Энергетика

УДК 532.547+621.928.93

ХАРАКТЕР ДВИЖЕНИЯ ЧАСТИЦ ПЫЛИ В ПРЯМОТОЧНОМ ЦИКЛОНЕ С ПРОМЕЖУТОЧНЫМ ОТБОРОМ ПЫЛИ

В.С. Асламова, А.А. Асламов, Т.Н. Мусева

Ангарская государственная техническая академия E-mail: veras@pisem.net

Решена задача движения частицы пыли в прямоточном циклоне с промежуточным отбором под действием центробежной и аэродинамической силы сопротивления газового потока. Получены траектории движения частиц пыли разного диаметра при различных точках входа в циклон и формулы для расчета минимального диаметра частиц, улавливаемых промежуточным и основным отбором пыли. Рассчитаны теоретические эффективности сепарации промежуточного отбора и циклона в целом, которые сопоставлены с экспериментальными значениями. Произведена оценка параметров фракционной эффективности согласно методике НИИОГАЗ.

Закрученные двухфазные потоки нашли широкое применение в технических устройствах для интенсификации массообменных и сепарационных процессов (сушка дисперсных материалов, обеспыливание воздуха, энергоразделение в трубках Ранка и т. д.). Для конструирования новых и эффективного использования известных вихревых аппаратов необходимо совершенствовать методы расчета двухфазных закрученных потоков. В настоящее время отсутствует единое представление о правильном подходе к расчету движения частиц [1]. Модель, основанная на концепции «траекторных частиц», считается некорректной из-за отсутствия учета влияния рейнольдсовых напряжений на частицу. С другой стороны, неоспоримы преимущества лагранжева подхода, более близкого к реальным процессам и позволяющего получить необходимую информацию о траекториях частиц, времени нахождения частиц в аппарате, минимальном размере улавливаемых частиц [2–5].

Рассмотрим одномерное движение со скоростью *V* частицы пыли массой в равномерном потоке газа, движущегося со скоростью *W*, описываемое дифференциальным уравнением:

$$\frac{dV}{dt} = \frac{F_a}{m} = \frac{6F_a}{\pi\rho_\delta\delta^3},\tag{1}$$

где F_a – сила аэродинамического сопротивления, действующая на частицу со стороны газового потока, δ , ρ_{δ} – эквивалентный диаметр и плотность частицы пыли.

Как правило, число Рейнольдса, вычисленное по диаметру частицы и параметрам газовой среды

(ρ_{g}, μ_{g} – плотность и динамическая вязкость газа), невелико: Re_{δ} = $\frac{\delta W \rho_{g}}{\mu_{g}} << 100$, поэтому можно

воспользоваться законом Стокса для записи F_a с поправкой на несферичность частицы:

$$F_a = 3\pi\mu_g \delta k_\delta (W - V), \qquad (2)$$

где k_{δ} – коэффициент формы, учитывающий несферичность частицы, равный $k_{\delta}=1/\Phi^2$; $\Phi = \frac{F_c}{F}$ – фактор формы, равный отношению площади поверхности сферы, имеющей тот же объем, что и рассматриваемая частица с площадью поверхности F [6]. Следует заметить, что при числах $\text{Re}_{\delta} \ge 100$ формула (2) будет давать заниженное значение силы аэродинамического сопротивления, однако в приближенном анализе это не имеет решающего значения, т. к. крупные частицы быстрее отсепарируются, чем мелкие.

После подстановки (2) в (1) получим дифференциальное уравнение вида:

$$\frac{dV}{dt} = \frac{18k_{\delta}\mu_g}{\rho_{\delta}\delta^2}(W - V).$$
(3)

Перейдем к безразмерным координатам, введя обозначения:

$$\overline{V} = \frac{V}{W}; \quad \overline{t} = \frac{t}{T}.$$
(4)

Под характерным промежутком времени T будем понимать отношение характерного размера L_0 (расстояние от выходных кромок лопаточного закручивателя до окон промежуточного отбора пыли) к скорости газового потока: $T = \frac{L_0}{W}$. После подстановки (4) в (3) получим:

$$\frac{d\overline{V}}{d\overline{t}} = \beta(1 - \overline{V}),\tag{5}$$

где безразмерный комплекс

$$\beta = \frac{18k_{\delta}\mu_{g}L_{0}}{\rho_{\delta}\delta^{2}W} = 18k_{\delta}\frac{L_{0}}{\delta}\frac{\rho_{g}}{\rho_{\delta}}\frac{1}{\mathrm{Re}_{\delta}}.$$
 (6)

После интегрирования получим:

$$1 - \overline{V} = (1 - \overline{V_0})e^{-\beta \overline{t}}, \tag{7}$$

где \overline{V}_0 – безразмерная начальная скорость частицы.

