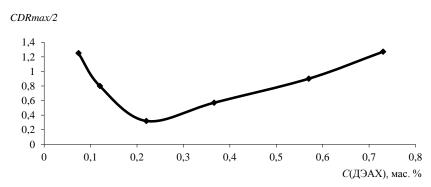
В качестве АТП для нефти и нефтепродуктов применяют нефтерастворимые полимеры, главным образом, поли-α-олефины сверхвысокой молекулярной массы [2–4], в очень малой концентрации — всего несколько граммов на тонну перекачиваемого продукта (ppm). В зарубежной практике АТП широко применяются в трубопроводном транспорте нефти и нефтепродуктов, начиная с 1979 г. [5]. Но если в 80–90-х гг. прошлого века применяли присадки растворного типа [3, 5, 6], то в настоящее время предпочтение отдают присадкам в

форме суспензии вследствие большей их эффективности и более удобной товарной формы [2, 7–9].

Целью настоящего исследования является разработка технологии и оценка эффективности производства антитурбулентной суспензионной присадки на отечественной материальной базе и сырье. Технология разработана на основе ранее проведенных исследований [10–13].


Объекты исследования

Основой АТП является блочный сополимер 1-гексена с высшими α -олефинами C_8 - C_{10} , измельченный при криогенной температуре. Антитурбулентная присадка представляет собой суспензию (со)полимеров высших α -олефинов в среде органических растворителей. Суспензионной средой служит смесь изопропилового спирта (ИПС) и полиэтиленгликоля (ПЭГ) с добавлением стеарата кальция в качестве антиагломератора.


Механизм полимеризации α-олефинов на каталитической системе Циглера—Натта — комплексе диэтилалюминийхлорида и трихлорида титана, хорошо изучен [12]. Для полимеризации высших α-олефинов специфической каталитической системой является микросферический трихлорид титана (МСК) с диэтиалюминийхлоридом (ДЭАХ) в качестве сокатализатора [13]. Полимеризация высших α-олефинов на указанной каталитической системе приводит к образованию сверхвысокомолекулярного полимера, обладающего высокой эффективностью в снижении гидродинамического сопротивления нефти и нефтепродуктов в турбулентном режиме течения. Введение в полимеризационную среду сомономеров приводит к улучшению эксплуатационных характеристик получаемой АТП. Так, при полимеризации 1-гексена добавление 1-октена, 1-децена или их смеси в количестве (25±5) % приводит к значительному улучшению качества продукта.

Полученные результаты

На рис. 1—3 представлена зависимость концентрации полуэффекта $CDR_{\rm max}/2$ (концентрация, при которой образец полимера при турбореометрическом исследовании дает половину от максимально возможной величины снижения гидродинамического сопротивления $DR_{\rm max}$) [14], которая хорошо коррелирует с величиной молекулярной массы полимера, от условий полимеризации: концентрации катализатора (МСК), сокатализатора (ДЭАХ) и состава реакционной среды. Чем ниже концентрация полуэффекта, тем выше эффективность полимера. В качестве растворителя для турбореометрических исследований использовали гептан.

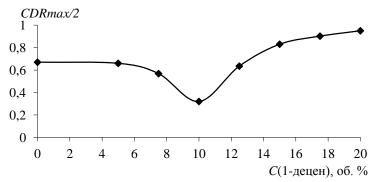


Рис. 1. Влияние концентрации катализатора в полимеризационной среде на величину концентрации полуэффекта для образцов поли-1-гексена

Рис. 2. Влияние концентрации сокатализатора в полимеризационной среде на величину концентрации полуэффекта для образцов поли-1-гексена

После определения оптимальных концентраций катализатора и сокатализатора для синтеза сверхвысокомолекулярного поли-α-олефина на примере поли-1-гексена (рис. 1, 2), были проведены эксперименты для выявления оптимального соотношения сомономеров (1-гексена и 1-децена) для получения высокоэффективной присадки (рис. 3).

Рис. 3. Влияние концентрации 1-децена в полимеризационной среде на концентрацию полуэффекта гексен-деценовых сополимеров

Как показали исследования, добавление третьего сомономера (1-октена) в эквимолярном количестве 1-децену не приводит к снижению характеристик снижения гидродинамического сопротивления, но повышает скорость растворения полученного тройного сополимера. Исследования по скорости растворения в данной статье не приводятся.

