СПИСОК ЛИТЕРАТУРЫ

- Основные санитарные правила обеспечения радиационной безопасности (ОСПОРБ-99): 2.6.1. Ионизирующее излучение, радиационная безопасность СП 2.6.1.799-99. — М.: Минздрав России, 2000. — 98 с.
- НП-020-2000 Федеральные нормы и правила в области использования атомной энергии «Сбор, переработка, хранение и кондиционирование твёрдых радиоактивных отходов. Требования безопасности». – М.: Госатомнадзор России, 2000. – 16 с.
- Загонов В.П., Подоляко С.В., Артемьев В.М. Применение поверхностно ориентированного описания объектов для модели-

рования трансформации ионизирующего излучения в задачах вычислительной диагностики // Математическое моделирование. – 2004. – Т. 16. – № 5. – С. 103–116.

- Фано У., Спенсер Л., Бергер М. Перенос гамма-излучения. М.: Госатомиздат, 1963. – 95 с.
- ГОСТ Р 8.594-2002 Метрологическое обеспечение радиационного контроля. – М.: Госстандарт России, 2002. – 19 с.

Поступила 04.12.2006 г.

УДК 537.521.7:621.315.6

ВЛИЯНИЕ МОДИФИЦИРУЮЩЕЙ ДОБАВКИ НАНОПОРОШКА НИКЕЛЯ НА ОСНОВНЫЕ ЭЛЕКТРОФИЗИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПОЛИВИНИЛИДЕНФТОРИДА

О.С. Гефле, С.М. Лебедев, С.Н. Ткаченко

НИИ высоких напряжений ТПУ E-mail: polymer@hvd.tsk.ru

Приведены результаты исследования температурно-частотных зависимостей диэлектрической проницаемости и тангенса угла диэлектрических потерь, электрической прочности и надмолекулярной структуры поливинилиденфторида, модифицированного нанопорошком никеля. Установлено, что введение наночастиц никеля в поливинилиденфторид приводит к уменьшению сферолитов, упорядочиванию надмолекулярной структуры полимера, изменению температуры стеклования, энергии активации проводимости, значений комплексной диэлектрической проводимости.

Введение

Одним из перспективных направлений материаловедения является создание новых композиционных полимерных материалов (КПМ) с высо-КИМ удельным энергосодержанием (более 10⁵ Дж/м³) для высоковольтной импульсной техники. Такие материалы могут найти применение в качестве изоляции емкостных накопителей энергии, работающих на импульсном напряжении. Подобные материалы должны обладать следующими электрофизическими характеристиками: высокими значениями диэлектрической проницаемости (ε), электрической и механической прочности, удельного объемного сопротивления, а также малым значением тангенса угла диэлектрических потерь (tg δ) в широком диапазоне частот внешнего электрического поля и рабочих температур.

Создание КПМ с требуемыми электрофизическими параметрами возможно лишь при условии хорошей совместимости полимерной матрицы и наполнителя. Достаточно перспективной полимерной матрицей может быть поливинилиденфторид (ПВДФ), который относится к частично-кристаллическим полимерам со степенью кристалличности около 50 % [1]. Данный полимер имеет высокую рабочую температуру (до 423 К) и диэлектрическую проницаемость ε =9 при частоте 10⁶ Пц, что должно обеспечивать более однородное распределение локального поля в объеме КПМ и меньшую дисперсию комплексной диэлектрической проницаемости. Кроме того, ПВДФ стоек к воздействию ультрафиолетового и ионизирующего излучения, обладает пьезо- и пироэлектрическими свойствами, которые могут быть улучшены за счет наполнения ультрадисперсными порошками сегнетоэлектрических керамик [2].

Введение ультрадисперсных наполнителей неорганического происхождения в полимерную матрицу существенно модифицирует структуру и свойства КПМ за счет межфазных взаимодействий и образования граничного нанослоя вблизи частиц наполнителя [3]. Например, при добавлении 3,5 в. ч. никелевого порошка в полипропилен сферолиты становятся меньше почти в два раза по сравнению с чистым полипропиленом, причем в центре каждого сферолита располагаются частицы никелевого порошка, которые инициируют образование полимерного зародыша на их поверхности [4]. При этом наблюдается увеличение прочности полипропиленовых пленок. Следовательно, стабилизация и улучшение электрофизических характеристик ПВДФ могут быть достигнуты за счет искусственного создания центров кристаллизации при введении в полимер ультрадисперсных порошков металлов, например, никеля (Ni). В этой связи, целью данной работы являлось исследование влияния концентрации наночастиц Ni на электрофизические характеристики и надмолекулярную структуру ПВДФ.

Методика эксперимента и образцы

Объектами исследования являлись ПВДФ и композиции на его основе с различной концентрацией модифицирующей добавки. В качестве добавки использовался нанопорошок Ni со средним размером частиц сферической формы 200 нм. Методика получения нанопорошка подробно описана в [5].

Состав исследуемых композиций приведен в табл. 1.

Таблица 1. Обозначения и состав исследуемых полимерных композиций на основе ПВДФ

№ композиции	Содержание Ni в ПВДФ, вес. %			
K1	0			
К2	0,5			
К3	1,0			
К4	2,0			

Измерения относительной диэлектрической проницаемости ε' и tg δ проводились с помощью измерительного комплекса Solartron Analytical [6] на переменном напряжении 3 В в диапазоне частот от 10⁻⁴ до 10⁶ Гц и температур от 293 до 373 К. В диапазоне частот от 10-4 до 1 Гц относительная погрешность измерения ε' и tg δ не превышала 5 и 8 %, соответственно. При частоте F>1 Гц относительная погрешность измерения этих параметров составляла не более 1 и 3 %. Измерения проводились по методике [7]. Исследования ε' и tg $\delta = f(T, K)$ при фиксированной частоте F=10⁻⁴ Гц проводились отдельно вследствие большой продолжительности процедуры измерения. Измерение параметров осуществлялось в стационарном температурном режиме, при котором точность задания и поддержания температуры на каждой температурной ступени составляла ±1 К.

Электрическая прочность для данных материалов определялась на переменном напряжении F=50 Гц при плавном подъеме напряжения со скоростью 2 кВ/с. Пробой осуществлялся в ячейке, заполненной трансформаторным маслом, в системе электродов полусфера – плоскость. Радиус закругления полусферы составлял 12,5 мм. Толщина испытываемых образцов составляла 100 ± 5 мкм, диаметр – 70 мм. Среднее значение электрической прочности рассчитывалось по формуле:

$$E_{\rm np\,cp} = \overline{U}_{\rm np} / \overline{\Delta},$$

где \overline{U}_{np} — среднее значение пробивного напряжения, $\overline{\Delta}$ — средняя толщина образцов. Испытывалось не менее 20-ти образцов. Доверительный интервал для $E_{np cp}$ (ΔE) рассчитывался по формуле:

$$\Delta E = t_{0,05} \frac{\sigma_E}{\sqrt{N}}$$

где $t_{0,05}$ — критерий Стьюдента при доверительной вероятности 0,95; σ_E — среднеквадратичное отклонение, N=20 — общее количество испытанных образцов.

Для определения влияния добавки нанопорошка на надмолекулярную структуру были изготовлены срезы образцов из композиций К1–К4, которые исследовались в поляризованном свете с помощью микроскопа МИМ-7 при различном увеличении.

Экспериментальные результаты и их обсуждение

На рис. 1 представлены зависимости tg $\delta = f(F,T)$ для ПВДФ в диапазоне частот от 10⁻² до 10⁶ Гц из которых видно, что при частотах *F*<10 Гц наблюдается максимум tg δ , который с ростом температуры смещается в область более высоких частот (ВЧ). При частотах *F*>1 кГц значения tg δ не превышают 0,3 во всем температурном диапазоне.

Рис. 1. Зависимости tgδ=f(F,T) для ПВДФ в диапазоне частот от 10⁻² до 10⁶ Гц

Рис. 2. Зависимости ε'=f(F,T) для ПВДФ в диапазоне частот от 10⁻² до 10⁶ Гц

На рис. 2 представлены зависимости $\varepsilon'=f(F,T)$ для ПВДФ в диапазоне частот от 10⁻² до 10⁶ Гц из которых видно, что при частотах *F*<10 Гц наблюдается нелинейный рост действительной составляющей комплексной диэлектрической проницаемости. В области частот от 100 до 10⁶ Гц значительного изменения ε' не наблюдается, например, при частоте 10⁶ Гц значения ε' составляют 9,0 и 10,6 при *T*=298 К и 373 К, соответственно.

Введение в полимерную матрицу 0,5 вес. % Ni приводит не только к смещению положения максимума tg δ в область более низких частот (HЧ), но и к изменению его величины при T>343 K (рис. 3). Так, при T=373 K величина максимума tg δ примерно на 15 % больше, чем у ПВДФ, и он соответствует частоте 0,11 Гц вместо 0,7 Гц для ПВДФ. Однако введение модифицирующей добавки не оказывает существенного влияния на значения tg δ при частотах F>10³ Гц. В данном диапазоне частот значения tg δ для композиции K2, также как и для чистого ПВДФ, не превышают 0,3 для всех исследованных температур.

Рис. 3. Зависимости tg δ =f(F,T) для ПВДФ + 0,5 вес. % Ni

Рис. 4. Зависимости ε'=f(F, T) для ПВДФ + 0,5 вес. % Ni

На рис. 4 представлены зависимости $\varepsilon'=f(F, T)$ для ПВДФ + 0,5 вес. % Ni, из которых видно, что характер поведения ε' такой же, как для чистого ПВДФ.

Повышение концентрации Ni в полимере от 1 до 2 вес. % приводит к еще большему увеличению максимальных значений tg δ , причем, по сравнению с композицией K2 смещение максимумов tg δ происходит не в область более низких частот, а в ВЧ область. Например, при *C*=1 вес. % Ni (рис. 5) и *T*=373 К положение максимума tg δ соответствует *F*≈0,3 Гц, а его величина примерно в 1,4 и 1,6 раза больше, чем у ПВДФ + 0,5 вес. % Ni и чистого ПВДФ, соответственно. Что касается ε' , то, также как в случае ПВДФ и K2, изменение значений этого параметра от температуры в ВЧ области несущественно и составляет не более 5 %. При частотах *F*<10 Гц наблюдается уменьшение значений ε' по сравнению с чистым ПВДФ и композицией K2.

При C=2 вес. % Ni положение максимума смещается в область еще более высоких частот и при T=373 K приближается к $F\approx0,7$ Гц, то есть к частоте релаксационного максимума tg δ немодифицированного ПВДФ.

Исследование комплексного импеданса данных полимерных композиций на частоте *F*=10⁻⁴ Гц осуществлялось для расчета величины удельного объемного сопротивления

$$\rho_v = Z_a \cdot S / \Delta$$
, OM·M,

где Z_a — экспериментальное значение активной составляющей комплексного импеданса при $F=10^{-4}$ Гц; S — площадь измерительного электрода; Δ — толщина образца.

Рис. 5. Зависимости $tg\delta = f(F,T)$ для ПВДФ + 1,0 вес. % Ni

Рис. 6. Зависимости ε'=f(F,T) для ПВДФ + 1,0 вес. % Ni

Результаты расчета ρ_{ν} для исследуемых КПМ приведены в табл. 2. Из табл. 2 видно, что в диапазоне температур от 293 до 323 К при концентрации никеля *C*=0,5 вес. % удельное объемное сопротивление модифицированного ПВДФ (К2) увеличивается по сравнению с К1 примерно в 2,2...1,5 раза. При *T*>353 К значение ρ_{ν} снижается по сравнению с ПВДФ примерно в 1,3 раза. С увеличением концентрации Ni уменьшение ρ_{ν} по сравнению с композициями К1 и К2 начинается при *T*>333 К, а при *T*=373 К величина ρ_{ν} композиций К3 и К4 примерно в 1,6 и 1,9 раза меньше, чем для К1.

Зависимости $\ln \rho_v = f(1/T)$ представляют собой две пересекающиеся прямые с разными углами наклона, причем точки пересечения прямых соответствуют температуре стеклования $T_c \Pi B \Box \Phi$, которая находится в пределах 338...343 К [8]. Значения энергии активации W_i , соответствующие различным углам наклона, определялись как

$W = [\Delta \ln \rho_v / \Delta (1/T)] \cdot K$,

где $\Delta \ln \rho_v$ — разность между логарифмами значений ρ_v на соответствующих низко- и высокотемпературных участках; $\Delta(1/T)$ — разность обратных температур на этих температурных участках; T — абсолютная температура; K — постоянная Больцмана.

Результаты расчета значений энергии активации, приведенные в табл. 3, показывают, что энергия активации немодифицированного и модифицированного ПВДФ, находящегося в стеклообразном состоянии (при $T < T_c$), примерно в 2 раза выше, чем в высокоэластическом состоянии. При этом максимальные значения W_1 (при $T < T_c$) и W_2 (при $T > T_c$) наблюдаются для композиции K2 (ПВДФ+0,5 вес. % Ni).

№ компози-	<i>ρ</i> _и , Ом·м, при <i>T</i> , К								
ции	298	303	313	323	333	343	353	363	373
K1	2,1·10 ¹²	2,2·10 ¹¹	3,1·10 ¹⁰	4,4·10 ⁹	1,0·10 ⁹	4,6·10 ⁸	2,1·10 ⁸	1,5·10 ⁸	5,4·10 ⁷
K2	4,5·10 ¹²	4,5·10 ¹¹	5,1·10 ¹⁰	6,8·10 ⁹	1,0·10 ⁹	5,4·10 ⁸	2,3·10 ⁸	9,8·10 ⁷	4,9·10 ⁷
K3	2,9·10 ¹	2,7·10 ¹¹	3,1·10 ¹⁰	4,0·10 ⁹	6,5·10 ⁸	2,9·10 ⁸	1,3·10 ⁸	6,6·10 ⁷	3,3·10 ⁷
K4	2,6·10 ¹²	2,9.1011	3,6.1010	5,2·10°	8,0·10 ⁸	3,3·10 ⁸	1,3·10 ⁸	6,5·10 ⁷	2,9·10 ⁷

Таблица 2. Зависимость *ρ*_ν от температуры нанодиэлектриков на основе ПВДФ с различным содержанием нанопорошка Ni от температуры при *F*=10⁻⁴ Γμ

Таблица 3. Энергии активации и температура стеклования исследуемых полимерных композиций

№ композиции	₩₁, эВ	₩₂, эВ	<i>T</i> _c , K
K1	1,66±0,02	0,78±0,01	338
K2	1,77±0,01	0,88±0,02	340
К3	1,75±0,04	0,80±0,03	333
K4	1,70±0,05	0,85±0,03	333

Были получены следующие значения электрической прочности ПВДФ и композиций на его основе: для K1 – $E_{\rm np\,cp}\pm\Delta E=70,40\pm2,77$ кВ/мм; для K2 – 71,06±3,01 кВ/мм; для K3 – 68,53±2,07 кВ/мм; для K4 – 67,82±2,59 кВ/мм. При добавлении 0,5 вес. % Ni в ПВДФ электрическая прочность полученного КПМ практически не меняется по сравнению с полимерной матрицей. При дальнейшем увеличении концентрации нанопорошка Ni в полимере наблюдается тенденция к снижению электрической прочности КПМ.

На рис. 7 представлены фотографии срезов образцов исследуемых полимерных композиций. Из рис. 7 видно, что введение Ni приводит к существенному изменению надмолекулярной структуры ПВДФ. Крупносферолитная структура ПВДФ преобразуется в мелкосферолитную, причем наиболее однородная структура наблюдается для композиции К2. С повышением концентрации наполнителя структура модифицированного ПВДФ становится более неоднородной вследствие увеличения размеров агломератов из наночастиц Ni. Например, при C=0,5 вес. % средний размер агломератов составляет примерно 0,6 мкм, а при C=2,0 вес. % – 2,5 мкм.

Анализ результатов эксперимента показал, что в области НЧ в исследованном диапазоне температур наблюдаются аномально высокие значения tg*δ* как для немодифицированного, так и для модифицированного ПВДФ. Это свидетельствует о том, что частицы Ni являются активным наполнителем для ПВДФ и высокие значения tg δ обусловлены, в первую очередь, нелинейным ростом ε' . Как правило, значения tg δ >1 наблюдаются в ферро- и сегнетоэлектриках, так что дисперсия комплексной диэлектрической проницаемости в диапазоне НЧ внешнего электрического поля может быть обусловлена ориентацией электрических моментов «доменов», которые представляют собой макрокристаллические структуры с большим собственным дипольным моментом [9]. Так как ПВДФ относится к частично-кристаллическим полимерам, то достаточно большой вклад в повышение tg δ при Т≥333...343 К может давать также повышение его проводимости, обусловленной диссоциацией молекул в аморфных прослойках [9]. Смещение максимума tg δ в HЧ область для композиции K2 по сравнению с чистым ПВДФ коррелирует с изменением формы кристаллических структур и энергии их когезионного взаимодействия: чем выше энергия когезионного взаимодействия, тем выше значения энергии активации проводимости (табл. 3), тем в область более низких частот смещается максимум tg δ при одной и той же температуре окружающей среды.

Кроме того повышение концентрации Ni в полимере изменяет его T_c . Снижение T_c свидетельствует о разрыхлении упаковки и появлении внутренних напряжений, а повышение T_c обусловлено ограничением подвижности цепей, в результате их связи с поверхностью наполнителя [10]. Небольшой разброс T_c для исследуемых композиций свидетельствует о совместном влиянии этих двух факторов.

Рис. 7. Микрофотографии срезов образцов: а) К1; б) К2; в) К3; г) К4

Так как в диапазоне НЧ исследованные полимерные композиции имеют значения $tg\delta>1$, то они не могут быть использованы в качестве изоляции емкостных накопителей энергии при частоте внешнего электрического поля *F*<10 Гц. Данные материалы могут представлять интерес с точки зрения изучения их пиро- и пьезоэлектрических свойств.

В области частот от 10³ до 10⁶ Гц во всем исследованном температурном диапазоне значения tg δ для всех исследованных КПМ не превышают 0,3 при несущественном изменении диэлектрической проницаемости. Следовательно, данные материалы могут быть использованы в качестве полимерной матрицы для создания КПМ с высоким удельным энергосодержанием. Однако, из исследованных материалов наилучшими свойствами обладает композиция К2. Это свидетельствует о том, что оптимальная концентрация Ni должна находиться в пределах от 0,1 до 0,5 вес. %. При определении оптимальной концентрации частиц Ni существует принципиальная возможность создания КПМ со стабильными свойствами в диапазоне частот от 10³ до 3...5·10⁶ Гц, что требует проведения дополнительных исследований.

СПИСОК ЛИТЕРАТУРЫ

- Справочник по электротехническим материалам / Под ред. Ю.В. Корицкого и др. – М.: Энергоатомиздат, 1986. – Т. 1. – 368 с.
- Chan H.L.W., Chan W.K., Zhang Y., Choy C.L. Pyroelectric and piezoelectric properties of lead titanate/polyvinylidene fluoride-trifluoroethylene 0-3 composites // IEEE Trans. Diel. Electr. Insul. – 1998. – V. 5. – № 4. – P. 505–512.
- Tanaka T. Dielectric nanocomposites with insulating properties // IEEE Trans. Diel. Electr. Insul. – 2005. – V. 12. – № 5. – P. 914–928.
- Гуль В.Е., Туркова Н.Н., Голубева М.Г. Об увеличении прочности металлонаполненных электропроводных полимерных пленок под влиянием статического магнитного поля // Доклады АН СССР. – 1971. – Т. 199. – № 1. – С. 135–137.
- Тихонов Д.В. Электровзрывное получение ультрадисперсных порошков сложного состава. Дис. ... канд. техн. наук. – Томск, 2000. – 240 с.

Заключение

- Введение наночастиц Ni в ПВДФ приводит к изменению его надмолекулярной структуры и температуры стеклования за счет образования искусственных зародышей структурообразования.
- 2. Изменение надмолекулярной структуры влияет на электрофизические характеристики КПМ и энергию активации проводимости в слабых электрических полях.
- