- 2. Покровский Д.С., Кузеванов К.И. Гидрогеологические проблемы строительного освоения территории г. Томска // Обской вестник. -1999. -№ 1-2. -C. 96–101.
- 4. Покровский Д.С., Дутова Е.М., Кузеванов К.И. Применение геоинформационных технологий для оценки гидрогеоэкологических условий застраиваемых территорий //Известия ВУЗов. Строительство, 2008, № 3 (591). с. 107-112.

ВОЗДЕЙСТВИЕ МИНЕРАЛИЗОВАННЫХ ПЛАСТОВЫХ ВОД НА ИОННЫЙ И МИКРОЭЛЕМЕНТНЫЙ СОСТАВ РЕКИ АРЕМЗЯНКА (ТОБОЛЬСКИЙ РАЙОН ТЮМЕНСКОЙ ОБЛАСТИ) Л.А. Табуркин

Научный руководиетль профессор А.В. Соромотин *Тюменский государственный университет, г. Тюмень, Россия*

В настоящее время одной из актуальных экологических проблем является изменение макро- и микроэлементного состава речных вод в результате загрязнения пластовыми водами, обладающими высокой минерализацией и специфическим химическим составом.

На юге Тюменского региона России проблема воздействия пластовых вод Западно-Сибирского артезианского мегабассейна на водотоки является масштабной экологической проблемой в связи со сбросом сточных вод геотермального рыбного хозяйства [2], бальнеологических здравниц [4], а также фонтанирования бесхозных геологоразведочных скважин [3].

Для исследования воздействия пластовых вод на водотоки была выбрана скважина Черкашинская № 36-РГ, расположенная на первой надпойменной террасе реки Аремзянка. Она фонтанирует с дебитом 1000 м³/сут [3] и формирует поверхностный сток пластовой воды, поступающий в реку.

По классификации О.А. Алекина [1] пластовые воды относятся к категории солоноватых вод с минерализацией 15 г/л (табл. 1).

Таблица 1 Ионный состав и минерализация воды скважины Черкашинской № 36-РГ

Скважина			Cl-	HC0 ₃ -	SO ₄ ²⁻	Na ⁺	Ca ²⁺	Mg^{2+}	K ⁺	Σионо в	рн
									мг/л	ед. рН	
	Черкашинская №36-РГ	мг/л	8353	510	30.5	5751	252	59	60	15016	7.4
	J1250-1 1	ммоль/л	235.6	8.4	0.6	251	12.6	4.8	1.5	15010	, .

Ионный состав отличается хлоридным классом, натриевой группой.

По классификации О. А. Алекина [1] фоновые воды реки Аремзянки выше по течению от участка скважины (1-2 км) относятся к категории речных вод со средней минерализацией (до 0.2-0.5 г/л) (табл. 2). Ионный состав отличается гидрокарбонатным классом группой кальция.

В результате поступления в водоток солоноватой воды изменяется ионный состав и минерализация реки. Ниже по течению от участка скважины (100-2000 м) концентрации анионов Cl^- и катионов Na^+ повышаются по сравнению с фоновыми значениями (табл. 2). В 100 м ниже по течению произошла смена группы кальция на группу натрия и кальция.

Таблица 2 Ионный состав и минерализация вод реки Аремзянки в период летне-осенней межени (июль 2012 г.)

	Точки опробования										
Иолил	выше по теч	ению (фон)	ниже по течению								
Ионы	2 км	1 км	100 м	500 м	1 км	2 км					
	мг/л										
Cl	10.8	8.2	127	57.1	40.3	38.8					
НСО3	351.4	344.5	345	344.3	342.9	344.5					
SO_4	10.9	10.3	11.4	11.3	12.3	12.4					
Na	20.2	18.9	101.7	50.7	39.2	37.9					
Ca	79.9	79.9	83.1	80.7	79.5	79.1					

По мере удаления от источника загрязнения разбавление раствора речной воды приводит к уменьшению содержаний ионов Cl^- и Na^+ , но даже на удалении 2 км ионный состав вод отличается от фонового.

Возрастание концентраций ионов СГ и Na^+ ниже по течению приводит к увеличению минерализации (табл. 2). По этому показателю воды относятся к категории речных вод с повышенной минерализацией (0.5-1.0 г/л).

Пластовая вода характеризуется богатым микроэлементным составом, причем концентрации Br, B, F, Sr, Ba, S, Si превышают 1 мг/л (табл. 3).

Таблица 3

Скважина	Вг	В	F	Sr	Ba	Zn	Li	Rb	Cs	S	Mn	Si	Fe
Скважина	мкг/л												
Черкашинская № 36-РГ	51466	8296	2228	23478	18483	19.5	249	64	8.4	1188	246	15290	306

Поступление в реку воды такого микроэлементного состава приводит к увеличению концентраций Вг, В, F, Sr, Ва, (табл. 4). По мере удаления от источника загрязнения ниже по течению концентрации микроэлементов уменьшаются, но остаются выше фоновых значений.

Таблица 4

Концентрации микроэлементов в р. Аремзянка (июль 2012 г.)

,	Точки опробования										
Микроономонти	выше по	течению	ниже по течению								
Микроэлементы	2 км	2 км 1 км 100 м 500 м			1 км	2 км					
	мкг/л										
Br	87	71	872	397	277	234					
F	-	-	13	11	10	7					
В	125	69	237	140	119	106					
Sr	376	375	773	501	463	459					
Ba	117	111	364	221	189	171					

Литература

- 1. Алекин О. А. Основы гидрохимии. Л.: Гидрометиздат. 1953. 295 с.
- 2. Коваленко А. И., Князева Н. С. Влияние сброса минеральных вод на химический состав реки Балды. Тезисы докладов Второй Всероссийской конференции «Экосистемы малых рек: биоразнообразие, биология, охрана». Борок, 2004 г. С. 36-37.
- 3. Коновалов И. А. Экологические последствия воздействия пластовых вод из устья геологоразведочных скважин: автореф. дис. ... канд. биол. наук, Омск, 2012.
- 4. Сванидзе И. Г. Засоление речного стока геотермальной скважиной Черкашинская 30-РГ // Мат-лы XI межвуз. молодежной науч. конф «Школа экологической геологии и рационального недропользования». СПб., 2011. С. 274-276.

ИСПОЛЬЗОВАНИЕ ЗЕМЕЛЬНО-КАДАСТРОВОЙ ИНФОРМАЦИИ ДЛЯ ВОДОСБОРНЫХ УРБАНИЗИРОВАННЫХ ТЕРРИТОРИЙ Л.Н. Чилингер

Научный руководитель профессор В.К. Попов

Национальный исследовательский Томский политехнический университет, г. Томск, Россия

В настоящее время проблемы землепользования на урбанизированных территориях приобрели новые масштабы. Изменения, происходящие в земельном и водном законодательствах, не происходят без сопутствующих осложнений.

В настоящей статье рассмотрены трудности при изменении законодательства на примере урбанизированных территорий Томской области. Решением этих проблем кадастровые инженеры занимаются и в настоящее время.

На территории Томской области существует ряд проблем при проведении землеустроительных и кадастровых работ, заключающихся в несоответствии местоположения границ земельных участков по сведениям ГКН фактическому местоположению.

В мае 2010 года на территории Томской области управлением Росреестра по Томской области введена местная система координат МСК-70, переходный период действовал до 1 июля 2010 года. До этого времени постановка на кадастровый учет проводилась по описательному фактору. Если на территории г. Томска была принята система координат г. Томска, при переходе в новую систему координат