Для технико-экономических расчетов проекта производства были выбраны оптимальные условия процесса блочной (со)полимеризации, состава суспензии АТП. Расчет производился для мощности производства присадки 5000 тонн в год следующего состава, мас. %:

статистический сополимер 1-гексена, 1-октена и 1-децена (8:1:1)	-25,8;
изопропиловый спирт	- 61,3;
полиэтиленгликоль	-6,8;
стеарат кальция	-5,8;
антиоксидант Irganox 1010	-0,3.

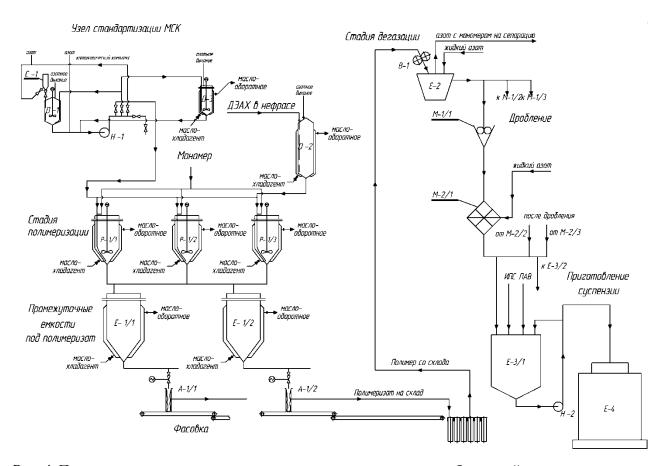
Производство АТП включает следующие операции:

- подача мономеров из транспортных цистерн в складские емкости;
- подача катализатора и сокатализатора в узел стандартизации МСК;
- подача сырья в реакторы и проведение полимеризации;
- отбор проб и проведение испытания на успешное начало процесса полимеризации;
- передавливание полимеризата в промежуточные емкости;
- отбор проб на гидродинамические испытания;

- фасовка полимеризата в тару для «вызревания» полимера;
- складирование и вызревание в течение 2-х недель;
- дегазация блочного полимера от непрореагировавших мономеров;
- отбор проб на гидродинамические испытания;
- криогенное измельчение блочного полимера (дробление);
- приготовление суспензии АТП и ее складирование;
- отбор проб товарной формы присадки на гидродинамические испытания.

Расположение аппаратуры и последовательность операций представлены на принципиальной технологической схеме производства (рис. 4).

Подача 1-гексена, сомономеров и ДЭАХ осуществляется из складских емкостей центробежными насосами через дозаторы.


МСК подается из транспортного контейнера С-1 в стандартизатор МСК D-1, после перелива суспензии МСК из С-1 в D-1 производится промывка С-1 нефрасом, подаваемым из складской емкости по трубопроводу. Для циркуляции и промывки системы предусмотрен центробежный насос H-1, который связан с коллектором, позволяющим открывать и закрывать трубопроводы, направленные к контейнеру С-1, стандартизатору D-1, мернику-термостату МСК D-3 и линии подачи МСК в реакторы полимеризации P-1/1-3. Это позволяет осуществлять постоянную циркуляцию в системе, термостатирование катализатора и промывку всего узла стандартизации МСК.

Емкости D-1, D-3 оборудованы мешалками и сифонами во избежание оседания суспензии и закупорки нижних патрубков, а также аварийным сливом. ДЭАХ подается из магистрали в мерник-термостат ДЭАХ D-2. Узел полимеризации включает в себя три реактора P-1/1-3 с общей магистралью для подачи компонентов катализатора. Подача ДЭАХ в данную магистраль осуществляется из мерника-термостата D-2, МСК подается из коллектора, расположенного рядом с насосом H-1.

