# Науки о Земле

УДК 552.161:550.42

# МИНЕРАЛОГО-ПЕТРОХИМИЧЕСКИЕ И ГЕОХИМИЧЕСКИЕ ЧЕРТЫ УЛЬТРАМЕТАМОРФИЧЕСКОГО ПРОЦЕССА ОЧАГОВО-КУПОЛЬНОГО ТИПА

И.В. Кучеренко

Томский политехнический университет E-mail: lev@tpu.ru

Показано и обсуждается распределение петрогенных и рудогенных (Au, Ag, Hg) химических элементов в метаморфических зонах Кедровской очагово-купольной постройки в Северном Забайкалье. Сделан вывод об отсутствии существенной миграции вещества в процессе локального очагово-купольного ультраметаморфизма.

#### Введение

Проблема «поведения» металлов в процессах регионального зонального метаморфизма высоких и низких фаций инициирована обсуждением другой проблемы — источников рудного вещества при образовании гидротермальных месторождений урана, золота, сурьмы и некоторых других металлов в мощных углеродистых терригенных толщах крупных осадочных бассейнов. За прошедшие с конца пятидесятых годов прошлого века десятилетия в приложении к золотым месторождениям оформилось два варианта ее решения.

Представление о выносе золота из высокотемпературных зон в низкотемпературные с последующей фиксацией металла в месторождениях разрабатывали и разрабатывают многие специалисты [1-13 и др.]. Противоположные выводы об инертности металлов в ареалах зонального метаморфизма приведены в [14–19]. Н.А. Озерова констатирует, что даже такой легкоподвижный металл как ртуть - постоянный спутник золота в месторождениях не мигрирует из высокотемпературных зон метаморфизма [20]. Таким образом, до сего времени сохраняется ситуация неопределенности. При отсутствии критериев оценки достоверности противоположных результатов, например, точности и достоверности анализов, приведенных в некоторых опубликованных работах, нельзя исключать и того, что природа многообразна в своих проявлениях и в данном случае справедлив каждый вариант решения.

Вероятно, не все факторы, определявшие сотни миллионов или миллиарды лет назад миграцию или инертность металлов в условиях зонального регионального метаморфизма, можно учесть в эксперименте или при моделировании по той причине, что некоторые неизвестны или не воспроизводимы, например, — фактор геологического времени. Поэтому, при постановке эксперимента или определении исходных условий моделирования неизбежны допуски, адекватность которых реальному природному процессу в некоторых аспектах не очевидна. Отсюда ясно, что результаты эксперимента или моделирования не всегда могут служить критерием надежности получаемых выводов.

В поисках решения проблемы наряду с совершенствованием условий эксперимента остается актуальным дальнейшее накопление эмпирических материалов. Для достижения обозначенной цели пригодны относительно молодые зрелые очаговокупольные постройки при условии доступности всего разреза метаморфического ореола, в том числе того субстрата, за счет которого образованы купола в режиме локального зонального ультраметаморфизма. В этом случае существует возможность отслеживания концентраций петро- и рудогенных элементов в породах метаморфических зон от обрамления куполов до ядерных, выполненных магматитами их частей. На всех этапах этой работы может быть оценена достоверность результатов.

Указанным условиям удовлетворяет Кедровская зрелая очагово-купольная постройка, материалы изучения которой в обсуждаемом аспекте приведены в статье.

Поскольку геология Кедровского купола описана ранее в ряде работ автора, например, в [21], отметим главное.

Кедровский купол находится в Южно-Муйском хребте Северного Забайкалья в 10...20 км к западу от устья р. Тулдунь, впадающей в р. Витим в ее среднем течении. Его западный изученный сателлит расположен в центральной части одноименного золоторудного месторождения, контролируется Тулдуньской зоной глубинных разломов в восточном обрамлении Муйского выступа архейского фундамента и сложен в ядре штокообразной залежью гранодиоритов и кварцевых диоритов, занимающей площадь 3,5×2,5 км, в обрамлении ультраметаморфических пород и образован 335±5 млн л [21], как и весь купол, в мощной протерозойской кедровской толще (свите) углеродистых песчаноалевросланцев, чередующихся в разрезе с пластами мраморизованных известняков. Залежь падает согласно стратификации толщи на восток под умеренными углами. В непрерывных скальных обнажениях широтных бортов р. Тулдунь, руч. Пинегинского (10 км к северу) можно видеть постепенные переходы сланцев через огнейсованные сланцы в гнейсы и далее в мигматиты с постепенно увеличивающимся в направлении к магматическому ядру объемом лейкосомы.

# 1. Минералого-химический состав горных пород в минеральных зонах Кедровского купола

Углеродистые двуслюдяные, метаморфизованные на уровне мусковит-биотитового парагенезиса полевошпат-кварцевые песчано-алевросланцы кедровской свиты имеют темно-серый до черного цвет, сланцеватую текстуру, разнозернистую, от крупнозернистой алевритовой до мелкозернистой песчанистой структуру. Сланцеватость согласна слоистости. Унаследовавшая слойчатость пород полосчатость обусловлена чередованием тонких (доли мм) полосок, сложенных полевошпат-кварцевым и слюдистым агрегатами с ориентировкой чешуек биотита вдоль сланцеватости.

Объем обломочной фракции варьирует в широких пределах, цемент перекристаллизован, приобрел лепидогранобластовую структуру и реконструируется как базальный или соприкосновения. Обломочный материал с периферии зерен иногда несет лишь слабые следы растворения и перекристаллизации, так что обломки сохранили основные черты своей морфологии — преимущественно окатанные, реже угловатые формы.

В обломочной фракции и цементе участвуют альбит — олигоклаз до андезина (до 50 об. %), кварц (до 50 об. %) и бурый биотит (до 20 об. %) с примесью пластинок равновесного с биотитом мусковита, кристаллов микроклина, бледно-зеленого турмалина, каплевидных и чешуйчатых выделений графита, с участием обломков магнетита, циркона, апатита.

Таким образом, породы представляют собой метаморфизованные (биотит, мусковит, турмалин) аркозовые песчаники и алевролиты с сохранившимися элементами структуры осадочных пород.

