Химия

УДК 544.52

ФОТОЛИЗ АЗИДА СЕРЕБРА

Э.П. Суровой, С.М. Сирик, Л.Н. Бугерко

Кемеровский государственный университет E-mail: epsur@kemsu.ru

Предварительное облучение азида серебра светом (λ =365 нм, I>1·10⁵ квант·см⁻²·C⁻¹) при давлении ~10⁻⁵ Па наряду с увеличением скорости фотолиза и фототока приводит к появлению новой длинноволновой (до λ =1280 нм) области спектральной чувствительности. Определены константы скорости фотолиза азида серебра. В результате измерений контактной разности потенциалов, вольт-амперных характеристик, фото-ЭДС, фототока установлено, что при фотолизе азида серебра формируются микрогетерогенные системы AgN₃(A₁) – Ag (продукт фотолиза). Показано, что лимитирующей стадией фотолиза азида серебра является диффузия межузельных катионов серебра к нейтральному центру (T_rAg_m)⁰.

Выделяющиеся при разложении твердофазные продукты оказывают существенное влияние на фотохимические и фотоэлектрические свойства азидов тяжелых металлов [1-5]. Исследование автокаталитического и сенсибилизирующего влияния твердофазных продуктов на фотолиз азидов [6-8], а также параллельное изучение фотолиза и электрофизических свойств гетеросистем азид-металл (азид-полупроводник) [9-18] позволили существенно продвинуться в направлении понимания механизма фотолиза неорганических азидов при глубоких степенях превращения. В настоящем сообщении представлены результаты работы, направленной на исследование кинетических и спектральных закономерностей образования продуктов в процессе фотолиза азида серебра в зависимости от интенсивности падающего света, выяснение энергетической структуры контакта азид серебра – продукт фотолиза и причин, вызывающих наблюдаемые изменения фотохимической и фотоэлектрической чувствительности азида серебра продуктом разложения.

Объекты и методы исследования

Азид серебра марки A₁ (AgN₃(A₁)) синтезировали методом двухструйной кристаллизации (в 0,2 н водный раствор AgN₃ (квалификации х.ч.) по каплям приливали 0,2 н водный раствор дважды перекристаллизованного технического азида натрия). Скорость сливания 2 капли в мин., $\tau_{синтезa}$ =30 мин., T=293 K, pH 3. Азид серебра марки Б₁, Б₂, Б₃ (AgN₃(Б₁, Б₂, Б₃, Б_{1а}, Б_{2а}, Б₂₆)) синтезировали методом двухструйной кристаллизации сливая со скоростью

зованного технического азида калия в маточный 0,1 н (скорость сливания $7 \cdot 10^{-3}$ моль мин⁻¹ – \mathbf{b}_{1a}), 0,2 н (в присутствии 0,006 г. и 0,02 г. неонола – синтезы Б_{2а}, Б₂₆ соответственно) и 0,3 н раствор нитрата калия (квалификации х.ч.) т_{синтеза}=6,5 мин, *Т*=293 К, рН 6. Образцы для исследований готовили прессованием таблеток AgN₃(A₁) массой 125 мг при давлении 4·10³ кг·см⁻², либо путем тщательного диспергирования в воде навесок AgN₃(A₁) массой 125 мг, последующего равномерного нанесения (методом полива) в чашечки диаметром 1 см и сушили в эксикаторе темноте при 293 К [6, 9]. Измерения скорости фотолиза V_{ϕ} , фототока i_{ϕ} и фото-ЭДС U_{ϕ} образцов проводили при давлении ~1.10-5 Па. Источниками света служили ртутная (ДРТ-250) и ксеноновая (ДКсШ-1000) лампы. Для выделения требуемого участка спектра применяли монохроматор МСД-1 и набор светофильтров. Актинометрию источников света проводили с помощью радиационного термоэлемента РТ-0589. В качестве датчика при измерении V_o использовали лампу РМО-4С омегатронного масс-спектрометра ИПДО-1, настроенного на частоту регистрации азота [12]. Измерения i_{ϕ} и U_{ϕ} проводили на установке, включающей электрометрический вольтметр В7-30, либо электрометр TR-1501 [15]. Спектры диффузного отражения (ДО) до и после облучения образцов измеряли при давлении ~10-4 Па, используя устройство [16], на спектрофотометре СФ-4А с приставкой ПДО-1 при давлении 101,3 кПа на спектрофотометре Specord-M40 с приставкой на отражение 8°d [17]. Контактную разность потенциалов (КРП) между азидом серебра, сере-

