СПИСОК ЛИТЕРАТУРЫ

- Witt W., Loffler M. The electromagnetic Gun-CCloser to Weapon System Status // Military Technology. – 1998. – № 5. – Р. 80–86.
- Носов Г.В. Генерирование мощных импульсов тока электромашинными источниками с изменяющейся индуктивностью // Известия Томского политехнического университета. – 2005. – Т. 308. – № 7. – С. 68–70.
- Татур Т.А. Основы теории электромагнитного поля. М.: Высшая школа, 1989. 271 с.
- Теория электрических аппаратов / Под ред. проф. Г.Н. Александрова. – М.: Высшая школа, 1985. – 312 с.
- 5. Калантаров П.Л., Цейтлин Л.А. Расчет индуктивностей: Справочная книга. Л.: Энергоатомиздат, 1986. 488 с.

- Электротехнический справочник: в 3 т. Т. 1. Общие вопросы.
 Электротехнические материалы / Под общ. ред. проф. МЭИ В.Г. Герасимова и др. – М.: Энергоатомиздат, 1985. – 488 с.
- Железный В.Б., Лебедев А.Д., Плеханов А.В. Воздействие на динамику ускорения якоря в РЭУ // II Всес. семинар по динамике сильноточного дугового разряда в магнитном поле: Материалы. – Новосибирск, 4–6 декабря 1991 г. – Новосибирск: Изд-во Института теплофизики СО РАН, 1992. – С. 16–32.
- Галанин М.П., Лебедев А.Д., Лотоцкий А.П., Миляев К.К. Тепловые и электромагнитные процессы на контактах электродинамического ускорителя // Препринт Института прикладной математики им. М.В. Келдыша РАН. 2000. № 42. 32 с.

Поступила 04.12.2006 г.

УДК 621.391

РЕГУЛЯРИЗИРУЮЩИЙ АЛГОРИТМ ИДЕНТИФИКАЦИИ ПАРАМЕТРОВ СХЕМЫ ЗАМЕЩЕНИЯ ЭЛЕКТРИЧЕСКОГО РАЗРЯДА. Ч. II.

Ю.Е. Воскобойников*, Ю.Н. Исаев, В.А. Литасов*, В.А. Колчанова, Е.О. Кулешова

Томский политехнический университет

*Новосибирский государственный архитектурно-строительный университет

E-mail: voscob@mail.ru, isaev_yusup@mail.ru

Предлагается новый регуляризирующий алгоритм вычисления параметров функции переходной проводимости для идентификации схемы замещения разрядного промежутка с использованием устойчивых алгоритмов дифференцирования и решения интегральных уравнений, более эффективно учитывающих погрешности исходных данных. Использование метода наименьших полных квадратов при построении оценок для параметров функции переходной проводимости является дополнительным способом «сглаживания» ошибки построения регуляризированного решения.

1. Регуляризирующий алгоритм вычисления функции переходной проводимости

В интегральном уравнении (1) первой части данной работы [1] подынтегральную функцию $\frac{dU(\tau)}{d\tau}$ заменим ее оценкой $S'_{\lambda}(t)$ – производной сглаживающего кубического сплайна. Необходимо найти решение этого уравнения – переходную проводимость g(t). Известно, что решение такого уравнения является некорректно поставленной задачей и для вычисления устойчивого решения необходимо использовать специальные методы – методы регуляризации [2, 3].

В работе [4] предложен регуляризирующий алгоритм идентификации импульсной функции стационарной динамической системы (ядра интегрального уравнения) когда входной и выходной сигналы идентифицируемой системы известны со случайными ошибками. Использование дискретного преобразования Фурье (ДПФ) и алгоритма быстрого преобразования Фурье (БПФ) обуславливает высокую вычислительную эффективность регуляризирующего алгоритма. Не повторяя построение этого алгоритма, приведем основные расчетные соотношения, адаптируя их к задаче восстановления функции g(t) и к используемым в данной статье обозначениям.