Подача мономеров производится из магистрали в каждый реактор по отдельности. Уровень заполнения реакторов регулируется уровнемерами. Для предотвращения перегрева во время полимеризации предусмотрена рубашка охлаждения. После достижения конверсии 5...7 %, во избежание образования блока непосредственно в реакторе с перемешивающим устройством, осуществляется перелив полимеризата через общую магистраль в две промежуточные емкости Е1/1-2, откуда затем производится фасовка фасовочными аппаратами А-1/1-2 в контейнеры из полиэтиленовой (полипропиленовой) трубы в течение получаса. В качестве тары для фасовки могут быть использованы трубы размером 110×1000 мм. С емкостей Е-1/1-2 также осуществляется теплосъем. Для сокращения времени процесса полимеризат фасуется одновременно в 4 контейнера. После фасовки полимеризат отправляется на склад для дозревания в течение 2-х недель. Отгрузка и погрузка осуществляются мостовым краном (на схеме не представлен). Для облегчения транспортировки контейнеры устанавливаются на специальных поддонах по 64 шт. (по схеме 8×8), всего 8 поддонов на один цикл.

Для создания инертной атмосферы предусмотрено азотное дыхание для емкостей и магистралей узла полимеризации и узла стандартизации МСК.

Со склада вызревший полимер отправляется на стадию дегазации, которая включает в себя формование через валки В-1 и безводную дегазацию сверхкритическим CO_2 в емкости Е-3. Затем полимер отправляется на три линии дробления. Линия дробления включает в себя две дробилки: предварительного М-1/1-3 и тонкого измельчения М-2/1-3. В дробилку предварительного измельчения М-1/1-3 материал подается захоложенным после стадии безводной дегазации, перед дробилкой тонкого измельчения М-2/1-3 материал дополнительно захолаживается жидким азотом.

Рис. 4. Принципиальная технологическая схема производства антитурбулентной присадки суспензионного типа

Раздробленный материал с оставшимся жидким азотом поступает в емкость E-5/1-2, где производится его смешение с дисперсионной средой (ИПС) и ПАВ (смесь полиэтиленгликоля со стеаратом кальция). Перемешивание в емкостях E-5/1-2 и перелив готовой суспензии в складскую емкость E-7 осуществляются центробежным насосом H-2.

Материальный баланс рассчитан на 1 тонну готовой продукции; за один цикл производится 5,1 т товарной формы присадки, длительность цикла — 2 ч. В сутках одна смена и 3 цикла. Соответственно, в сутки производится 15,3 т присадки.

Таблица 1. Материальный баланс процесса производства и розлива антитурбулентной

присадки суспензионного типа на 1 т готовой продукции

Приход			Расход				
Наименование	ΚΓ	%	Наименование	ΚΓ	%		
Основные компонент	ъ:		Готовая суспенз	: ки			
1-гексен	304,76	14,39	Сополимер	250,0	11,8		
1-децен и/или 1-октен	15,68	0,74	Изопропиловый спирт	593,63	28,02		
ДЭАХ	0,72	0,03	Полиэтиленгликоль	65,96	3,11		
TiCl ₃	0,13	0,01	Стеарат кальция	56,27	2,66		
Нефрас СЗ 80/120	9,47	0,45	Антиоксидант Irganox 1010	2,81	0,13		
Дополнительные компоненты:			Примеси в готовой суспензии:				
			Остатки каталитического				
Азот жидкий	1040,81	49,14	комплекса	2,15	0,10		

Продолжение таблицы на следующей странице

Азот газообразный	11,86	0,56	Остаточный мономер 4,30				
Изопропиловый спирт	595,42	28,11	Прочие примеси 13,92				
Полиэтиленгликоль	66,16	3,12	Компоненты на рецикл:				
Стеарат кальция	56,44	2,66	Мономер на рецикл	64,00	3,02		
Антиоксидант Irganox 1010	2,82	0,13	Азот на рецикл 1049,55				
Примеси, согласно НД, в сырье и							
вспомогательных материалах	13,96	0,66	Нефрас	9,30	0,44		
			Потери	6,35	0,30		
Итого:	2118,23	100	Итого:	2118,23	100		

Оценка экономической эффективности производства АТП суспензионного типа и расчет ее себестоимости произведены согласно настоящим ценам и нормативам. Объемы и габариты основных технологических аппаратов, а также ориентировочные цены на них представлены в табл. 2.