7.10⁻⁴ моль.мин⁻¹ водные 0,2 н растворы нитрата се-

ребра (квалификации х.ч.) и дважды перекристалли-

бром и электродом сравнения из платины измеряли, используя модифицированный метод Кельвина [19]. Топографию твердофазных продуктов фотолиза азида свинца изучали методом угольных реплик на электронном микроскопе УЭМВ-1000.

Результаты и обсуждение

На рис. 1 приведены кинетические кривые V_{ϕ} AgN₃(A₁) при воздействии на образцы света из области собственного поглощения азида свинца (λ =365 нм) при 293 К в интервале интенсивностей падающего света *I*=3,06·10¹⁶...8,56·10¹³ см⁻²·c⁻¹. В полях интенсивного освещения (*I*>1·10¹⁵ квант см⁻²·c⁻¹) на кинетических кривых V_{ϕ} можно выделить несколько участков: начальный (I), стационарный (II), возрастания (III), насыщения – (IV). Снижение интенсивности падающего света приводит к уменьшению V_{ϕ} , а также к увеличению продолжительности участков кинетических кривых. Скорость фотолиза азида серебра, а также время реализации разных участков кинетических кривых V_{ϕ} в значительной степени зависят от способа синтеза препаратов (рис. 2).

На рис. 3 (кривые 1, 2) приведены спектральные распределения V_{ϕ} и i_{ϕ} , построенные по стационарным значениям V_{ϕ} и i_{ϕ} . Видно, что длинноволновый край V_{ϕ} и i_{ϕ} AgN₃(A₁) находится при $\lambda \approx 365$ нм. Различные виды предварительных обработок, которые приводят к частичному разложению азида серебра (прогрев при давлении ~10⁻⁵ Па в интервале температур 340...420 К, облучение светом, старение образцов, обработка в восстановительной среде), уменышают или полностью устраняют начальный максимум (участок 1) на кинетических кривых V_{ϕ} . Пов-

Рис. 1. Зависимость скорости фотолиза AgN₃(A₁) от интенсивности падающего света (I, квант-см⁻²·C⁻¹) λ=365 нм: 1) 8,56·10¹³, 2) 2,42·10¹⁴, 3) 8,4·10¹⁴, 4) 2,42·10¹⁵, 5) 3,17·10¹⁵, 6) 6,5·10¹⁵, 7) 3,06·10¹⁶

Рис. 2. Зависимость скорости фотолиза азида серебра от метода синтеза при λ=365 нм, I=3,17·10¹⁵ квант см⁻²·C⁻¹: 1) Б₁, 2) Б₂, 3) Б₃, 4) A₁, 5) Б_{1а}, 6) Б_{2б}, 7) Б_{2а}

Рис. 3. Спектральное распределение скорости фотолиза (0), фототока (O) до (\bullet) и после облучения AgN₃(A₁) (2) светом λ =365 нм при I=3,17·10¹⁵ квант-см⁻²·C⁻¹

торное (после прерывания света на I и II участках) освещение образцов не приводит к заметному изменению V_{ϕ} на II, III, IV участках кинетических кривых V_{ϕ} (рис. 4, кривые 2, 3) и кривых спектрального распределения V_{ϕ} и i_{ϕ} (рис. 3). Предварительное экспонирование образцов в течение 40 мин. приводит к монотонному увеличению V_{ϕ} до постоянных значений (рис. 4, кривая 4). При этом наряду с увеличением V_{ϕ} и i_{ϕ} в собственной области поглощения AgN₃(A₁) на кривых спектрального распределения V_{ϕ} и i_{ϕ} , появляется новая область фоточувствительности, длинноволновый порог которой простирается до 1280 нм (рис. 3, кривые 3, 4).