Для анализа (7) проведем оценку безразмерного комплекса β . В качестве примера возьмем следующие данные: пыль – КСl, имеет кубическую решетку, поэтому образует частицы формы, близкой к кубической [7]. Для куба фактор формы равен Ф=0,806 [6]. Тогда коэффициент формы k_{δ} =1,54. W=9 м/с, δ =10 мкм=10⁻⁵ м, μ =1,89·10⁻⁵ Пас, ρ_g =1,25 кг/м³, ρ_{δ} =2631 кг/м³ (по показаниям на автопикнометре 1320), L_0 =0,276 м. Получим Re_{δ}=0,592, β =61,070. Столь большое значение β означает, что безразмерная скорость частицы очень быстро стремиться к единице, т. е. независимо от начальных условий скорость частицы *V* становится близкой к скорости потока *W*. Действительно, если принять \bar{t} =0,1, то

$$1 - \overline{V} = 0,0022(1 - \overline{V_0}) < 0,01$$

Приведенный пример показывает, что в пылеуловителе окружную и осевую проекции скорости малых частиц можно принимать равными соответствующим проекциям скорости газа, и только радиальная скорость частиц, обусловленная центробежными силами, подлежит определению. При увеличении диаметра частиц величина β уменьшается пропорционально квадрату диаметра.

Анализ закрученного адиабатического газопылевого течения в прямоточном циклоне будем проводить при следующих допущениях:

- В закручивателе закончился разгонный участок частицы, и она приобрела осевую V_z и окружную V_φ проекции скорости, равные соответствующим проекциям скорости газового потока W_z и W_φ соответственно. Данное допущение приводит к некоторым погрешностям расчета движения частиц диаметром более 5 мкм.
- Окружная проекция скорости газа изменяется по закону W_φ=const√r. Этот закон, наблюдаемый в экспериментах [8, 9], позволит получить простое решение, удобное для количественного анализа движения частиц.
- Частица не меняет во времени свою форму и диаметр, не происходит ни ее дробления, ни коагуляции. Отклонение формы частицы от сферы учитывается коэффициентом k_δ.

- 4. Обтекание частицы потоком газа носит вязкий характер. Турбулентные пульсации газа не учитываются, что согласуется с выводом работы [4]: турбулентная диффузия частиц в прямоточном циклоне не оказывает заметного влияния на процесс пылеулавливания.
- Не учитываются силы Магнуса, Архимеда, Кориолиса, тяжести, присоединенной массы, поскольку указанные силы на несколько порядков меньше по сравнению с силами аэродинамического сопротивления и центробежной [9–13].
- Пренебрегаем электростатическими, термофоретическими и прочими силами негидродинамической природы.
- Пренебрегаем неравномерным распределением осевой проекции скорости газа по радиусу, что находится в соответствии с данными работы [14], согласно которой осевая проекция скорости частиц слабо изменяется по радиусу трубы.

Подобная задача решена в работе [15] применительно к циклону со встречными закрученными потоками.

При принятых допущениях дифференциальное уравнение движения частицы в цилиндрических координатах примет вид:

$$\frac{dV_r}{dt} = \frac{V_{\varphi}^2}{r} - \frac{18k_{\delta}\mu_g V_r}{\rho_s \delta^2}$$

 $V_z = W_z; \overline{V}_z = \frac{V_z}{W_z} = 1; \overline{t} = \frac{t}{T}; T = \frac{L_0}{W_z};$

или в безразмерном виде:

$$\frac{\overline{V}_r}{d\overline{t}} = \frac{\overline{V}_{\varphi}^2}{\overline{r}} - \beta \overline{V}_r, \qquad (8)$$

где

$$\overline{V}_r = \frac{V_r}{W_z}; \overline{V}_{\varphi} = \frac{V_{\varphi}}{W_z}; \overline{r} = \frac{r}{L_0}; \beta = \frac{18k_{\delta}\mu_g L_0}{\rho_{\delta} \,\delta^2 V_z}.$$
 (9)

В рассматриваемом случае комплекс β (9) можно считать постоянным, так как согласно допущениям W_{z} =const. Уравнение (8) имеет аналитическое решение:

$$\overline{V}_r = e^{-\beta \overline{t}} \left(\overline{V}_{r0} + \int_0^{\overline{t}} e^{-\beta \overline{t}} \frac{\overline{V}_{\varphi}^2}{\overline{r}} d\overline{t} \right),$$

где \overline{V}_{n} – радиальная проекция скорости частицы в начальный момент времени $\overline{t}=0$.