Таблица 2. Объемы и габариты основных технологических аппаратов для производства

антитурбулентной присадки суспензионного типа

Наименование	Объем, м ³	Расчетный объем, м ³	Кол- во	$D_{ ext{\tiny BH}}.,$	Вы- сота, мм	Цена за 1 ед., тыс. р.
Складская емкость для 1-гексена	200	186	1	3400	20910	503,0
Складская емкость для 1-децена и/или 1-октена	12,5	9	1	1800	4315	59,5
Складская емкость под раствор ДЭАХ	5	4,39	1	1800	1370	307,9
Стандартизатор МСК D-1	0,1	0,0889	1	400	665	213,0
Мерник-термостат ДЭАХ D-2	0,1	0,0719	1	400	665	27,9
Мерник-термостат МСК D-3	0,025	0,0246	1	350	200	187,6
Насос центробежный			1			140,2
Реактор	1,25	1,14	3	1000	1260	1308
Промежуточная емкость	2	1,71	2	1200	1370	502,0
Аппарат фасовки			2			1450,8
Емкость для дегазации вымораживанием	2,5	2,79	1	1400	1160	44,7
Линия дробления			4			3100,0
Насос центробежный			3			420,0
Сосуд Дьюара	30		1			150,0
Кран подъемный рельсовый (до 2 т)			1			255,0
Емкость для приготовления суспензии	8	8,00	1	2000	1885	99,6
Складская емкость под суспензию	160	228	2	3200	18840	860,8

Себестоимость присадки складывается из затрат на сырье, материалы, энергоресурсы, общезаводских расходов и заработной платы (табл. 3). В табл. 4 отдельно приведены удельные технологические энергозатраты на 1 т готовой присадки.

Таблица 3. Калькуляция себестоимости продукта

	Ед.	Цена,	Расход,	Расход	Затраты,	Затраты
Статьи затрат	изм.	р./ед.	ед./т	на год	р./т	на год, р.
Сырье, материалы						
Мономеры	КГ	80,6	313,58	1567894	22599,08	112995385
Суспензия катализатора в нефрасе	КГ	137,0	10,33	51634	1410,68	7053416
Жидкий азот	ΚΓ	28,3	1040,81	5204054	12263,16	61315808
ИПС	КГ	55,0	595,42	2977082	32746,18	163730875
	КГ	70,8	66,74	333697	4725,41	23627063
Стеарат кальция	ΚΓ	60,0	56,34	281691	3380,33	16901628
Антиоксидант Irganox 1010	ΚΓ	202,0	2,82	14085	569,01	2845027

Продолжение таблицы на следующей странице

Количество упаковок	ШТ.	5	13	64863	64,86	324316
Итого: сырье, материалы и катализатор					77758,70	388793518
Энергоресурсы						
Электроэнергия	тыс. кВт/ч	2420	0,316	1580	764,72	3823600
Пар УГЭ	г/кал	204			4,18	20907
Оборотная вода	\mathbf{M}^3	1743,8	0,05	250	87,19	435960
Азот	\mathbf{M}^3	641	0,10	494	63,36	316822
Итого: энергоресурсы					919,46	4597288
Зарплата основных рабочих	p.				1567,86	7839280
Отчисления	%	34			407,64	2038213
Итого: зарплата основных рабоч	них с отч	ислениям	И	_	1975,50	9877493
Общезаводские расходы						
Амортизация оборудования	p.				197,65	988268
Зарплата вспомогательных рабочих	p.				475,59	2377944
Отчисления	%	34			161,70	808501
Зарплата ИТР	p.				424,64	2123184
Отчисления на социальные нужды ИТР	%	34			144,38	721883
Амортизация зданий	p.				266,61	1333029
Амортизация сооружений	p.				297,71	1488549
Итого: общезаводские расходы	1968,27	9841357				
Расходы на с	1599,63	7998171				
Цеховая себестоимость	84346,99	421734970				
Общехозяйственные расходы (1	12652,05	63260245				
Заводская себестоимость:	96999,04	484995215				
Коммерческие расходы (5 % от заводской себестоимости)					4849,95	24249761
Полная себестоимость					101849,00	509244976

Таким образом, себестоимость присадки составляет 101849 р./т, или \$ 3286 за 1 т при курсе доллара 31 р./\$. С учетом затрат на разработку проекта себестоимость возрастет до 173143 р./т (\$ 5585).

Произведенные экономические расчеты показали, что точка безубыточности производства [15] составляет 557 т, критический объем реализации — 138,1 млн р., срок окупаемости проекта, рассчитанный по чистому дисконтированному доходу [16], — 19 мес. при норме дисконта 0,2 и частичной загрузке производства в первые 2 года. Удельные технологические энергозатраты составляют 780,2 МДж/т на 1 т готовой продукции.

Выводы

Разработана технологическая схема получения антитурбулентной присадки суспензионного типа для нефти и нефтепродуктов и рассчитаны экономические показатели ее производства. Показано, что присадка, полученная по данной технологии, может конкурировать с зарубежными аналогами, стоимость которых на российском рынке составляет от \$ 12000 за тонну.

СПИСОК ЛИТЕРАТУРЫ

- 1. Toms B.A. Some observations of the flow of linear polymer solution through straight tubes at large Reynolds numbers // Proc. First Intern. Congr. on Rheology. Amsterdam, 1948. P. 135–141.
- 2. Снижающий сопротивление текучести полиолефин, способ его получения (варианты) и состав на его основе: пат. 2125577 Рос. Федерация. Заявл. 25.05.94; опубл. 27.01.99.
- 3. Способ получения аморфных полиолефинов со сверхвысоким молекулярным весом, предназначенных для использования в качестве агентов, снижающих сопротивление течению: пат. 2277103 Рос. Федерация. Заявл. 06.06.02; опубл. 27.12.04.
- 4. Неводные суспензии, используемые в качестве агентов, снижающих сопротивление течению, и способ производства таких суспензий: пат. 2297574 Рос. Федерация. Заявл. 15.01.02; опубл. 27.07.07.
- 5. Мотир Дж.Ф., Прилутций Д.Дж. Применение полимерных депрессаторов на нефтепроводах // Нефть, газ и нефтехимия за рубежом. -1989. N = 6. C. 60.
- 6. Способ получения агента снижения гидродинамического сопротивления углеводородных жидкостей: пат. 20375485 Рос. Федерация. Заявл. 10.03.94; опубл. 20.03.97.
- 7. Nonaqueous drag reducing suspensions: Pat. 6172151 USA. Fil. 11.09.97; Publ. 12.01.01.
- 8. Drag-reducing polymers and suspensions thereof: Pat. Appl. 20020065352 USA; Fil. 25.07.01; Publ. 30.05.02.
- 9. Drag-reducing polymer suspensions: Pat. Appl. 20010187123 USA. Fil. 02.10.03; Publ. 25.03.03.
- 10. Несын Г.В., Сулейманова Ю.В., Полякова Н.М., Филатов Г.В. Антитурбулентная присадка суспензионного типа на основе полимеров высших α-олефинов // Известия Томского политехнического университета. 2006. Т. 309. № 3. С. 112–115.
- 11. Несын Г.В. Получение высокомолекулярных добавок, увеличивающих пропускную способность нефтепроводов: автореф. дис. ... д-ра хим. наук. Казань, 2007. 35 с.
- 12. Boor J. Ziegler-Natta Catalysis and Polymerization. New York: Academic Press, 1979. 660 p.
- 13. Способ получения агента снижения гидродинамического сопротивления углеводородных жидкостей: пат. 2238282 Рос. Федерация. Заявл. 07.07.03; опубл. 20.10.04.
- 14. Коновалов К.Б., Несын Г.В., Полякова Н.М. Экспресс-контроль качества антитурбулентных присадок // Матер. XXV симпозиума по реологии. Осташков, 2010. С. 135–137.
- 15. Савчук В.П. Управление издержками предприятия и анализ безубыточности. 2011. URL: www.cfin.ru/management/costing/savchuk-01.shtml (дата обращения: 17.11.2011).
- 16. Шеремет А.Д., Негашаев Е.В. Методика финансового анализа. 3-е изд. М.: ИНФРА-М, 1999.-207~c.

Поступила 17.11.2011 г.