В области постепенного перехода в гнейсы породы теряют облик «нормальных» углеродистых сланцев и приобретают более массивную текстуру. Обломочная структура осадочных пород все более трансформируется в лепидогранобластовую вследствие собирательной перекристаллизации, укрупнения и образования новых минералов высокотемпературного парагенезиса, включающего микроклин, диопсид (+2V=60°, C:Ng=42°, оптич. знак +, Ng=1,714, *Np*=1,682), альмандин (1,827<*N*<1,834) в срастании с переменным количеством буровато-зеленого биотита, мусковита, кварца, олигоклаза-андезина (№ 29, 31, 45) с примесью сфена, графита, апатита, циркона, магнетита. Аналогичные строение и состав приобретают «нормальные» гнейсы и образованные за счет известняков кальцифиры, в которых диопсид диагностируется по следующим кристаллооптическим константам:  $+2V=60^\circ$ , *C*:*Ng*=38°, оптич. знак +, Ng=1,718, Np=1,686. Содержание кальцита достигает 50 об. %. Текстура гнейсов отличается сложностью рисунка, напоминающего микроскладчатые формы, и подчеркивает разные количественные соотношения меланократового субстрата гнейсов и лейкократового субстрата мигматитовой выплавки вплоть до теневых мигматитов, которые постепенно переходят в «нормальные» гранодиориты и кварцевые диориты ядра.

Кварцевые диориты и гранодиориты отличаются массивной текстурой и среднекристаллической (до 5 мм) гипидиоморфнозернистой структурой. В их составе преобладают олигоклаз-андезин ( $N \otimes 22...36$ , до 60 об. %), кварц (до 15 об. % в кварцевом диорите и до 20 об. % в гранодиорите), бурый биотит. Второстепенные минералы – зеленая роговая обманка ( $-2V=84^\circ$ ,  $C:Ng=16^\circ$ , оптич. знак –, Ng=1,678, Np=1,654) с реликтами раннего авгита, калиевый полевой шпат (в гранодиоритах). Акцессории – апатит, магнетит, циркон, сфен.

Химические составы и петрохимические параметры пород приведены в табл. 1 и на рис. 1—3.