Алгоритм вычисления *g*(*t*) можно представить следующими шагами [4]:

Этап 1. Формирование периодических (с периодом *N*) последовательностей:

$$i_{p}(j) = \begin{cases} \tilde{I}(j \cdot \Delta), & j = 0, ..., N_{I} - 1; \\ 0, & j = N_{I}, N_{I} + 1, ..., N - 1, \end{cases}$$
$$d_{p}(j) = \begin{cases} S_{\lambda}'(j \cdot \Delta) \cdot \Delta, & j = 0, ..., N_{U} - 1; \\ 0, & j = N_{U}, N_{U} + 1, ..., N - 1. \end{cases}$$

Этап 2. Вычисление элементов последовательности

$$D_p(l) = \sum_{j=0}^{N-1} d_p(j) \exp\left(\frac{2\pi i}{N} lj\right), \quad l = 0, ..., N-1, \quad (1)$$

где $i=\sqrt{-1}$.

Этап 3. Вычисление коэффициентов ДПФ последовательности $\{i_{\nu}(j)\}$ (прямое ДПФ):

$$I_{p}(l) = \frac{1}{N} \sum_{j=0}^{N-1} i_{p}(j) \exp\left(-\frac{2\pi i}{N} l j\right), \quad l = 0, ..., N-1.$$
(2)

Этап 4. Определение коэффициентов ДП Φ (обозначаемые как { $G_{pa}(l)$ }) регуляризированного решения (расчетные соотношения приводятся ниже).

Этап 5. Вычисление периодического решения (обратное ДПФ от последовательности $\{G_{pq}(l)\}$):

$$g_{p\alpha}(j) = \sum_{l=0}^{N-1} G_{p\alpha}(l) \exp(\frac{2\pi i}{N} l j), \quad j = 0, ..., N-1.$$
(3)

Этап 6. Формирование N_g -мерного вектор g_a по правилу:

$$g_{\alpha_i} = g_{p\alpha}(j-1), \quad j = 1, ..., N_g,$$

где $N_{e} = N_{I} - N_{U} + 1$. Если выполнено условие

$$V \ge N_U + N_I - 1,$$

то проекции g_{α_j} вектора g_{α} принимается в качестве значений регулирования решения $g_{\alpha}(t)$ в узлах $t_j=j\cdot\Delta$, $j=0,1,...,N_g-1$.

Заметим, что при выполнении вычислений (1–3) используется алгоритм БПФ, что на 2–3 порядка уменьшает число операций по сравнению с «прямым» вычислением соответствующих сумм. Это позволяет строить регуляризированные решения «длиной» несколько сотен и даже тысяч точек.

Рассмотрим вычисление коэффициентов ДПФ $\{G_{p\alpha}(l)\}$ на шаге 4. Предположим, что погрешности η_j регистрации тока имеют нулевое среднее и дисперсию σ_{η}^2 , а ошибки ξ_i вычисления производной также имеют нулевое среднее и дисперсию σ_{ξ}^2 . Тогда коэффициенты $G_{p\alpha}(l)$ находятся из нелинейного уравнения

$$G_{p\alpha}(l) = \frac{D_{p}^{C}(l)}{\left|D_{p}(l)\right|^{2} + \alpha(\theta \left|G_{p\alpha}(l)\right|^{2} + 1) \cdot Q_{p}(l)} \cdot I_{p}(l), \quad (4)$$

$$l = 0, 1, \dots, N-1,$$

где α – параметр регуляризации, $\theta = \sigma_{\xi}^2 / \sigma_{\eta}^2$ – отношение дисперсии, $D_p^c(l)$ – величина, комплексносопряженная $D_p(l)$. Элементы последовательности $Q_p(l)$ формируется по правилу:

$$Q_p(l) = \begin{cases} Q(l \cdot \Delta_{\omega}), & l = 0, \dots, N/2; \\ Q((N-l) \cdot \Delta_{\omega}), & l = N/2 + 1, \dots N - 1, \end{cases}$$

где $\Delta_{\omega}=2\pi/(N\Delta)$ — шаг дискретизации в частотной области. Функцию $Q(\omega)$ можно трактовать как частотную характеристику стабилизирующего функционала [2, 3]: она должна быть монотонно возрастающей функцией и $Q(\omega) \rightarrow \infty$ при $\omega \rightarrow \infty$. Если порядок регуляризации *r*, то при достаточно больших частотах ω справедлива асимптотика $Q(\omega) \approx \omega^{2r}$.