Рис. 4. Кинетические кривые скорости фотолиза AgN₃(A_i) при λ=365 нм и интенсивности падающего света I=3,17·10¹⁵ квант см⁻²·c⁻¹ до (1) и после прерывания освещения на I (2), II (3), IV (4) участках кинетических кривых V_Φ

Более продолжительное освещение образцов приводит к снижению V_{ϕ} . В результате электронномикроскопических и спектрофотометрических исследований было установлено, что наблюдаемое понижение фоточувствительности AgN₃(A₁) связано с затемнением поверхности образца твердофазным продуктом фотолиза и, как следствие, с уменьшением числа поглощенных AgN₃(A₁) квантов света.

После прекращения экспонирования на разных участках кинетических кривых скорости фотолиза наблюдается участок темнового постгазовыделения (рис. 1, 2, 4). Видно, что кривые темнового постгазовыделения состоят из двух участков «быстрого» и «медленного». С увеличением времени экспонирования и интенсивности падающего света продолжительность темнового постгазовыделения возрастает. Причем, по мере понижения температуры и интенсивности падающего света уменьшается временной интервал «медленной» составляющей темнового постгазовыделения. Установлено, что независимо от интенсивности падающего света и времени предварительного экспонирования кривые темнового постгазовыделения спрямляются в координатах $\ln C_{N2} = f(\tau)$. По тангенсу угла наклона зависимости $\ln C_{N2} = f(\tau)$ оценили значения констант скорости (k) после прерывания освещения на разных участках кинетических кривых V_{ϕ} (табл. 1).

Таблица 1. Константы скорости процесса, ответственного за постгазовыделение k, c⁻¹

Образец	Участки кинетической кривой V_{arphi}			
	I	Ш	IV	
$AgN_3(A_1)$	(4,32.0,16).10-2	(3,10.0,15).10-2	(2,40.0,12).10-3	

При исследовании топографии твердофазного продукта фотолиза азида серебра, установлено, что при облучении светом $\lambda = 365$ нм, интенсивности $I = 4 \cdot 10^{14} \dots 8 \cdot 10^{15}$ квант см⁻²·с⁻¹ и временах облучения образцов, соответствующих достижению участков I и II кинетической кривой V_{ϕ} формируются частицы преимущественно двух размеров $d \approx 35 \dots 40$ Å и $d \approx 100 \dots 120$ Å сферической формы. При экспонировании AgN₃(A₁) до участка III частицы твердофазного продукта достигают размера $\approx 0,1$ мкм и приобретают огранку. При временах облучения, соответствующих достижению участка IV, поверхность AgN₃(A₁) практически полностью покрывается твердофазным продуктом.

Длинноволновый край ДО азида серебра находится при λ =365 нм (рис. 5). Обработка образцов светом λ=365 нм в интервале интенсивностей *I*=3,77·10¹⁴...6,62·10¹⁵ квант см⁻²·с⁻¹, наряду с отсутствием заметных эффектов в собственной области поглощения азида серебра, приводит к существенному изменению вида спектральных кривых ДО в области *λ*≥365 нм. При временах облучения, соответствующих реализации I и II участков на кинетических кривых V_{ϕ} , наряду с уменьшением ДО в диапазоне $\lambda \ge 365$ нм на спектральных кривых ДО, проявляются широкие полосы с максимумами при λ≈420 и 600 нм. Дальнейшее увеличение времени световой обработки до участка (III) приводит к уширению полос и смещению максимумов в длинноволновую область спектра. На рис. 6 приведены результаты сопоставления кривых зависимости площадей, соответствующих изменению отражательной способности образцов при различных временах и интенсивностях экспонирования и рассчитанных по спектрам ДО, от времени облучения с кинетическими кривыми образования фотолитического серебра. Установлено совпадение кинетических зависимостей изменения количеств фотолитического металла (Сме), рассчитанных по результатам измерений кинетических кривых V_ф при различных интенсивностях падающего света, со значениями площадей (S), соответствующих изменению ДО $AgN_3(A_1)$ в процессе облучения.

В табл. 2 приведены константы скорости фотолиза AgN₃(A₁) и накопления частиц серебра соответствующих размеров оценённые по тангенсу угла наклона зависимостей $\ln S = f(\tau)$ и $\ln C_{Me} = f(\tau)$.

Полученные в настоящей работе и ранее [15-18] данные свидетельствуют, прежде всего, о том, что основными продуктами фотолиза AgN₃(A₁) в условиях высокого вакуума являются металлическое серебро и газообразный азот. Причем, продукты фотолиза AgN₃(A₁) образуются в стехиометрическом соотношении и, в основном, на

поверхности образцов, а наблюдаемые в результате воздействия света изменения на кинетических кривых V_{ϕ} , кривых спектрального распределения V_{ϕ} и i_{ϕ} и спектральных кривых ДО AgN₃(A₁) (рис. 5) обусловлены образованием частиц серебра, а широкие полосы с максимумами при $\lambda \approx 420$ и 600 нм – с образованием частиц серебра преимущественно со средним размером $d \approx 35...40$ Å и $d \approx 100...120$ Å.

Рис. 5. Изменение отражательной способности $AgN_3(A_1)$ в зависимости от времени облучения светом λ =365 нм и при I=3,17·10¹⁵ квант-см⁻²·C⁻¹

Рис. 6. Сопоставление количества фотолитического серебра (N) (крестики) и площадей, соответствующих изменению отражательной способности (кружки) от времени облучения AgN₃(A₁) светом λ=365 нм при I, квант·см⁻²·с⁻¹: 1) 8,56·10¹³; 2) 2,42·10¹⁴; 3) 8,4·10¹⁴; 4) 2,42·10¹⁵; 5) 3,17·10¹⁵

Таблица 2. Константы скорости фотолиза AgN₃(A₁) и накопления частиц серебра (k), рассчитанные по кинетическим кривым скорости фотолиза (k_{1ф}) и спектрам диффузного отражения (k_{1Д0})

<i>I</i> , KBaHT·CM ^{−2} ·C ^{−1}	<i>k</i> ₁₀ ·10², c⁻¹	<i>k</i> _{1до} ∙10², с⁻¹	k, c ⁻¹ (<i>d</i> ≈3540 Å)× ×10³, c ⁻¹	k, c ⁻¹ (d≈100120 Å) × ×10³, c ⁻¹
2,8·10 ¹⁴	1,1±0,2	1,2±0,1	1,2±0,2	2,0±0,3
1,6.1015	1,9±0,3	2,0±0,2	1,1±0,1	2,10±0,1
2,6.1015	3,3±0,2	3,5±0,3	1,2±0,1	2,30±0,2
3,17·10 ¹⁵	4,5±0,4	4,8±0,5	2,1±0,2	3,90±0,5

Для выяснения механизма влияния серебра на фотолиз азида серебра были измерены вольтамперные характеристики (BAX), U_{ϕ} гетеросистем AgN₃(A₁) – Ag (продукт фотолиза) и КРП.

Таблица 3. Контактная разность потенциалов между азидом серебра, серебром и относительным электродом из платины.

	КРП, В					
Образец	Давление, Па					
	1.10⁵	1.10-5	1.10-5*	1.10-5**	1.10-5***	
$AgN_3(A_1)$	+0,54	+0,52	+0,30	+0,40	+0,41	
Ag	+0,40	+0,40	+0,41			
		2	~ /	-		

 * После предварительной тепловой обработки при 350 К в течение 90 мин.

** После предварительного термолиза при 550 К в течение 180 мин.

*** После предварительного фотолиза при λ =365 нм, I=1.10¹⁴ квант·см⁻²·С⁻¹ в течение 90 мин.

Из табл. 3 видно, что фотолиз AgN₃(A₁) приводит к уменьшению значений КРП, причем значения КРП для образцов, подвергнутых фотолизу, удовлетворительно совпадают с измеренными для искусственно нанесенного серебра [19]. Из анализа ВАХ и результатов измерений КРП было установлено, что в области контакта AgN₃(A₁) – Ag (из-за несоответствия между работами выхода из контактирующих партнеров) возникает запорный электрический слой - контакт AgN₃(A₁) - Ад проявляет выпрямляющие свойства. Из рис. 3 видно, что полярность U_{ϕ} , оставаясь неизменной по всему спектру, соответствует положительному знаку со стороны азида серебра, а кривые спектрального распределения U_{ϕ} , V_{ϕ} , i_{ϕ} коррелируют друг с другом. Генерация U_ф прямо свидетельствует о формировании в процессе фотолиза $AgN_3(A_1)$ микрогетерогенных систем $AgN_3(A_1) - Ag$, темновые и фотопроцессы на границе раздела которых, по видимому, обеспечивают увеличение V_{ϕ} и i_{ϕ} в собственной области поглощения азида серебра (рис. 3, 4), а также появление новых длинноволновых областей фоточувствительности (рис. 3).