|           | Номер Содержание, мас. % |                  |           |                  |                   |            |                 | ~    |      |      |           |                  |      |          |          |        |
|-----------|--------------------------|------------------|-----------|------------------|-------------------|------------|-----------------|------|------|------|-----------|------------------|------|----------|----------|--------|
| Nº<br>INº | пробы                    | SiO <sub>2</sub> | $Al_2O_3$ | K <sub>2</sub> O | Na <sub>2</sub> O | S сульфид. | CO <sub>2</sub> | CaO  | MgO  | FeO  | $Fe_2O_3$ | TiO <sub>2</sub> | MnO  | $P_2O_5$ | $H_2O^+$ |        |
| 1         | C1-50,1                  | 65,45            | 16,85     | 2,10             | 3,72              | 0,00       | 0,00            | 4,49 | 1,81 | 2,79 | 1,09      | 0,48             | 0,06 | 0,16     | 1,38     | 100,38 |
| 2         | C1-55,1                  | 67,24            | 16,05     | 2,00             | 3,92              | 0,02       | 0,23            | 4,07 | 1,71 | 3,08 | 0,61      | 0,41             | 0,07 | 0,14     | 0,42     | 99,97  |
| 3         | C1-56,5                  | 65,71            | 15,96     | 2,66             | 3,64              | 0,01       | 0,90            | 3,51 | 1,81 | 2,86 | 0,86      | 0,41             | 0,07 | 0,15     | 1,43     | 99,98  |
| 4         | C1-57,0                  | 66,94            | 16,32     | 3,00             | 3,36              | 0,00       | 0,72            | 2,38 | 1,71 | 1,98 | 0,70      | 0,41             | 0,06 | 0,14     | 1,92     | 99,64  |
| 5         | C1-59,6                  | 67,46            | 15,78     | 2,00             | 3,92              | 0,00       | 0,14            | 4,21 | 1,41 | 2,42 | 1,02      | 0,40             | 0,09 | 0,12     | 0,88     | 99,85  |
| 6         | C1-82,0                  | 66,32            | 16,85     | 1,66             | 3,82              | 0,01       | 0,18            | 3,93 | 1,61 | 2,49 | 1,35      | 0,44             | 0,08 | 0,14     | 0,82     | 99,70  |
| 7         | КБ1-22                   | 62,50            | 16,50     | 1,67             | 3,90              | 0,05       | 0,63            | 3,91 | 2,11 | 2,13 | 3,39      | 0,51             | 0,11 | 0,25     | 2,33     | 99,99  |
| 8         | K-384                    | 62,92            | 15,06     | 3,00             | 2,82              | 0,00       | 0,32            | 1,12 | 3,30 | 4,69 | 2,38      | 0,50             | 0,15 | 0,13     | 3,33     | 99,72  |
| 9         | K-383                    | 60,61            | 17,12     | 3,18             | 2,92              | 0,04       | 0,61            | 0,84 | 3,40 | 4,54 | 2,79      | 0,53             | 0,10 | 0,14     | 2,72     | 99,54  |
| 10        | K-382                    | 61,25            | 16,41     | 3,00             | 2,82              | 0,04       | 0,99            | 2,09 | 2,60 | 5,13 | 2,13      | 0,50             | 0,14 | 0,13     | 2,98     | 100,21 |
| 11        | K-386                    | 64,11            | 15,60     | 3,00             | 1,54              | 0,01       | 0,57            | 1,12 | 3,40 | 4,25 | 2,95      | 0,68             | 0,14 | 0,13     | 2,93     | 100,43 |
| 12        | K-387                    | 64,74            | 16,00     | 3,04             | 1,81              | 0,00       | 0,18            | 0,84 | 2,71 | 5,13 | 1,43      | 0,60             | 0,10 | 0,15     | 2,76     | 99,49  |
| 13        | K-390                    | 61,12            | 17,10     | 3,26             | 1,81              | 0,00       | 0,72            | 1,39 | 2,81 | 5,67 | 1,21      | 0,68             | 0,16 | 0,12     | 3,60     | 99,65  |
| 14        | K-304                    | 62,87            | 16,50     | 2,26             | 4,84              | 0,01       | 0,42            | 2,66 | 2,50 | 4,12 | 1,02      | 0,77             | 0,11 | 0,27     | 0,83     | 99,18  |
| 15        | K-305                    | 70,95            | 12,55     | 1,30             | 3,72              | 0,00       | 0,96            | 1,68 | 2,00 | 3,09 | 1,36      | 0,55             | 0,03 | 0,23     | 1,37     | 99,79  |
| 16        | K-306                    | 60,46            | 16,59     | 2,70             | 4,24              | 0,01       | 0,68            | 2,80 | 2,80 | 4,41 | 2,29      | 0,95             | 0,06 | 0,10     | 1,17     | 99,26  |
| 17        | K-299                    | 59,72            | 17,30     | 2,52             | 2,42              | 0,05       | 0,73            | 2,66 | 2,90 | 5,95 | 1,61      | 0,75             | 0,08 | 0,27     | 2,24     | 99,20  |
| 18        | K-475                    | 60,12            | 16,87     | 3,34             | 3,34              | 0,03       | 0,32            | 2,51 | 3,21 | 5,13 | 1,97      | 0,80             | 0,13 | 0,09     | 1,83     | 99,69  |
| 19        | K-474                    | 66,64            | 14,50     | 1,83             | 3,18              | 0,00       | 0,23            | 4,47 | 2,21 | 2,61 | 2,13      | 0,58             | 0,07 | 0,16     | 1,24     | 99,85  |
| 20        | K-473                    | 65,16            | 15,78     | 1,80             | 3,46              | 0,00       | 0,99            | 3,63 | 1,81 | 2,70 | 1,79      | 0,49             | 0,10 | 0,22     | 1,75     | 99,68  |
| 21        | K-470                    | 62,96            | 15,78     | 2,30             | 3,34              | 0,00       | 0,68            | 3,77 | 1,91 | 3,71 | 1,15      | 0,94             | 0,13 | 0,18     | 3,26     | 100,11 |
| 22        | K-483                    | 62,68            | 16,14     | 2,10             | 2,18              | 0,04       | 0,59            | 4,75 | 2,51 | 4,03 | 2,87      | 0,92             | 0,13 | 0,26     | 1,62     | 100,82 |
| 23        | K-480                    | 61,85            | 15,96     | 2,96             | 2,92              | 0,00       | 0,23            | 2,79 | 3,14 | 4,76 | 2,16      | 0,93             | 0,15 | 0,17     | 1,54     | 99,56  |
| 24        | K-479                    | 63,63            | 15,96     | 2,48             | 3,00              | 0,00       | 0,32            | 3,07 | 2,61 | 4,67 | 1,68      | 0,88             | 0,21 | 0,19     | 1,37     | 100,07 |
| 25        | K-604                    | 59,90            | 17,50     | 3,70             | 1,45              | 0,01       | 0,54            | 1,12 | 3,22 | 6,17 | 2,34      | 0,72             | 0,08 | 0,28     | 2,48     | 99,51  |
| 26        | K-599                    | 59,90            | 18,85     | 2,60             | 2,60              | 0,05       | 0,77            | 1,82 | 1,55 | 5,36 | 2,35      | 0,92             | 0,07 | 0,20     | 2,93     | 99,97  |
| 27        | КП-20                    | 74,52            | 10,75     | 2,79             | 0,79              | 0,50       | 0,00            | 0,67 | 0,73 | 1,45 | 1,47      | 0,34             | 0,04 | 0,05     | 5,83     | 99,93  |
| 28        | K-508                    | 72,56            | 13,81     | 3,10             | 2,86              | 0,00       | 0,09            | 0,79 | 1,21 | 2,02 | 1,59      | 0,41             | 0,05 | 0,40     | 1,54     | 100,43 |
| 29        | K-507                    | 69,35            | 13,99     | 4,10             | 2,76              | 0,00       | 0,09            | 0,67 | 1,45 | 3,04 | 1,73      | 0,46             | 0,06 | 0,41     | 2,27     | 100,38 |
| 30        | K-506                    | 68,92            | 14,16     | 4,18             | 2,48              | 0,01       | 0,40            | 0,67 | 1,45 | 2,67 | 1,82      | 0,45             | 0,05 | 0,26     | 2,24     | 99,76  |
| 31        | K-505                    | 71,36            | 12,55     | 3,00             | 2,66              | 0,04       | 0,66            | 1,01 | 1,37 | 2,39 | 2,13      | 0,36             | 0,06 | 0,28     | 0,88     | 98,75  |
| 32        | K-504                    | 71,61            | 14,34     | 2,70             | 3,20              | 0,00       | 0,22            | 0,56 | 1,13 | 1,93 | 1,53      | 0,38             | 0,04 | 0,39     | 1,64     | 99,67  |
| 33        | K-402                    | 77,26            | 12,73     | 0,64             | 4,96              | 0,00       | 0,18            | 0,84 | 0,30 | 1,42 | 0,66      | 0,31             | 0,05 | 0,03     | 0,35     | 99,73  |
| 34        | K-157                    | 60,53            | 16,14     | 2,30             | 3,34              | 0,00       | 0,22            | 2,13 | 2,74 | 3,96 | 3,59      | 0,69             | 0,13 | 0,19     | 3,07     | 99,03  |
| 35        | K-159                    | 70,91            | 13,81     | 1,40             | 4,30              | 0,01       | 0,44            | 1,80 | 1,61 | 1,29 | 1,76      | 0,34             | 0,06 | 0,40     | 1,71     | 99,84  |
| 36        | K-162                    | 69,27            | 13,27     | 2,48             | 2,50              | 0,00       | 0,22            | 1,23 | 2,02 | 3,68 | 1,66      | 0,45             | 0,11 | 0,39     | 1,68     | 98,96  |
| 37        | K-164                    | 66,05            | 14,70     | 1,90             | 3,50              | 0,00       | 0,35            | 2,47 | 1,29 | 3,40 | 2,61      | 0,60             | 0,14 | 0,41     | 1,77     | 99,19  |
| 38        | K-176                    | 65,30            | 15,79     | 3,80             | 2,90              | 0,00       | 0,31            | 0,79 | 1,94 | 3,40 | 2,61      | 0,51             | 0,05 | 0,33     | 1,95     | 99,68  |
| 39        | K-177                    | 66,33            | 15,60     | 3,80             | 2,50              | 0,00       | 0,62            | 1,12 | 1,94 | 3,04 | 3,01      | 0,50             | 0,06 | 0,24     | 1,85     | 100,61 |
| 40        | K-178                    | 65,96            | 15,06     | 2,86             | 2,90              | 0,00       | 0,35            | 1,12 | 2,02 | 3,31 | 3,87      | 0,50             | 0,09 | 0,43     | 2,18     | 100,65 |
| 41        | K-184                    | 65,41            | 15,06     | 2,76             | 2,00              | 0,00       | 0,92            | 1,23 | 2,66 | 4,60 | 1,60      | 0,45             | 0,06 | 0,43     | 2,74     | 99,92  |

**Таблица 1.** Химические составы горных пород Кедровской зрелой очагово-купольной структуры и вмещающих ее двуслюдяных углеродистых песчано-алевросланцев кедровской свиты

Примечание. 1) Пробы: 1–7 – кварцевые диориты и гранодиориты центрального штока; 8–26 – обрамляющие шток магматических пород альмандин-двуслюдяные мигматиты и гнейсы; 27 – огнейсованный в области постепенного перехода ультраметаморфических пород в метаморфические спанцы углеродистый песчано-алевросланец; 28–41 – двуслюдяные углеродистые песчано-алевросланцы кедровской свиты (протерозой), вмещающие очагово-купольную постройку. 2) Все пробы горных пород отобраны в подзоне слабого изменения (не более 10 % новообразованных минералов) фронтальной зоны околорудного (рудовмещающего) метасоматического ореола Кедровского рудного поля. 3) Полные химические силикатные анализы горных пород выполнены в ЦЛ ПГО «Запсибгеология» (г. Новокузнецк) под руководством И.А. Дубровской

Сланцам и образованным за их счет гнейсам свойственны значительные вариации содержаний кремнезема (рис. 1). Фигуративные точки составов этих пород лишь частично совмещены, но в основном образуют автономные поля. Напротив, фигуративные точки составов магматических пород укладываются в сравнительно компактную группу, по содержанию кремнезема занимая промежуточное положение между сланцами и гнейсами. Суммарная (общая) щелочность всех пород примерно одинакова и отвечает средним изверженным породам нормального ряда.

На диаграмме (рис. 2) фигуративные точки всех пород располагаются сравнительно компактно, – породы относятся к калиево-натриевой петрохимической серии, но обладают умеренным индексом лейкократовости, в большинстве не превышающим 3. Поля сланцев и гнейсов совмещены, гранодиориты более обособлены в направлении увеличения лейкократовости.



Рис. 2. Положение двуслюдяных углеродистых песчано-алевросланцев кедровской свиты, ультраметаморфитов и магматитов Кедровской очагово-купольной структуры на диаграмме Na<sub>2</sub>O/K<sub>2</sub>O−al'= Al<sub>2</sub>O<sub>3</sub>/(MgO+FeO+Fe<sub>2</sub>O<sub>3</sub>). Условные обозначения на рис. 1



Рис. 3. Положение двуслюдяных углеродистых песчано-алевросланцев кедровской свиты, ультраметаморфитов и магматитов Кедровской очагово-купольной структуры на диаграмме SiO<sub>2</sub> – CaO

По соотношению кремнекислотности – известковистости (рис. 3) породы всех видов заметно дифференцированы. Сланцы относятся к низко и умеренно известковистым, но высококремнистым, гнейсы обладают низкой и умеренной известковистостью и низкой кремнистостью, гранодиориты – умеренно кремнисты, но отличаются высокой известковистостью.

## 2. Распределение рудогенных элементов в минеральных зонах Кедровского купола

Анализируется содержание в породах геохимически тесно связанных металлов – золота, серебра, ртути, образующих в рудах природный сплав. Как и для химического силикатного анализа, пробы отбирались на дальней периферии крупнообъемного околорудного метасоматического ореола Кедровского рудного поля, где изменения пород минимальны, происходили в основном за счет внутренних ресурсов (кроме CO<sub>2</sub>) и, следовательно, содержания петро- и рудогенных элементов близки к таковым в исходных неизмененных породах [21, 23]. Это, в частности, можно видеть на примере альмандин-двуслюдяных гнейсов и мигматитов, часть проб которых было возможно отобрать из неизмененных пород вне ореола (табл. 2). Только в подзоне интенсивного изменения внешней зоны заметно повышено в сланцах содержание серебра в сравнении с содержаниями металла в подзоне слабого и умеренного изменения. Эта выборка не участвует в сравнительном анализе.

Содержание золота, дисперсия его распределения низки во всех породах — в углеродистых сланцах, гнейсах и мигматитах, гранодиоритах и кварцевых диоритах. Содержание серебра в согласии с кларком на один-полтора порядка выше и оно, а также дисперсия его распределения, сопоставимы в сланцах и гранодиоритах, но несколько снижены в гнейсах и мигматитах. Золото-серебряное отношение не превышает 0,06. Высокая прямая корреляционная связь золота с серебром и ртутью зафиксирована соответственно в гранодиоритах и углеродистых сланцах. Ртуть, подобно серебру, содержится в сопоставимых количествах в сланцах и магматитах, но пониженных — в гнейсах и мигматитах при незначительно различающейся дисперсии.

# 3. Обсуждение результатов и выводы

Образование позднепалеозойской Кедровской очагово-купольной структуры предваряет формирование расположенного несколько южнее гигантского Ангаро-Витимского гранитоидного батолита и, вероятно, связано с его становлением под воздействием мантийного плюма - генератора высокотемпературных флюидов-теплоносителей. Ультраметаморфический процесс сопровождался локальным плавлением субстрата с образованием магматического ядра очагово-купольной постройки. Постепенные переходы от магматических пород ядра через мигматиты в гнейсы, а последних через огнейсованные углеродистые сланцы в двуслюдяные метаморфические сланцы доказывают образование Кедровского купола вследствие локально проявленного ультраметаморфизма и палингенеза карбонатно-терригенной кедровской толщи. Это обеспечивает возможность оценить эволюцию химического состава и геохимических особенностей исходного субстрата в процессе ультраметаморфизма.

Учитывая происхождение ультраметаморфических производных, следовало бы ожидать унаследованность их химического состава от сланцев до магматитов, которая однако выражается не по всем петрохимическим показателям. Она просматривается в сохранении сравнительно узкого интервала колебаний общей щелочности всех пород и в соответствии ее уровню нормальной щелочности гранодиоритов и кварцевых диоритов. Полная преемственность химического состава гнейсов и мигматитов от сланцев выражается также в принадлежности тех и других пород к калиево-натриевой петрохимической серии и в узком интервале изменений индекса их петрохимической лейкократовости. Низкая в большинстве проб сравнительно с

|                                                     |                               | Минеральные зоны околорудных метасоматических ореолов {число проб} |                                                                                         |                     |                    |                    |  |  |  |  |
|-----------------------------------------------------|-------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------|--------------------|--------------------|--|--|--|--|
|                                                     |                               |                                                                    | Внешняя                                                                                 |                     |                    |                    |  |  |  |  |
| Элементы                                            | параметры                     | Нулевая<br>(ноизмононные                                           | Минеральные подзоны слабого (ВНЕС), умеренного (ВНЕУ),<br>интенсивного (ВНЕИ) изменения |                     |                    |                    |  |  |  |  |
|                                                     | распределения                 | (пеизмененные поролы вне ореола)                                   |                                                                                         |                     |                    |                    |  |  |  |  |
|                                                     |                               | породы эте ореона,                                                 | BHEC                                                                                    | внеу                | ВНЕС+ВНЕУ          | ВНЕИ               |  |  |  |  |
| Кварцевые диориты и гранодиориты центральной залежи |                               |                                                                    |                                                                                         |                     |                    |                    |  |  |  |  |
| Διι                                                 | $\overline{xe}(\overline{x})$ |                                                                    |                                                                                         |                     | 0,7(0,8) {25}      | 0,8(1,0) {6}       |  |  |  |  |
| Au                                                  | t(s)                          |                                                                    |                                                                                         |                     | 1,4(0,4)           | 2,1(1,1)           |  |  |  |  |
|                                                     | $\overline{xe}(\overline{x})$ |                                                                    |                                                                                         |                     | 19,8(26,0) {25}    | 27,1(28,7) {6}     |  |  |  |  |
| ٨٩                                                  | t(s)                          |                                                                    |                                                                                         |                     | 1,9(27,0)          | 1,4(11,9)          |  |  |  |  |
| Ay                                                  | r(sr)                         |                                                                    |                                                                                         |                     | <b>0,55</b> (0,16) | <b>0,93</b> (0,05) |  |  |  |  |
|                                                     | Au/Ag                         |                                                                    |                                                                                         |                     | 0,035              | 0,03               |  |  |  |  |
|                                                     | $\overline{xe}(\overline{x})$ |                                                                    |                                                                                         |                     | 18,0(19,3) {25}    | 24,2(29,3) {6}     |  |  |  |  |
| Hg                                                  | <i>t</i> ( <i>s</i> )         |                                                                    |                                                                                         |                     | 1,5(7,9)           | 2,0(19,5)          |  |  |  |  |
|                                                     | r(sr)                         |                                                                    |                                                                                         |                     | -0,15(0,23)        | -0,41(0,34)        |  |  |  |  |
|                                                     | •                             | Альмандин-двусл                                                    | юдяные гнейсы и ми                                                                      | игматиты обрамлени  | я залежи           | •                  |  |  |  |  |
| Δ.,                                                 | $\overline{xe}(\overline{x})$ | 0,7(0,7) {9}                                                       | 0,7(0,8) {19}                                                                           | 0,9(1,0) {13}       |                    | 1,1(1,2) {12}      |  |  |  |  |
| Au                                                  | <i>t</i> ( <i>s</i> )         | 1,4(0,2)                                                           | 1,5(0,3)                                                                                | 1,6(0,7)            |                    | 1,5(0,5)           |  |  |  |  |
|                                                     | $\overline{xr}(\overline{x})$ | 16,8(19,9) {9}                                                     | 13,5(17,9) {19}                                                                         | 14,7(17,5) {13}     |                    | 16,0(19,7) {12}    |  |  |  |  |
| 1                                                   | <i>t</i> ( <i>s</i> )         | 1,8(13,1)                                                          | 1,9(20,0)                                                                               | 1,9(10,0)           |                    | 1,9(14,8)          |  |  |  |  |
| Ay                                                  | r(sr)                         | 0,22(0,32)                                                         | 0,01(0,23)                                                                              | 0,13(0,27)          |                    | -0,02(0,30)        |  |  |  |  |
|                                                     | Au/Ag                         | 0,04                                                               | 0,05                                                                                    | 0,06                |                    | 0,07               |  |  |  |  |
|                                                     | $\overline{xr}(\overline{x})$ | 10,2(12,3) {9}                                                     | 13,4(22,1) {19}                                                                         | 14,9(19,9) {13}     |                    | 24,3(35,9) {12}    |  |  |  |  |
| Hg                                                  | <i>t</i> ( <i>s</i> )         | 1,9(8,8)                                                           | 2,6(25,0)                                                                               | 2,0(20,7)           |                    | 2,5(34,3)          |  |  |  |  |
|                                                     | r(sr)                         | -0,07(0,33)                                                        | <b>0,39</b> (0,19)                                                                      | -0,20(0,27)         |                    | -0,01(0,30)        |  |  |  |  |
|                                                     |                               | Углеродистые песчано                                               | о-алевросланцы (му                                                                      | сковит-биотитовый і | парагенезис)       |                    |  |  |  |  |
|                                                     | $\overline{xr}(\overline{x})$ |                                                                    | 1,2(1,6) {37}                                                                           | 0,7(1,5) {15}       |                    | 1,1(1,7) {23}      |  |  |  |  |
| Au                                                  | <i>t</i> ( <i>s</i> )         |                                                                    | 2,1(1,5)                                                                                | 2,9(2,7)            |                    | 2,7(1,6)           |  |  |  |  |
|                                                     | $\overline{xe}(\overline{x})$ |                                                                    | 26,7(32,1) {37}                                                                         | 23,3(26,0) {15}     |                    | 56,6(91,7) {23}    |  |  |  |  |
|                                                     | t(s)                          |                                                                    | 1,9(20,9)                                                                               | 1,6(13,9)           |                    | 2,6(116,6)         |  |  |  |  |
| Ag                                                  | r(sr)                         |                                                                    | 0,001(0,2)                                                                              | <b>0,79</b> (0,11)  |                    | 0,22(0,21)         |  |  |  |  |
|                                                     | Au/Ag                         |                                                                    | 0,04                                                                                    | 0,03                |                    | 0,02               |  |  |  |  |
|                                                     | $\overline{xe}(\overline{x})$ |                                                                    | 18,0(26,3) {37}                                                                         | 28,3(34,7) {15}     |                    | 22,0(30,4) {23}    |  |  |  |  |
| Hg                                                  | <i>t</i> ( <i>s</i> )         |                                                                    | 2,8(20,7)                                                                               | 2,1(18,7)           |                    | 2,2(27,0)          |  |  |  |  |
|                                                     | r(sr)                         |                                                                    | <b>0,35</b> (0,16)                                                                      | 0,50(0,22)          |                    | 0,20(0,21)         |  |  |  |  |

**Таблица 2.** Оценка параметров распределения рудогенных элементов и корреляционных связей золота с рудогенными элементами в породах Кедровской очагово-купольной структуры и вмещающих ее углеродистых песчано-алевросланцах кедровской свиты

Примечание. Здесь и в табл. 3:  $\overline{xe}(\overline{x})$  – среднее соответственно геометрическое и арифметическое содержание, мг/т; t – стандартный множитель; s – стандартное отклонение содержаний мг/т; r – коэффициент парной линейной корреляции элементов с золотом, выше уровня значимости обозначен жирным шрифтом; sr – стандартное отклонение коэффициента корреляции. Содержание Au и Ag определялось атомно-абсорбционным методом (чувствительность 0,1 мг/т) в лаборатории ядерно-физических методов анализа ОИГГиМ СО РАН (г. Новосибирск, аналитик В.Г. Цимбалист). Содержание Hg определялось атомно-абсорбционным методом (чувствительность 5,0 мг/т) в ЦЛ ПГО «Березовгеология», (г. Новосибирск) под руководством Н.А. Чарикова. Оценка качества аналитических работ выполнена в [23]. Расчеты выполнены Н.П. Ореховым

другими породами кремнекислотность гнейсов и мигматитов, судя по присутствию в выборке и высококремнистых ультраметаморфитов, обусловлена, скорее всего, с одной стороны, широкими вариациями содержания кремнезема в исходных породах, а, с другой — включением в выборку случайных величин проб гнейсов и мигматитов, образованных за счет низкокремнистых сланцев. Свойственные магматическим породам умеренная кремнекислотность и сравнительно с другими породами высокое значение индекса петрохимической лейкократовости есть следствие поглощения палингенным расплавом не только кремнистых пород, но и известняков кедровской толщи и возрастания его известковистости (рис. 3). Все это служит основанием полагать ультраметаморфический и магматический субстрат Кедровского купола как отражающий в общих чертах химический состав карбонатно-терригенной вмещающей толщи.

Содержание металлов триады, показатели дисперсии их распределения, золото-серебряное отношение в породах всех минеральных зон Кедровского купола вполне сопоставимы, что подчеркивает отсутствие признаков миграции их в ореоле в целом и из высокотемпературных зон в низкотемпературные. В равной степени следует констатировать близость значений содержаний и параметров распределения золота и ртути в ультраметаморфических и магматических породах Кедровского купола и ар-

| 2                                          | Параметры распре-              | Минеральные подзоны слабого (ВНЕС), умеренного (ВНЕУ), интенсивного (ВНЕИ) изменения |                     |                 |  |  |  |  |  |
|--------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------|---------------------|-----------------|--|--|--|--|--|
| Элементы                                   | деления                        | внешней зоны ок                                                                      | олов (число проо)   |                 |  |  |  |  |  |
|                                            |                                | BHEC                                                                                 | ВНЕМ                |                 |  |  |  |  |  |
|                                            |                                |                                                                                      |                     |                 |  |  |  |  |  |
| Au                                         | x2 (x )                        | 0,6(0,7) {28}                                                                        | 0,6(0,7) {10}       | U,6(U,/) {1/}   |  |  |  |  |  |
|                                            | <i>t(s)</i>                    | 1,6(0,4)                                                                             | 1,4(0,2)            | 1,4(0,2)        |  |  |  |  |  |
|                                            | $x_{2}(x)$                     | 47,9(70,3) {28}                                                                      | 58,9(7,2) {10}      | 47,3(54,8) {1/} |  |  |  |  |  |
| Aq                                         | <i>t(s)</i>                    | 2,4(71,6)                                                                            | 2,4(50,2)           | 1,8(2/,3)       |  |  |  |  |  |
|                                            | r(sr)                          | 0,18(0,27)                                                                           | -0,08(0,35)         | 0,28(0,28)      |  |  |  |  |  |
|                                            | Au/Ag                          | 0,01                                                                                 | 0,01                | 0,01            |  |  |  |  |  |
|                                            | $\overline{xr(x)}$             | 20,6(24,1) {28}                                                                      | 21,8(28,3) {10}     | 16,2(30,1) {17} |  |  |  |  |  |
| Hg                                         | <i>t(s)</i>                    | 1,7(16,6)                                                                            | 2,2(20,9)           | 2,5(55,1)       |  |  |  |  |  |
|                                            | r(sr)                          | -0,15(0,27)                                                                          | <b>-0,58</b> (0,24) | -0,20(0,29)     |  |  |  |  |  |
| Альмандин-диопсид-двуполевошпатовые гнейсы |                                |                                                                                      |                     |                 |  |  |  |  |  |
| Διι                                        | $\overline{xr}(\overline{x})$  | 0,7(1,1) {29}                                                                        | 0,6(0,7) {48}       | 0,7(0,7) {29}   |  |  |  |  |  |
| Au                                         | <i>t</i> ( <i>s</i> )          | 2,1(1,8)                                                                             | 1,5(0,3)            | 1,5(0,3)        |  |  |  |  |  |
|                                            | $\overline{xr}(\overline{x})$  | 35,7(43,9) {29}                                                                      | 50,0(55,9) {48}     | 60,3(85,3) {29} |  |  |  |  |  |
| ٨٩                                         | <i>t</i> ( <i>s</i> )          | 1,8(36,8)                                                                            | 1,7(25,3)           | 2,2(95,1)       |  |  |  |  |  |
| Ay                                         | r(sr)                          | <b>0,73</b> (0,12)                                                                   | 0,02(0,20)          | 0,38(0,22)      |  |  |  |  |  |
|                                            | Au/Ag                          | 0,02                                                                                 | 0,01                | 0,01            |  |  |  |  |  |
|                                            | $\overline{xr}(\overline{x})$  | 17,1(22,0) {29}                                                                      | 15,6(18,2) {48}     | 19,3(34,4) {29} |  |  |  |  |  |
| Hg                                         | <i>t</i> ( <i>s</i> )          | 2,0(17,0)                                                                            | 1,7(11,5)           | 2,4(56,5)       |  |  |  |  |  |
|                                            | r(sr)                          | -0,07(0,19)                                                                          | -0,36(0,13)         | -0,10(0,18)     |  |  |  |  |  |
| Альмандин-двуслюдяные гнейсы               |                                |                                                                                      |                     |                 |  |  |  |  |  |
|                                            | $\overline{xr}(\overline{x})$  | 0,5(0,6) {30}                                                                        | 1,2(1,4) {17}       | 1,9(2,5) {15}   |  |  |  |  |  |
| Au                                         | <i>t</i> ( <i>s</i> )          | 1,3(0,2)                                                                             | 1,7(0,7)            | 2,4(1,7)        |  |  |  |  |  |
|                                            | $\overline{xr}(\overline{x})$  | 36,2(43,1) {30}                                                                      | 33,3(42,4) {17}     | 42,5(52,4) {15} |  |  |  |  |  |
|                                            | t(s)                           | 2,2(19,3)                                                                            | 2,3(25,9)           | 2,0(32,5)       |  |  |  |  |  |
| Ag                                         | r(sr)                          | 0,12(0,33)                                                                           | <b>0,61</b> (0,19)  | -0,32(0,26)     |  |  |  |  |  |
|                                            | Au/Ag                          | 0,01                                                                                 | 0,036               | 0,04            |  |  |  |  |  |
|                                            | $\overline{xr}(\overline{x})$  | 19,4(21,4) {30}                                                                      | 21,2(23,4) {17}     | 17,0(19,7) {15} |  |  |  |  |  |
| Hq                                         | t(s)                           | 1,6(9,5)                                                                             | 1,6(10,0)           | 1,7(11,8)       |  |  |  |  |  |
| 5                                          | r(sr)                          | -0,46(0,26)                                                                          | -0,23(0,29)         | 0,19(0,28)      |  |  |  |  |  |
|                                            |                                |                                                                                      |                     |                 |  |  |  |  |  |
|                                            | $\overline{xr}(\overline{x})$  | 0,9(1,2) {25}                                                                        | 0,9(1,4) {23}       | 0,9(1,0) {6}    |  |  |  |  |  |
| Au                                         | <i>t(s)</i>                    | 2.1(1.7)                                                                             | 2,3(1,9)            | 1.8(0.6)        |  |  |  |  |  |
|                                            | $\overline{xz}(\overline{x})$  | 42.5(53.4) {25}                                                                      | 30.9(36.1) {23}     | 44.4(47.6) {6}  |  |  |  |  |  |
|                                            | <i>t(s)</i>                    | 2.2(32.1)                                                                            | 1.9(20.2)           | 1.5(20.8)       |  |  |  |  |  |
| Ag                                         | r(sr)                          | 0.75(0.17)                                                                           | 0.09(0.37)          | 0.80(0.16)      |  |  |  |  |  |
|                                            | Au/Ag                          | 0.02                                                                                 | 0.03                | 0.02            |  |  |  |  |  |
|                                            | $\overline{x_2}(\overline{x})$ | 23.8(29.6) {25}                                                                      | 21.6(32 4) {23}     | 32.5(39.6) {6}  |  |  |  |  |  |
| На                                         | <i>t(s)</i>                    | 2 0(19 9)                                                                            | 2 3(35 3)           | 2 1(25 5)       |  |  |  |  |  |
|                                            | r(sr)                          | -0.36(0.33)                                                                          | -0.54(0.27)         | -0.06(0.45)     |  |  |  |  |  |

**Таблица 3.** Оценка параметров распределения рудогенных элементов и корреляционных связей золота с рудогенными элементами в ультраметаморфических породах Муйского выступа архейского фундамента Сибирского кратона (в объеме Ирокиндинского рудного поля)

хейского субстрата Муйского выступа Сибирского кратона (табл. 3), близость содержаний золота в породах Кедровского купола и в аналогичных образованиях Центрального антиклинория Енисейского [24, 25] и Ленского [26] районов. Более высокое со-

## СПИСОК ЛИТЕРАТУРЫ

- Петров Б.В., Кренделев Ф.П., Бобров В.А. и др. Поведение радиоактивных элементов и золота при метаморфизме осадочных пород Патомского нагорья // Геохимия. – 1972. – № 8. – С. 947–956.
- Буряк В.А. О золотоносности осадочных толщ и поведении в них золота в процессе метаморфизма и гранитизации // Геология и геофизика. – 1978. – № 6. – С. 142–146.

держание серебра в породах архейского фундамента в Муйском выступе сравнительно с породами Кедровского купола связано, вероятно, с геохимическими особенностями исходного для архейских ультраметаморфических пород субстрата.

- Давыдченко А.Г. Миграция вещества в зонах метаморфизма. М.: Недра, 1983. – 123 с.
- Злобин В.А., Цимбалист В.Г. Эффект прокаливания и проблема формирования золотого оруденения в черносланцевых толщах // Генетические модели эндогенных рудных формаций. – Т. 2. – Новосибирск: Наука, 1983. – С. 162–169.
- 5. Забияка И.Д., Забияка А.И., Верниковский В.А. и др. Роль регионального метаморфизма в концентрации золота в докем-

брийских породах Таймыра // Доклады АН СССР. – 1983. – Т. 269. – № 6. – С. 1430–1433.

- Комаров Ю.В., Копылов Э.Н., Белоголовкин А.А. и др. Байкальский метасвод (структура, магматизм, металлогения). – Новосибирск: Наука, 1984. – 120 с.
- Белевцев Я.Н. Развитие теории метаморфогенного рудообразования // Региональный метаморфизм и метаморфогенное рудообразование / Под ред. Я.Н. Белевцева. – Киев: Наукова думка, 1984. – С. 5–33.
- Валасис А.Г., Коваль В.Б. Термальные купола, зональный метаморфизм и рудогенез // Доклады АН УССР. Серия Б. 1987. – № 7. – С. 11–15.
- Кориковский С.П. Метаморфические рудообразующие системы // Эндогенные источники рудного вещества. – М.: Наука, 1987. – С. 80–89.
- Росляков Н.А., Калинин Ю.А. Геохимия и золотоносность зеленосланцевых толщ МНР // Актуальные вопросы геологии Сибири: Тез. докл. научной конф., посвященной 100-летию открытия Томского гос. ун-та, г. Томск, 13–15 декабря 1988 года. – Т. 1. – Томск: Изд-во Томск. гос. ун-та, 1988. – С. 224–226.
- Ваулин О.В., Кирсанов А.В. Влияние регионального метаморфизма на миграцию рудогенных элементов в углеродистых отложениях Туркестанского хребта // Зап. Узбекистан. отд. ВМО. – 1990. – № 43. – С. 105–110.
- Ажгирей Д.Г., Светлов С.А., Гурейкин Н.Я. и др. Связь золотого оруденения с плутоническим метаморфизмом в миогеосинклинальной области южного Тянь-Шаня // Руды и металлы. – 2000. – № 4. – С. 47–52.
- Парада С.Г. Условия формирования и золотоносность черносланцевых комплексов Амуро-Охотской складчатой области: Автореф. дис. ... д.г.-м.н. – Ростов на Дону: Ростовский гос. ун-т, 2004. – 48 с.
- 14. Ли Л.В. О связи формирования золоторудных месторождений с процессами прогрессивного регионального метаморфизма в Енисейском кряже // Рудоносность и металлогения структур Енисейского кряжа. – Красноярск: Красноярское книжное изд-во, 1974. – С. 102–113.
- Хорева Б.Я. Крупномасштабное картирование метаморфогенных термальных антиклиналей (при поисках золоторудных месторождений) // Геология и геофизика. – 1987. – № 11. – С. 67–73.

- 16. Блюман Б.А. Золоторудная «черносланцевая» формация: модель взаимоотношений регионального метаморфизма, гранито- и рудообразования // Рудообразование и генетические модели эндогенных рудных формаций. – Новосибирск: ИГиГ СО АН СССР, 1988. – С. 135–141.
- Макрыгина В.А., Развозжаева Э.А., Мартихаева Д.Х. Органическое вещество и микроэлементы в процессе метаморфизма метапелитов (Хамар-Дабан, юго-западное Прибайкалье) // Геохимия. 1991. № 3. С. 358–369.
- Долженко В.Н. Золотоносные толши докембрия и палеозоя Кыргызстана // Геохимия. – 1993. – № 11. – С. 1620–1628.
- Миронов А.Г., Бахтина О.Т., Жмодик С.М. и др. Новый тип золотого оруденения в стратиформных пирротиновых рудах Восточного Саяна // Доклады РАН. – 1999. – Т. 365. – № 6. – С. 798–801.
- Озерова Н.А. Ртуть и эндогенное рудообразование. М.: Наука, 1986. – 232 с.
- Кучеренко И.В. Геохимические черты околожильного метасоматизма в кварцевых диоритах и гранодиоритах очагово-купольной постройки Кедровского золоторудного месторождения (Северное Забайкалье). Ч. 1. Условия залегания и идентификация магматических пород // Известия Томского политехнического университета. – 2006. – Т. 309. – № 2. – С. 41–45.
- 22. Андреева Е.Д., Баскина В.А., Богатиков О.А. и др. Магматические горные породы. – Ч. 2. – М.: Наука, 1985. – 767 с.
- Кучеренко И.В., Орехов Н.П. Золото, серебро, ртуть в золотоносных апогнейсовых и апосланцевых околорудных метасоматических ореолах березитовой формации // Известия Томского политехнического университета. – 2000. – Т. 303. – № 1. – С. 161–169.
- 24. Ножкин А.Д., Кренделев Ф.П., Миронов А.Г. Золото в процессах магматизма и метаморфизма на примере северо-востока Енисейского кряжа // Золото и редкие элементы в геохимических процессах. – Новосибирск: Наука, 1976. – С. 54–70.
- Сазонов А.М. Минералого-геохимические признаки метаморфогенного генезиса золотого оруденения Средней Сибири // Критерии отличия метаморфогенных и магматогенных гидротермальных месторождений. – Новосибирск: Наука, 1985. – С. 47–53.
- Буряк В.А. Метаморфизм и рудообразование. М.: Недра, 1982. – 256 с.

Поступила 12.12.2006 г.