Для вычисления решения $G^*_{\rho\alpha}(l)$ нелинейного уравнения при фиксированном параметре α обратимся к схеме простой итерации

$$G_{p\alpha}^{(n+1)}(l) = \frac{D_{p}^{C}(l)}{\left|D_{p}(l)\right|^{2} + \alpha(1+\theta \left|G_{p\alpha}^{(n)}(l)\right|^{2}) \cdot Q_{p}(l)} \cdot I_{p}(l),$$

$$n = 0, 1, \dots$$
(5)

«Точка старта» $G_{pa}^{(0)}(l)$ задается как $G_{pa}^{(0)}(l)=I_p(l)$, l=0,1,...N-1. Условие прекращение итераций имеет вид

$$\left[\frac{\sum_{l=0}^{N-1} \left|G_{\rho\alpha}^{(n+1)}(l) - G_{\rho\alpha}^{(n)}(l)\right|^2}{\sum_{l=0}^{N-1} \left|G_{\rho\alpha}^{(n)}(l)\right|^2}\right]^{\frac{1}{2}} \le 0.01.$$
(6)

Вычислительный эксперимент показал, что для выполнения условия (6) требуется не более 5-8 итераций.

Выбор параметра регуляризации, входящего в (4), (5), — основная проблема построения регуляризирующих алгоритмов на практике. При заниженных значениях α в решении g_{α} будут присутствовать шумовые составляющие, обусловленные погрешностями η_j , ξ_j . При завышенных значениях α из решения g_{α} будут удалены информативные составляющие g(t) (решение будет «переглаженным»). Поэтому в качестве параметра регуляризации α желательно принять значение α_{opt} , доставляющее минимум среднеквадратичной ошибки, определяемой функционалом:

$$\operatorname{CKO}(\alpha) = M[\sum_{j=1}^{N_g} (g_{\alpha_j} - \overline{g}_j^+)^2]$$

где \overline{g}_{j}^{+} — проекции вектора \overline{g}^{+} , являющегося нормальным псевдорешением при точных исходных данных u(t), i(t), $M[\cdot]$ — оператор математического ожидания по ансамблю случайных векторов g_{a} . Вычисление α_{opt} требует задание определенных характеристик функции g(t), которые на практике не известны. Поэтому ограничимся вычислением оценки α_{w} для α_{opt} .

Введем функции [4]:

$$K_{W}(\gamma) = \frac{K_{W}(\gamma)}{(1+\theta |G_{p\alpha}^{*}(l)|^{2}) \cdot Q_{p}(l)} \cdot |I_{p}(l)|^{2}} + \frac{(1+\theta |G_{p\alpha}^{*}(l)|^{2}) \cdot Q_{p}(l)}{(C_{\sigma}\sigma_{\xi}^{2} |G_{p\alpha}^{*}(l)|^{2} + \sigma_{\eta}^{2})}; (7)$$

$$R_{W}'(\gamma) = \frac{d}{d\gamma} R_{W}(\gamma) = -N \times \frac{|D_{\sigma}(l)|^{2}}{(L+\theta |G_{\sigma}^{*}(l)|^{2}) - Q_{\sigma}(l)}; (7)$$

$$\times \sum_{l=0}^{N-1} \frac{\frac{|D_{p}(l)| \cdot (1+\theta |G_{p\alpha}(l)|) \cdot Q_{p}(l)}{\left[\gamma |D_{p}(l)|^{2} + (1+\theta |G_{p\alpha}^{*}(l)|^{2}) \cdot Q_{p}(l)\right]^{2}} \cdot |I_{p}(l)|^{2}}{(C_{\sigma}\sigma_{\xi}^{2} |G_{p\alpha}^{*}(l)|^{2} + \sigma_{\eta}^{2})}, (8)$$

где $C_{\sigma} = \frac{N_U}{N_I} \cdot N^2 \cdot \Delta^2$, $\gamma = 1/\alpha$. В качестве α_W принимается значение $1/\gamma_W$, где $\gamma_W = \gamma^{(n+1)}$, а значение $\gamma^{(n+1)}$ удовлетворяет условию:

$$\vartheta_{m,\beta/2} \le R_W(\gamma^{(n+1)}) \le \vartheta_{m,1-\beta/2},\tag{9}$$

