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Abstract. This paper focuses on the experimental studies of the ignition characteristics 
of brown coal dust particles from the Tomsk region Talovsky deposit under the conditions 
of convective heating. The boundary conditions of combustion initiation have been 
established. The approximation dependence of ignition delay time from the temperature of 
a heat source has been found. 

1. INTRODUCTION

Coal is a one of major energy sources in a modern world fuel and energy complex [1–4]. Also, this 
fossil is a unique rock, which is a raw material for the production of different products, from 
electricity to nanomaterials. 

The Talovsky brown coal deposit is a promising alternative source to imported solid fuels for 
thermal power plants in the Tomsk region of Russian Federation. Its main advantages are the low cost 
of extraction, processing and transportation. According to preliminary estimates, the volume of coal 
production can reach 10–15 million tons per year. Nowadays, the option of building a power plant on 
the outskirts of Tomsk is considered. The power plant will operate with a new type of fuel to generate 
heat and electricity. The development and implementation of design solutions require the full amount 
of information about the characteristics of physical and chemical processes occurring during coal 
ignition [5–8]. 

The aim of this paper is the experimental study of the ignition of coal dust from the Talovsky 
deposit during its moving in a stream of heated air. 

2. EXPERIMENTAL SETUP AND PROCEDURE

Fig. 1 shows a setup for studying coal particles ignition during convective heating. 
The setup contains the basic equipment with the following characteristics: 

• High-pressure blower Leister Robust. Frequency 50 Hz, power 0.25 kW, air flow 1200 l/min.,
static pressure 10.8 kPa.

• Air heater Leister LHS 61. Voltage 3x400 V, power 11 kW, maximum air outlet temperature 923
K, maximum ambient temperature 338 K, temperature control on the output, infinitely adjustable
heating capacity via potentiometer, minimum air flow rate 1000 l/min.
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• High-speed video camera Phantom V411. Maximum speed at full resolution of 1280x800 is 4 200
fps, maximum speed at reduced resolution of 128x8 is 600 000 fps, 20 μm pixel size, sensor size
25.6"16.0 mm, 12-bit depth, ISO color 2500T, 1 μs minimum exposure, 16 GB high-speed
internal RAM, Gigabit Ethernet connection.

• Analytical balance OHAUS PA114. Repeatibility (standart deviation) 0.1 mg, linearity 0.2 mg,
tare range 1, stabilization time 3 s, interface RS-232.

• Personal computer Intel Core 2 Duo. Processor i5-3570 CPU 3.4 GHz, random-access memory
(RAM) 8 GB, read-only memory (ROM) 1 TB, LAN 10/100/1000 Mbit/s.

Figure 1. Scheme of a setup: 1 – high-pressure blower; 2 – air heater; 3 – heated air supply channel; 4 – hollow 
glass cylinder; 5 – high-speed video camera; 6 – ruler; 7 – analytical balance; 8 – computer; 9 – remote control of 
a heating installation; 10 – remote control of exhaust ventilation; 11 – exhaust ventilation. 

The operation principle of the setup (Fig. 1) is as follows. A high-pressure blower 1 delivers air at 
the ambient temperature to the input of an air heater 2. The air pass through the tubular electric 
heaters. As a result, the air is heated to a predetermined temperature. The temperature is monitored by 
thermocuple K. Heated air is fed into the hollow glass cylinder 4 via channel 3 with thermal 
insulation. A high-speed video camera 5 records fast processes within the cylinder during the 
induction period. Video saving and processing is performed in a computer 8 with the help of 
specialized software. A ruler 6 with a sampling scale of 0.1 mm is used for determining the spatial 
position of experimental samples during experiments. An analytical balance 7 is used for measuring 
the mass of the experimental samples. An exhaust ventilation system 10 and 11 removes the gaseous 
products of carbon thermal decomposition and oxidation to the atmosphere. 

Air temperature Tp was monitored by a thermocouple measurements method. In preliminary 
experiments it was found that the dispersion of experimental data increases with decreasing Tp. 
Therefore, the number of experiments at a fixed value Tp was chosen in view of this feature. 

The heater 2 heated air flow to a predetermined temperature (Fig. 1). After stabilizing the 
temperature in the channel, coal particles were put in a glass cylinder cavity. Video recording starts at 
the moment of introducing a particle into gas flow. Ignition delay time td was determined from a video 
recording and counts until the flame. 

The systematic measurement error of air temperature did not exceed 0.8–1.6%. The observational 
error of Tp was ±0.4%. This deviation can be neglected in the analysis, as the temperature of the heat 
source was not less than 450 K in the experiments. The random measurement errors of td were found 
from the results of the experiments. We conducted a series of experiments for each particle size at the 
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fixed value of Tp. After that, the average values for Tp and td, as well as standard deviations have been 
determined. The analysis of the values of td established that variation coefficients ranged from ±3.8% 
to ±7.5% in a series of experiments. 

We performed experimental studies for dust from the Talovsky lignite deposit. The average size of 
coal dust particles (Fig. 2) was 80 #m and corresponded to the particle size of solid fuel burnt in 
power boilers. 

Figure 2. Sample of brown coal dust from the Talovsky deposit (particle size of 80 #m). 

3. Results and discussion

As a result of data analysis we found the dependence (Fig. 3) of ignition delay time from the 
temperature of a heat source. The temperature Tp=450 K is the limit value necessary and sufficient to 
initiate combustion under the conditions of interaction between coal dust with air flow (at a rate of 4 
m/s). 

Figure 3. Dependence of coal dust ignition delay time from the air temperature. 

The experimental data curve (Fig. 3) is well described by an exponential dependence td=f(Tp): 

td=1.393·103·e(-0.013·Tp), s at 723 K $Tp$873 K.

The dependence is well illustrated in the video recordings of the investigated process (Fig. 4). 
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(a) 

(b) 

(c) 

Figure 4. Coal dust particles ignition under the following conditions: (a) Tp=863 K, td=0.021 s, (b) Tp=823 K, 
td=0.04 s, (c) Tp=753 K, td=0.098 s. 

It can be seen (Fig. 4) that if the temperature of an energy source decreases, dust particles pass 
greater distance until their ignition. 

4. Conclusion

As a result of experimental studies we established the boundary conditions of the ignition of lignite 
dust particles from the Tomsk region Talovsky deposit (Russian Federation). We considered particles 
with the size of 80 #m during their motion in convective flow. The approximation dependence of 
ignition delay time from the temperature of an energy source has been found. 

The study was supported by the Russian Science Foundation (project No. 15-19-10003). The 
experimental setup was developed with the financial support of the program to improve the 
competitiveness of Tomsk Polytechnic University (project VIU_ENIN_2014). 
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