Фотохимические проявления фотоэлектрических процессов в таких системах могут быть вызваны перераспределением под действием контактного поля генерированных светом носителей заряда [6–9, 15–18]. Эти процессы приведут к существенным изменениям условий протекания фотолиза у предварительно фоторазложенных препаратов азида серебра по сравнению с фотораспадом свежеприготовленных. На рис. 7 приведена диаграмма энергетических зон контакта $AgN_3(A_1) - Ag$, при построении которой использованы результаты измерений КРП, ВАХ, данные по спектральному распределению U_{ϕ} , V_{ϕ} и i_{ϕ} , а также результаты измерений внешнего фотоэффекта [20].

При воздействии света из области собственного поглощения азида серебра имеет место интенсивная генерация электрон-дырочных пар (рис. 7, переход 1).

$$N_3 \rightarrow N_3 + e$$

Рис. 7. Диаграмма энергетических зон гетеросистемы Ад№3(А1) – Ад, Еv – уровень потолка валентной зоны, Ec – уровень дна зоны проводимости, EF – уровень Ферми, E0 – уровень вакуума, T – центр рекомбинации

Так как квантовый выход фотолиза, оцененный по начальному участку кинетической кривой V_{ϕ} , составляет 0,002...0,01, то часть фотоиндуцируемых носителей заряда рекомбинирует (рис. 7, переходы 5, 6)

$$T^++e \rightarrow T^0+p \rightarrow T^+$$

где Т⁺ – центр рекомбинации.

Генерированные в области пространственного заряда $AgN_3(A_1)$ пары носителей перераспределяются в контактном поле, сформированном из-за несоответствия между термоэлектронными работами выхода азида серебра и фотолитического серебра и наличием собственных поверхностных электронных состояний (СПЭС) [19], с переходом неравновесных электронов из зоны проводимости $AgN_3(A_1)$ на уровни СПЭС (T_n^+) или непосредственно в металл (M^+) (рис. 7, переходы 3, 4)

$$T_{\pi}^{+}+e \rightarrow T_{\pi}^{0}, M^{+}+e \rightarrow M^{0}.$$

Концентрация дырок в области пространственного заряда азида серебра по сравнению с концентрацией их в необлученном азиде будет возрастать. Возрастание концентрации дырок в области пространственного азида серебра приводит к соответствующему увеличению i_{ϕ} и V_{ϕ} по принимаемым для фотолиза азидов тяжелых металлов реакциям образования азота:

$$p+V_{\kappa}^{-} \rightarrow V_{\kappa}^{0} + p \rightarrow V_{\kappa}^{+} \rightarrow 3N_{2}+2V_{a}^{+}+V_{\kappa}^{-},$$

где V_a^+ и V_{κ}^- – анионная и катионная вакансии.

При фотолизе $AgN_3(A_1)$ одновременно с выделением азота образуется и фотолитическое серебро. Формирование частиц фотолитического серебра, по нашему мнению, происходит с участием СПЭС

$$T_n^0 + Ag^+ \rightarrow (T_n Ag)^+ + e \rightarrow \dots \rightarrow (T_n Ag_m)^+$$

Наблюдаемое уменьшение V_{ϕ} и i_{ϕ} на начальном участке (I) кинетических кривых в процессе и после экспонирования образцов (рис. 4) подтверждает необратимый расход поверхностных центров. В процессе роста частиц фотолитического металла формируются микрогетерогенные системы азид серебра – серебро (продукт фотолиза).