где $\mathcal{G}_{m,\beta/2}$, $\mathcal{G}_{m,1-\beta/2}$ — квантили χ^2 -распределения с $m=N_I-1$ степенями свободы уровней значимости $\beta/2$ и $1-\beta/2$ соответственно (как правило, $\beta=0,05$). Последовательность { $\gamma^{n} > 0$ } генерируется итерационной процедурой:

$$\gamma^{(n+1)} = \gamma^{(n)} - \frac{R_{W}(\gamma^{(n)}) - m}{R_{W}(\gamma^{(n)})}, \quad n = 1, 2, ...; \ \gamma^{(0)} \ll 1.$$

Можно показать, что, если квадрат нормы $\|\tilde{I}\|^2$ вектора \tilde{I} удовлетворяет условию $\frac{\|\tilde{I}\|^2}{\sigma_{\eta}^2} > \vartheta_{m,\beta/2}$ и $\gamma^{(0)} \ll 1$ (обычно $\gamma \approx 10^{-10}$), то найдется значение $\gamma^{(n+1)}$, удовлетворяющее (9). Вычисление такого значения

не требует более 4–5 итераций. Проведенные исследования [4] показали высокую эффективность оценки α_и. Ошибка регуляри-

кую эффективность оценки α_W . Ошибка регуляризированного решения, построенного при $\alpha = \alpha_W$ не превышает более чем на 15...20 % ошибку оптимального решения, построенного при $\alpha = \alpha_{opt}$.

Заметим, что в функции $R_w(\gamma)$, $R'_w(\gamma)$ входят дисперсии σ_{ξ}^2 , σ_{η}^2 . Обычно на практике значения дисперсий неизвестны (особенно это относиться к дисперсии σ_{ξ}^2 ошибки вычисления производной напряжения по сглаживающему кубическому сплайну).

Для преодоления этой трудности предлагаются следующие оценки для дисперсии:

•
$$\sigma_{\eta}^{2}$$
: $\widehat{D}_{\eta} = \frac{N^{2}}{2N_{I}L_{\eta}}\sum_{l=-L_{\eta}}^{L_{\eta}}\left|I_{p}(N/2+l)\right|^{2};$ (10)

•
$$\sigma_{\xi}^{2}$$
: $\widehat{D}_{\xi} = \frac{1/\Delta^{2}}{2N_{U}L_{\xi}}\sum_{l=-L_{\xi}}^{L_{\xi}} |D_{p}(N/2+l)|^{2}$. (11)

Эти оценки основаны на предположении, что в окрестности точки l=N/2 (точка, по отношению к которой модули коэффициентов ДПФ симметричны) коэффициенты ДПФ обусловлены только погрешностями задания исходных реализаций. Объемы выборок, по которым вычисляются точечные оценки для дисперсий, равны $2L_{\eta}+1$, $2L_{\xi}+1$ соответственно. Для задания L_{η} , L_{ξ} можно рекомендовать соотношение: $L_{\eta}=L_{\xi}=(0,075...0,1)N$. Так, приняв $L_{\eta}=L_{\xi}=0,1N$, получаем для N=256 объем выборки 51 (что позволяет надежно оценить дисперсии).

2. Параметризация функции проводимости и оценивания параметров

По виду построенного в предыдущем разделе регуляризированного решения $g_a(t)$ принимают решение о виде параметрической зависимости g(t, P) для аппроксимации $g_a(t)$ и это однозначно определяет структуру эквивалентной электрической схемы замещения электрического разряда. Аргумент P означает вектор, состоящий из параметров параметрической зависимости.

Достаточно универсальной аппроксимацией переходной проводимости является функция вида

$$g(t,P) = A_1 e^{\mu_1 t} + A_2 e^{\mu_2 t}, \qquad (12)$$

где вектор *Р* включает четыре параметра:

$$P = \begin{vmatrix} p_1 \\ p_2 \\ p_3 \\ p_4 \end{vmatrix} = \begin{vmatrix} A_1 \\ \mu_2 \\ A_2 \\ \mu_2 \end{vmatrix}$$

в том числе корни μ_1 , μ_2 характеристического уравнения цепи. Функция проводимости (12) соответствует электрической цепи второго порядка, схема которой приведена в [5].

Для оценивания параметров p_q , q=1,2,...,Qфункции g(t,P) обратимся к методу наименьших квадратов, т. е. оценки \hat{p}_q находятся из условия минимума функционала:

$$J(P) = \sum_{j=1}^{N_g} (g_{\alpha}(t_j) - g(t_j, P))^2$$

и являются решением системы, состоящей из Q (в общем случае нелинейных) уравнений:

$$\begin{cases} \frac{\partial J(P)}{\partial p_1} = 0; \\ \vdots \\ \frac{\partial J(P)}{\partial p_0} = 0. \end{cases}$$
(13)

Параметры p_q , q=1,2,...,Q однозначно связаны (т. е. определяются) параметрами $\theta_1,...,\theta_s$ электрической схемы замещения (величинами сопротивления, емкости, индуктивности) и эта связь выражается алгебраическими соотношениями вида:

$$\begin{cases} p_1 = \varphi_1(\theta_1, \theta_2, ..., \theta_S); \\ p_2 = \varphi_2(\theta_1, \theta_2, ..., \theta_S); \\ \vdots \\ p_Q = \varphi_Q(\theta_1, \theta_2, ..., \theta_S). \end{cases}$$
(14)

Построение этих алгебраических соотношений осуществляется методами анализа переходных процессов в цепях постоянного тока, подробно изучаемых в курсе теоретических основ электротехники [6] и поэтому здесь эти вопросы не рассматриваются.

После вычисления оценок \hat{p}_q , q=1,2,...,Q решаем нелинейную систему уравнений (14) (возможно с использованием метода наименьших полных квадратов) и находим оценки $\hat{\theta}_s$, s=1,2,...,S. На этом идентификация параметров электрической схемы замещения газового разряда завершается.

3. Результаты вычислительного эксперимента

Для подтверждения работоспособности предложенного алгоритма идентификации и определения его точностных возможностей был проведен обширный вычислительный эксперимент, который заключается в следующем.

В качестве «точной» функции переходной проводимости g(t) бралась функция (12) с комплексно

сопряженными корнями характеристического уравнения: $\mu_1 = \mu_2^* = -416,666 - i \cdot 571,304$. Тогда функция проводимости g(t) задавалась выражением:

$$g(t) = 0,71 \cdot e^{-416,666 \cdot t} \cdot \cos(571,304 \cdot t + 1,059)$$

или в общем виде формулой

$$g(t) = A \cdot e^{\mu \cdot t} \cdot \cos(\omega \cdot t + \varphi)$$

Для такой функции проводимости задача идентификации заключается в оценивании параметров A, μ, ω, φ .

Интервал задания функции g(t) был равен [0, 0.015 с]. Форма задаваемого напряжения приведена на рисунке а [1] и интервал задания [0, 0.055 c]. Значения тока I(t) определялись интегралом (1) [1] и интервал задания функции I(t) равен [0, 0.070 c]. Шаг дискретизации Δ задавался $\Delta = 2,5 \cdot 10^{-4} c$, и это определило следующие длины дискретных последовательностей: $N_U = 220$, $N_z = 60$, $N_I = 280$.

Значения $U(t_i)$ искажались нормально распределенными случайными числами ζ_i с нулевым средним и дисперсией σ_{ζ}^2 , определяемой по относительному уровню шума δ_{i} :

$$\sigma_{\zeta}^{2} = \left(\frac{\delta_{U} \cdot \max\left|U(t_{j})\right|}{2}\right)^{2}$$

Аналогично, значения $I(t_j)$ искажались нормально распределенными случайными числами η_j с нулевым средним и дисперсией σ_{η}^2 , определяемой по относительному уровню шума δ_l .

Затем, по зашумленным значениям $U(t_j)$, $I(t_j)$ строилось регуляризированное решение $g_{\alpha}(t_j)$ в соответствии с алгоритмами пункта 3, 4. Параметр сглаживания λ сглаживающего кубического сплайна определялся из решения нелинейного уравнения (4) [1] при Δ_{np} =5·10⁻³ с. Параметр регуляризации вычислялся из условия (9). Предполагалось, что дисперсии σ_{ξ}^2 , σ_{η}^2 неизвестны, и вместо σ_{ξ}^2 , σ_{η}^2 в (7), (8) использовались их оценки (10), (11).

По построенному решению $g_a(t_j)$ из системы уравнений (13) вычислялись оценки \hat{A} , $\hat{\mu}$, $\hat{\omega}$, $\hat{\varphi}$. Точность этих оценок определялась вектором относительных ошибок:

$$\delta_{p} = \begin{vmatrix} \widehat{A} - A \middle| / \middle| A \middle| \\ |\widehat{\mu} - \mu \middle| / \middle| \mu \middle| \\ |\widehat{\omega} - \omega \middle| / \middle| \omega \middle| \\ |\widehat{\varphi} - \varphi \middle| / \middle| \varphi \middle| \end{vmatrix}$$

СПИСОК ЛИТЕРАТУРЫ

 Воскобойников Ю.Е., Исаев Ю.Н., Литасов В.А., Колчанова В.А., Кулешова Е.О. Регуляризирующий алгоритм идентификации параметров схемы замещения электрического разряда. Ч. I // Известия Томского политехнического университета. – 2007. – Т. 310. – № 1. – С. 79–82. Так как проекции вектора δ_p являются случайным, то по выборке случайных векторов $\delta_p^{(n)}$ объемом по 20 элементов вычислялся вектор средних относительных ошибок оценивания $\overline{\delta}_p$, проекции которого равнялись средним значениям соответствующих проекций векторов $\delta_p^{(n)}$. Вектор $\delta_p^{(n)}$ содержит относительные ошибки оценок $\widehat{A}^{(n)}$, $\widehat{\mu}^{(n)}$, $\widehat{\omega}^{(n)}$, $\widehat{\varphi}^{(n)}$, которые построены по исходным данным $\widehat{U}^{(n)}(t_j)$, $\widehat{I}^{(n)}(t_j)$, полученными искажениями «точных» значений $U(t_j)$, $I(t_j)$ *п*-ми реализациями погрешностей задания напряжения $\zeta_j^{(n)}$ и тока $\eta_j^{(n)}$.

В таблице приведены значения проекции вектора $\overline{\delta}_p$ для разных относительных уровней $\delta_l=0,01$; 0,10; $\delta_l=0,01$; 0,10.

Таблица. Относительные ошибки идентификации параметров функции переходной проводимости

		$\delta_{\scriptscriptstyle U}$	
		0,01	0,10
δ_{I}	0,01	0,035 0,031 0.005	0,119 0,096 0.019
		0,007	0,012
	0,10	0,107 0,088 0,023 0,011	0,136 0,112 0,045 0,023

Видно, что *относительные ошибки идентифика*ции слабо зависят от уровня погрешностей исходных данных. Это можно объяснить двумя обстоятельствами:

- Использование устойчивых алгоритмов дифференцирования и решения интегральных уравнений, эффективно учитывающих погрешности исходных данных решаемой задачи.
- Применение метода наименьших полных квадратов при построении оценок для параметров функции переходной проводимости, что является дополнительным способом «сглаживания» ошибки построения регуляризированного решения g_a(t_i).

Сравнивая отдельные проекции векторов δ_p , можно отметить, что параметры A, μ оцениваются с немного большими ошибками по сравнению с ω , φ . Это можно объяснить ошибкой регуляризированного решения $g(t_i)$ по амплитуде.

Анализ этой таблицы и результатов других вычислительных экспериментов позволяет сделать вывод: предложенный алгоритм идентификации с приемлемой точностью идентифицирует параметры переходной проводимости для построения эквивалентной схемы замещения электрического разряда.

- 2. Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. М.: Наука, 1986. 285 с.
- Воскобойников Ю.Е., Преображенский Н.Г., Седельников А.И. Математическая обработка эксперимента в молекулярной газодинамике. – Новосибирск: Наука, 1984. – 238 с.

- Воскобойников Ю.Е., Литасов В.А. Регуляризирующий алгоритм непараметрической идентификации при неточных исходных данных // Научный вестник НГТУ. – 2005. – № 2(20). – С. 33–45.
- Исаев Ю.Н., Колчанова В.А., Хохлова Т.Е. Определение параметров двухполюсника при воздействии импульсного напряжения // Электричество. – 2003. – № 11. – С. 64–67.
- Бессонов Л.А. Теоретические основы электротехники. М.: Гардарики, 1999. – 638 с.
 - Поступила 18.07.2006 г.