Принятый закон изменения окружной скорости обеспечивает независимость отношения $\frac{\overline{V}_{\varphi}^{2}}{\overline{r}}$ от времени \overline{t} . Тогда интегрирование дает следующую зависимость:

$$\overline{V}_{r} = e^{-\beta \overline{i}} \left[\overline{V}_{r0} + \frac{1}{\beta} \left(\frac{\overline{V}_{\varphi}^{2}}{\overline{r}} \right)_{cp} \left(e^{-\beta \overline{i}} - 1 \right) \right].$$
(10)

(13)

Зная закон изменения \overline{V}_{0} , можно найти расстояние, пройденное частицей в радиальном направлении:

$$r - r_0 = \int_o^t V_r dt, \qquad (11)$$

где r_0 — начальный радиус входа частицы в сепарационную камеру циклона. Величина r_0 может изменяться от радиуса r_1 центральной внутренней вставки до радиуса r_2 сепарационной камеры.

После подстановки $\overline{r_0}=r_0/L_0$, формул для перехода к безразмерным переменным (9), зависимости (10) в (11) и после интегрирования получим:

$$\overline{r} = \overline{r}_0 + \frac{1}{\beta} \left[-\overline{V}_{r0} \left(e^{-\beta \overline{i}} - 1 \right) + \left(\frac{\overline{V}_{\varphi}^2}{\overline{r}} \right)_{cp} A(\beta, \overline{t}) \right], \quad (12)$$

где $A(\beta, \overline{t}) = \overline{t} + \frac{1}{\beta} (e^{-\beta \overline{t}} - 1).$

Рассмотрим простейший случай, когда на выходе из лопаточного завихрителя проекции скорости потока W_{n0} и частицы V_{n0} ничтожно малы и могут не учитываться, т. е. $\overline{W}_{n0} = \overline{V}_{n0} = 0$. В этом случае для расчета траектории частицы следует использовать зависимость вида:

Рис. 1. Траектории движения частиц диаметром δ с радиусом входа r_0

На рис. 1 изображены траектории частиц различного диаметра при разных радиусах входа \overline{r}_0 частиц в сепарационную камеру (с размерами $r_1=0,045$ м и $r_2=0,060$ м), рассчитанные для завихрителя с углом выхода потока на среднем радиусе

 $\bar{r}_{cp} = \frac{r_1 + r_2}{2L_0} = 0,1902$ к плоскости, перпендикуляр-

ной оси аппарата, равным 35°. Из треугольника скоростей нетрудно определить

$$\overline{V}_{\varphi} = \frac{V_{\varphi}}{V_z} = \text{ctg35}^\circ = 1,428; \quad \frac{\overline{V}_{\varphi}^2}{\overline{r}_{cp}} = 10,721.$$

Значения остальных параметров приведены выше.

Предполагая, что частица, достигнув стенки циклона, скользит по ней и отводится через окна промежуточного отбора и кольцевую щель второго отбора в изолированные бункера, построим зависимости минимального диаметра δ_{\min} частиц, улавливаемых окнами промежуточного отбора (кривая 1, рис. 2), и циклона в целом (кривая 2, рис. 2) для различных радиусов \overline{r}_0 входа частицы в циклон. Теоретически, все частицы, имеющие размер больше δ_{\min} , должны осаждаться в циклоне, а размером $\delta \leq \delta_{\min}$ – выносится из циклона.

Рис. 2. Минимальный диаметр улавливаемой пыли с: 1) промежуточным, 2) основным отборами в зависимости от радиуса входа \overline{r}_0

В основу многочисленных методов расчета минимального (критического) диаметра частиц для циклонов различных типов также положено основное допущение, что для улавливания частица должна достичь стенки пылеуловителя за время пребывания в нем газового потока [9, 16, 17 и др.]. При этом не учитывается распределение запыленного потока по площади входного сечения, т. к. предполагается, что частица входит в сепарационное пространство по оси аппарата либо на его среднем радиусе. Полученные таким образом формулы для определения δ_{\min} не точны, поскольку в пылеуловителях могут улавливаться частицы диаметром меньшим δ_{\min} , если они при входе в циклон были близки к стенке. Приведенные на рис. 2 зависимости $\delta_{\min} = f(\overline{r_0})$ лишены этого недостатка. Однако, как показал дисперсный анализ пыли, осевшей на тканевом фильтре, на выходе из циклона наблюдается проскок достаточно крупных частиц. Кроме того, дисперсный состав пыли, уловленной в промежуточном отборе, свидетельствует о присутствии в нем частиц размером $\delta < \delta_{\min}$. Поэтому зависимости $\delta_{\min} = f(\overline{r_0})$ могут служить для приближенной оценки эффективности сепарации циклона.

По известным траекториям движения частиц пыли и зависимостям $\delta_{\min} = f(\overline{r_0})$ можно рассчитать теоретическую эффективность пылеулавливания η_7 следующим образом. Предположим равномерное распределение пыли по входному сечению циклона. По данным дисперсного состава пыли, поступающей на вход циклона, строим интегральную функцию $D(\delta)$ распределения частиц по массе на двойной логарифмической шкале. Функция $D(\delta)$ можно представить в виде формулы Розина-Рамлера-Беннета [18]:

$$D(\delta) = 1 - e^{(\delta/\delta_e)a}, \qquad (14)$$

где δ_e по своему физическому смыслу представляет собой такой диаметр, при котором масса частиц крупнее δ_e составляет 36,8 %, а мельче — 63,2 %. Для рассматриваемой пыли δ_e =23 мкм. Дважды логарифмируя формулу (14), получим:

$$\lg \left(\lg \frac{1}{1 - D(\delta)} \right) = \lg \lg e + a(\lg \delta - \lg \delta_e).$$

Тогда $a = \frac{\lg \lg \left(\frac{1}{1 - D(\delta)} \right) - \lg(\lg e)}{\lg \delta - \lg \delta_e} = 2,6224.$

Следовательно: $D(\delta) = 1 - e^{-(\delta/23)^{2.62}}$

Рассчитанные зависимости $\delta_{\min}^{\perp}(\overline{r}_0)$ и $\delta_{\min}^{2}(\overline{r}_0)$ в пакете Statgraphics Plus аппроксимированы кубическим полиномом:

$$\delta_{\min}^{1}(\bar{r}_{0}) = 140 - 2178\bar{r}_{0} + 12135\bar{r}_{0}^{-2} - 23250\bar{r}_{0}^{-3}, \quad (15)$$

$$\delta_{\min}^{2}(\bar{r}_{0}) = 109 - 1702\bar{r}_{0} + 9388\bar{r}_{0}^{-2} - 17741\bar{r}_{0}^{-3}.$$
 (16)

Таблица 1. Статистическая значимость регрессий. Скорректированный коэффициент детерминации 99,96 %

Уравнение	Критерий Дарби- на-Уотсона	Стандартная ошибка, мм	Средняя абс. ошибка, мм
(15)	1,173	0,0307	0,0223
(16)	1,219	0,0193	0,0143

Эффективность улавливания промежуточным отбором η_T^1 и циклона в целом η_T^2 определяются по формулам:

$$\eta_{T}^{1} = \frac{100p}{\pi(\overline{r_{2}}^{2} - \overline{r_{1}}^{2})} \int_{\overline{r_{1}}}^{\overline{r_{2}}} 2\pi \overline{r_{0}} [1 - D(\delta_{\min}^{1}(\overline{r_{0}}))] d\overline{r_{0}} = \frac{200p}{(\overline{r_{2}}^{2} - \overline{r_{1}}^{2})} \int_{\overline{r_{1}}}^{\overline{r_{2}}} \overline{r_{0}} e^{-(\delta_{\min}^{1}(\overline{r_{0}})/23)^{2,62}} d\overline{r_{0}}, \%,$$
$$\eta_{T}^{2} = \frac{200}{(\overline{r_{2}}^{2} - \overline{r_{1}}^{2})} \int_{\overline{r_{1}}}^{\overline{r_{2}}} \overline{r_{0}} e^{-(\delta_{\min}^{2}(\overline{r_{0}})/23)^{2,62}} d\overline{r_{0}}, \%$$

где $\delta_{\min}^1(\overline{r_0})$ и $\delta_{\min}^2(\overline{r_0})$ рассчитываются по формулам (15) и (16) соответственно, *p*=0,66 — вероятность попадания пыли в промежуточный отбор, равная отношению суммарной площади окон к площади боковой поверхности цилиндра с высотой, равной высоте окон.

Для численного интегрирования использовалась квадратурная формула Ньютона-Котеса шестого порядка, правило Уэддля [19]. Получены следующие значения эффективности сепарации: η_T^1 =65,35 % и η_T^2 =99,01 %, которые завышены по сравнению с экспериментальными.

Принятая модель течения недостаточно точна, т. е. не позволяет найти эффективность сепарации циклона в целом без учета таких факторов, как вторичный турбулентный унос отсепарированной пыли, рикошета и эффекта Магнуса. Приемлемое совпадение η_T^1 с экспериментальными данными ($\eta_3^1=60...62\%$) объясняется прежде всего введением вероятности попадания пылинок в окна промежуточного отбора. При отсосе пыли из второго бункера вместе с частью газа в количестве 5 % от расхода η_3^2 повышается с 97,0 до 99,4 %, что уже незначительно отличается от η_T^2 . Наблюдаемое повышение эффективности сепарации циклона при отсосе части газа объясняется уменьшением интенсивности турбулентности несущего потока.

Таблица 2. Оценка параметров фракционной эффективности

Показатель	Экспериментальные значения		Расчетные значения	
№ опыта	1	2	1	2
δ , мкм	20,0	11,0		
σ	1,38	1,50		
$\delta_{ m e}$, мкм		23,0	14	
а			2,62	1.52
η, %	89	79	99,01	87.55
X	1,227	0,807	2.34	1.152
d _{50m}	3,02		2,34	
lg $\sigma_{m\eta}$	0,308		0,02	

Был проведен эксперимент с циклоном, схема которого приведена на рис. 3. В качестве пыли использован хлористый калий с плотностью $\rho_{\delta}=2631$ кг/м³ (насыпная 1950 кг/м³) и коэффициентом формы $k_{\delta}=1,54$. Параметры газового потока: скорость W=9 м/с, вязкость $m=1,89\cdot10^{-5}$ Пас, плотность $\rho_g=1,25$ кг/м³, D=0,12 м. Так как в методике НИИОГАЗ отсутствуют данные по фракционной эффективности прямоточных циклонов, то оценим их для исследованного циклона по методу В.П. Самсонова [18], табл. 2.

На Новомальтинском заводе строительных материалов (Усольский район Иркутской обл.) в минераловатном производстве колошниковые газы, отходящие от ваграночных печей, очищались в рукавном фильтре, установленном на открытой площадке. Из-за оледенения и порывов рукавов при их регенерации в холодный период года фильтр имел малую эффективность очистки и низкую эксплуатационную надежность. Вместо фильтра было предложено использовать прямоточный циклон

Параметры	По опытным данным	По модели	
$\overline{D} = D/D_m$	0,258/0,12=2,15		
$\overline{\rho} = \rho_{\delta n} / \rho_{\delta}$	1950/1008=1,935		
$\overline{\mu} = \mu/\mu_n$	1,794.10-5/1,89.10-5=0,949		
$W = W_m/W$	9/5=1,8		
$d_{50} = d_{50m} \sqrt{\overline{D} \cdot \overline{\rho} \cdot \overline{\mu} \cdot \overline{W}}$	3,02\sqrt{2,15.1,935.0,949.1,8}=8,0507	2,34\sqrt{2,15.1,935.0,949.1,8}=6,2380	
$x = \lg(d_{50}/d_{50m})\sqrt{\lg\sigma_{m\eta}^2 + \sigma_{\eta}^2}$	lg(85/8,05)√0,308 ² +2,17 ² =2,2435	lg(85/6,23)×√0,02 ² +2,17 ² =2,463	
$\Phi_p(x), \%$	98,73	99,31	
$\Phi_{_{\mathfrak{sK}cn}}(x),\%$	87		
Ошибка, %	(98,73-87)/0,87=13,48	(99,31-87)/0,87=13,9	

Таблица 3. Расчет по методике НИИОГАЗ [20]

0,258 мм с промежуточным отбором пыли (рис. 3). Температура газа на входе в циклон составила 90...97 °С, на выходе – 70 °С. Медианный диаметр (по массе) исходной пыли ваграночных газов на входе в циклон составил 85 мкм, медианным диаметр частиц, улавливаемых с эффективностью 50 % равен $d_{50}=14$ мкм. Насыпная плотность пыли – 1008 кг/м³. Оптимальная среднерасходная скорость, обеспечившая наибольшую эффективность пылеулавливания $\eta=86...87$ %, составила W=5...6 м/с. Отсос газа из бункера в количестве 4...5 % от общего расхода позволил повысить эффективность очистки на 8...9 % [22].

По полученным параметрам фракционной эффективности d_{50m} и $\lg \sigma_{m\eta}$ (табл. 2) оценена эффективность испытанного прямоточного циклона при очистке ваграночных газов согласно методике НИ-ИОГАЗ (табл. 3).

Анализ полученных по методике НИИОГАЗ результатов показывает, что близость оценок эффективности по опытным и модельным данным свидетельствуют об адекватности модельных представлений. С другой стороны, обе оценки имеют приемлемую, но достаточно большую погрешность (более 13 %, при отсосе части газа из бункерного пространства ошибка снижается до 5,0...5,5 %). Это диктует актуальность следующих задач исследования:

СПИСОК ЛИТЕРАТУРЫ

- Сийержич М., Ментер Ф. Измельчение расчетной сетки при моделировании закрученного двухфазного течения // Теплофизика и аэромеханика. – 2003. – Т. 10. – № 2. – С. 171–182.
- Василевский М.В., Зыков Е.Г. Расчет эффективности очистки газа в инерционных аппаратах. – Томск: Изд-во ТПУ, 2005. – 86 с.
- Шиляев М.И., Шиляев А.М. Моделирование процесса пылеулавливания в прямоточном циклоне. 1. Аэродинамика и коэффициент диффузии частиц в циклонной камере // Теплофизика и аэромеханика. – 2003. – Т. 10. – № 2. – С. 157–170.
- Шиляев М.И., Шиляев А.М. Моделирование процесса пылеулавливания в прямоточном циклоне. 2. Расчет фракционного коэффициента проскока // Теплофизика и аэромеханика. – 2003. – Т. 10. – № 3. – С. 427–437.

Рис. 3. Схема прямоточного циклона с промежуточным отбором пыли [21]

- увеличить объем анализируемых данных для обеспечения статистической значимости оценок фракционной эффективности прямоточных циклонов;
- проанализировать теоретическую достаточность методики НИИОГАЗ применительно к прямоточным пылеуловителям и разработать новую, более адекватную методику расчета эффективности прямоточных циклонов.
- 5. Баранов Д.А., Кутепов А.М., Лагуткин М.Г. Расчет сепарационных процессов в гидроциклонах // Теоретические основы химической технологии. – 1996. – Т. 30. – № 2. – С. 117–122.
- Касаткин А.Г. Основные процессы и аппараты химических технологий. – М.: Химия, 1971. – 784 с.
- Ахметов Т.Г., Порфильева Р.Т., Гайсин Л.Г. Химическая технология неорганических веществ. – Кн. 1. – М.: Высшая школа, 2002. – 688 с.
- Барахтенко Г.М., Идельчик И.Е. Влияние формы закручивающего устройства на гидравлическое сопротивление прямоточного циклона // Промышленная и санитарная очистка газов. 1974. № 6. С. 4–7.
- 9. Страус В. Промышленная очистка газов. М.: Химия, 1981. 616 с.
- Дейч М.Е., Филиппов Г.А. Гидродинамика двухфазных сред. М.: Энергоиздат, 1981. – 472 с.

- Литвинов А.Т. Эффективная очистка газов в аппаратах, использующих для выделения частиц пыли из потока центробежную силу // Журнал прикладной химии. 1971. Т. 44. № 6. С. 1221–1231.
- Степанов Г.Ю., Зицер И.М. Инерционные воздухоочистители. – М.: Машиностроение, 1986. – 184 с.
- Лагуткин М.Г., Баранов Д.А. Оценка действия силы Кориолиса в аппаратах с закрученным потоком // Теоретические основы химической технологии. – 2004. – Т. 38. – № 1. – С. 9–13.
- Старченко А.В., Бубенчиков А.М., Бурлуцкий Е.С. Математическая модель неизотермического турбулентного течения газовзвеси в трубе // Теплофизика и аэромеханика. 1999. Т. 6. № 1. С. 59–70.
- Иванков Н.А. Влияние геометрических и режимных параметров пылеуловителей со встречными закрученными потоками на их эффективность: Автореф. дис. ... канд. техн. наук. – М., 1982. – 16 с.
- Калмыков А.В. Разработка, исследование и методика расчета совершенных конструкций прямоточных пылеуловителей // Теплоэнергетика. – 1970. – № 4. – С. 60–63.

- Медников Е.П. Вихревые пылеуловители // Обзорная информация. Сер. ХМ-14. Промышленная и санитарная очистка газов. – М.: ЦИНТИХИМНЕФТЕМАШ, 1975. – 44 с.
- Коузов П.А., Скрябина Л.Я. Методы определения физико-химических свойств промышленных пылей. – Л.: Химия, 1983. – 143 с.
- Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). – М.: Наука, 1978. – 831 с.
- Справочник по пыле- и золоулавливанию / Под ред. А.А. Русанова. М.: Энергоатомиздат, 1983. 312 с.
- А.с. 386309 СССР. Прямоточный циклон / А.Н. Шерстюк, В.С. Асламова и др. – Опубл. в Б.И. – 1988. – № 13.
- Асламова В.С., Асламов А.А., Ляпустин П.К. Высокоэффективный прямоточный циклон // Фундаментальная наука в интересах развития критических технологий: Матер. конф. РФФИ. – Владимир, 2005. – СД-4-5. – С. 293–295.

Поступила 12.09.2006 г.

УДК 621.928.9

МЕТОД ОПРЕДЕЛЕНИЯ ДИСПЕРСНОГО СОСТАВА ПОРОШКОВОГО МАТЕРИАЛА КАСКАДОМ ПРЯМОТОЧНЫХ ЦИКЛОНОВ

А.М. Шиляев, В.С. Рекунов

Томский государственный архитектурно-строительный университет E-mail: kaf otopvent@tsuab.ru

При пылевидном сжигании мелкодисперсных твердых топлив, поведение частиц различной крупности в пыле- и золоулавливающих аппаратах неодинаково. Для обоснованного выбора и правильной оценки работы систем газоочистки необходимы сведения о дисперсном составе подлежащего улавливанию продукта. Разработана методика, позволяющая оперативно вычислять фракционный состав порошков. Проведено сравнение полученных результатов с данными дисперсного анализа, полученных другим методом. Получено устойчивое решение, показавшее, что методикой можно пользоваться при определении дисперсности пылей от 10 до 50 мкм.

При факельном сжигании измельченного твердого топлива в теплогенерирующих установках промышленных предприятий различного профиля на стадиях подготовки, пневмотранспорта пылевидного топлива, а также на участках золоочистки дымовых газов при диагностике и настройке технологического и пылеулавливающего оборудования необходим оперативный контроль фракционного состава содержащегося в газах дисперсного материала. Существуют различные методы определения дисперсного состава порошковых материалов [1, 2], однако, все эти методы требуют проведения предварительной подготовки проб порошка. На основе экспериментального исследования эффективности пылеулавливания каскадом прямоточных циклонов и анализа работы этих аппаратов разработан новый метод дисперсного анализа порошковых материалов с использованием последовательно установленных прямоточных циклонов и расшифровкой результатов пылеулавливания решением обратной коэффициентной задачи при непосредственном отборе пылегазовой смеси от технологического оборудования.

Метод последовательно установленных противоточных циклонов разработан С.С. Янковским и Н.А. Фуксом [2]. Он не требует предварительного осаждения исследуемой пыли и позволяет производить дисперсный анализ порошка непосредственно при улавливании частиц из пылегазового потока. В [2] представлены номограммы выносов пыли и параметры, при которых была проведена градуировка противоточных циклонов. При пылеулавливании на других скоростях газа в циклонах или при другой плотности пыли необходима дополнительная градуировка установки и пересчет результатов опыта на действительную плотность порошкового материала, что, в свою очередь, приводит к неточности определения дисперсного состава пыли и требует дополнительного времени для получения результатов. В настоящей работе разработан метод определения дисперсного состава пыли при помощи трех последовательно установленных прямоточных циклонов, который позволяет проводить дисперсный анализ порошков при любой его плотности и без построения номограмм [3].