Генерированные в области пространственного заряда азида серебра пары носителей перераспределяются в контактном поле, сформированном изза несоответствия между термоэлектронными работами выхода азида серебра и фотолитического серебра, с переходом неравновесных электронов из зоны проводимости AgN₃(A₁) в металл (рис. 7)

$$(T_nAg_m)^+ + e \rightarrow (T_nAg_m)^\circ.$$

Одновременно имеет место фотоэмиссия дырок из фотолитического серебра в валентную зону азида серебра (рис. 6 переход 2). Эти процессы, во-первых, приводят к возрастанию концентрации дырок и, как следствие, к увеличению V_{ϕ} и i_{ϕ} (участок III); во-вторых, могут стимулировать диффузию межузельных ионов серебра к растущим частицам (азид серебра разупорядочен по Френкелю [21])

$$(T_nAg_m)^{\circ}+Ag^{+}\rightarrow (T_nAg_{m+1})^{+}.$$

При этом формируется U_{ϕ} положительного знака со стороны азида серебра (рис. 3), которая может способствовать дальнейшему увеличению размеров частиц. При воздействии на гетеросистемы AgN₃(A₁) – Ag света из длинноволновой области спектра имеет место фотоэмиссия дырок из металла в валентную зону азида серебра (рис. 6, переход 2), что приводит к появлению U_{ϕ} , V_{ϕ} и i_{ϕ} у предварительно фоторазложенных препаратов в длинноволновой области спектра. Обнаруженные закономерности изменения фотолитическим серебром фоточувствительности азида серебра в длинноволновой области спектра согласуются с изложенным. Действительно, формируется U_{ϕ} положительного знака со стороны азида серебра (рис. 3), энергетическое положение длинноволнового порога U_{ϕ}, V_{ϕ} и i_{ϕ} для гетеросистем AgN₃(A₁) – Ag удовлетворительно совпадает с величиной энергетического барьера для перехода дырок из металла в валентную зону азида серебра (рис. 6, переход 2).

Для определения лимитирующей стадии процесса фотолиза оценили время, в течение которого подвижный межузельный катион серебра (Ag⁺) нейтрализует локализованный электрон или диффундирует к нейтральному центру (T_nAg_m)[°]. Время релаксации по механизму дрейфа подвижных катионов в кулоновском поле к локализованному электрону равно максвелловскому времени релаксации [22]

$\tau_i = \varepsilon / 4\pi \sigma$,

где ε – диэлектрическая проницаемость ($\varepsilon_{\text{AgN};(Al)}$ =4 [23]), σ – удельная проводимость при 293 К ($\sigma_{\text{AgN};(Al)} \approx 1 \cdot 10^{-12} \text{ Om}^{-1} \cdot \text{сm}^{-1}$ [21]), $\tau_i \approx 0,35$ с. Константа скорости фотолиза при этом составит $k^1 \approx 2,85$ с⁻¹.

Среднее время релаксации при диффузионном протекании процесса может быть оценено [22]

$\tau_{\partial} = e^2 / \sigma k_b a T,$

где e – заряд электрона; a – постоянная решетки ($a_{AgN;(A1)}=5,6\cdot10^{-8}$ см); T=293 К, k_b – постоянная Больцмана. При T=293 К $\tau_b\approx114$ с. Константа скорости фотолиза (k^{II}) при этом составляет $k^{II}\approx8,9\cdot10^{-3}$ с⁻¹.

СПИСОК ЛИТЕРАТУРЫ

- 1. Янг Д. Кинетика разложения твердых веществ. М.: Мир, 1969. 263 с.
- Evans B.L., Yoffe A.D. Structure and stability of inorganic azides. II. Some physical and optical properties and the fast decomposition of solid monovalent inorganic azides // Proc. Roy. Soc. – 1959. – V. A250. – P. 364–366.
- Deb S.K. Optical absorption spectra of azides // Trans. Farad. Soc. - 1969. - V. 65. - P. 3187-3194.
- Verneker V.R.P. Photodecomposition of Solid Metal Azides // J. Phys. Chem. – 1968. – V. 72. – № 5. – P. 1733–1736.
- Савельев Г.Г., Гаврищенко Ю.В., Захаров Ю.А. Фото-ЭДС в азидах свинца и серебра // Известия вузов. Физика. – 1968. – № 7. – С. 2–4.
- Суровой Э.П., Бугерко Л.Н., Расматова С.В. Исследование кинетических закономерностей образования продуктов в процессе фотолиза азида свинца // Известия Томского политехнического университета. – 2005. – Т. 308. – № 1. – С. 93–97.
- Суровой Э.П., Захаров Ю.А., Бугерко Л.Н., Шурыгина Л.И. Автокатализ фотолиза азида таллия // Химия высоких энергий. – 1999. – Т. 33. – № 5. – С. 387–390.
- Суровой Э.П., Шурыгина Л.И., Бугерко Л.Н. Закономерности формирования микрогетерогенных систем при фотолизе азида таллия // Химическая физика. – 2003. – Т. 22. – № 9. – С. 24–28.
- Суровой Э.П., Сирик С.М., Бугерко Л.Н. Фотолиз систем азид серебра – медь // Известия Томского политехнического университета. – 2006. – Т. 309. – № 2. – С. 164–169.
- Суровой Э.П., Сирик С.М., Бугерко Л.Н. Кинетика фотолиза гетеросистем азида серебра с теллуридом кадмия и оксидом меди // Журнал физической химии. – 2000. – Т. 74. – № 5, – С. 927–933.
- Суровой Э.П., Бугерко Л.Н., Расматова С.В. Фотолиз гетеросистем «азид свинца – кадмий» // Известия Томского политехнического университета. – 2004. – Т. 307. – № 2. – С. 95–99.

Удовлетворительное совпадение констант скорости фотолиза (табл. 2) с k^{II} дает основание полагать, что лимитирующей стадией процесса фотолиза AgN₃(A₁) является диффузия межузельных катионов серебра к нейтральноу центру (T_nAg_m)⁰.

Работа поддержана грантом Президента РФ для поддержки ведущих научных школ НШ – 20.2003.3.

- Суровой Э.П., Шурыгина Л.И., Бугерко Л.Н. Фотолиз гетеросистем азид таллия – металл // Химическая физика. – 2001. – Т. 20. – № 12. – С. 15–22.
- Суровой Э.П., Бугерко Л.Н. Термостимулированное газовыделение из систем азид серебра – металл // Химическая физика. – 2002. – Т. 21. – № 7. – С. 74–78.
- Суровой Э.П., Бугерко Л.Н., Захаров Ю.А., Расматова С.В. Закономерности формирования твердофазного продукта фотолиза гетеросистем азид свинца металл // Материаловедение. – 2002. – № 9. – С. 27–33.
- А.с. 1325332 СССР. МКИ G01N 21/55. Устройство для измерения спектров отражения в вакууме / А.И. Турова, Г.П. Адушев, Э.П. Суровой и др. Заявлено 10.11.1985; Опубл. 24.07.1987, Бюл. № 27. 5 с.: ил.
- Суровой Э.П., Бугерко Л.Н., Расматова С.В. Фотолиз азида свинца в контакте с оксидом меди (I) // Известия Томского политехнического университета. – 2006. – Т. 309. – № 4. – С. 90–95.
- Суровой Э.П., Бугерко Л.Н., Расматова С.В. Фотолиз систем «азид свинца – теллурид кадмия» // Известия Томского политехнического университета. – 2004. – Т. 307. – № 4. – С. 85–88.
- Суровой Э.П., Титов И.В., Бугерко Л.Н. Контактная разность потенциалов для азидов свинца, серебра и таллия // Известия Томского политехнического университета. – 2005. – Т. 308. – № 2. – С. 79–83.
- Колесников Л.В. Спектры энергетических состояний и некоторые особенности реакций разложения азидов тяжелых металлов: Автореф. дис. ... канд. хим. наук. Минск, БГУ, 1978. 21 с.
- Захаров Ю.А., Гасьмаев В.К., Колесников Л.В. О механизме процесса ядрообразования при термическом разложении азидов серебра // Журнал физической химии. – 1976. – Т. 50. – № 7. – С. 1669–1673.
- Мейкляр П.В. Физические процессы при образовании скрытого фотографического изображения. – М.: Наука, 1972. – 399 с.

Поступила 08.12.2006 г.