УДК 541.16:182

ФОРМИРОВАНИЕ НИТЕВИДНЫХ КРИСТАЛЛОВ В ПРОМЕЖУТОЧНЫХ ПРОДУКТАХ ГОРЕНИЯ В ВОЗДУХЕ НАНОПОРОШКА АЛЮМИНИЯ И ЕГО СМЕСЕЙ С НАНОПОРОШКАМИ МОЛИБДЕНА И ВОЛЬФРАМА

Л.О. Толбанова, А.П. Ильин

НИИ высоких напряжений Томского политехнического университета, г. Томск E-mail: nanolab@hvd.tpu.ru

Изучены характеристики и фазовый состав промежуточных продуктов синтеза сжиганием в воздухе смесей нанопорошков алюминия с молибденом и вольфрамом. Установлено, что в определенных условиях при горении стабилизируются двухуровневые нитевидные кристаллы, предложен механизм их формирования. Получены компактные образцы композиционных материалов на основе нитридсодержащих керамических порошков, упрочненные нитевидными кристаллами и тугоплавкими металлами.

Введение

Повышение прочностных характеристик керамических и композиционных материалов является актуальной проблемой [1]. Ее решение осуществляется по различным направлениям, одним из которых является введение в исходную шихту нитевидных кристаллов, повышающих стойкость к растрескиванию керамики. Наиболее значительные результаты достигнуты при использовании нитевидных кристаллов, относящихся к наноматериалам по одному из параметров — их толщина не должна превышать 100 нм [2]. Интерес представляют нитевидные кристаллы нитрида алюминия: кроме прочностных характеристик композиционных материалов они повышают теплопроводность и улучшают электроизоляционные свойства [3].

Одним из методов синтеза тугоплавких керамических материалов является синтез сжиганием [4, 5]. Он не требует существенных энергозатрат как известные промышленные методы. Синтез сжиганием не требует также сложной аппаратуры и ограничений по объему производимых керамических материалов. Процесс синтеза инициируется локальным нагревом шихты и затем протекает самопроизвольно в режиме теплового взрыва. Недавно установленное явление связывания азота воздуха при горении порошкообразных металлов [6] открывает широкие возможности синтеза керамических нитридсодержащих материалов для промышленного производства. При горении нанопорошка (НП) алюминия наблюдаются две стадии, различающиеся по температуре: низкотемпературная (1000...1200 °С) и высокотемпературная (2200...2400 °C), сопровождающаяся относительно небольшими колебаниями температуры (в пределах 200 °C). Согласно ранее предложенному объяснению [7] резкие снижения температуры связаны с образованием в газовой фазе нитрида алюминия с поглощением теплоты. По-видимому, уменьшение температуры связано со снижением скорости взаимодействия алюминия с кислородом и с повышением скорости взаимодействия алюминия с азотом и т. д. Образующиеся фазы нитридов алюминия представляют нитевидные кристаллы толщиной 1...2 мкм и длиной до 40 мкм. Применение НП позволяет получать керамические материалы с более высоким выходом нитридов и более высокой дисперсностью.

Целью данной работы являлось определение условий синтеза нитевидных кристаллов в составе промежуточных продуктов горения смесей нанопорошков молибдена и вольфрама с нанопорошком алюминия.

Методика получения нанопорошков

В качестве объекта исследования использовались НП Al, W и Mo, полученные с помощью электрического взрыва проводников в аргоне. НП были получены на опытно-промышленной установке УДП-4Г НИИ высоких напряжений Томского политехнического университета.

Взрываемая проволока с помощью механизма подачи — 3 непрерывно движется во взрывную камеру — 9. В это время происходит зарядка емкостного накопителя — 2 от источника питания — 1. При достижении проволочкой пробивного зазора происходит взрыв отрезка проволоки — 4. Образующийся аэрозоль с помощью вентилятора — 8 поступает в накопитель — 7, где НП отделяется от аргона. Рабочее напряжение, подаваемое на проводник, ре-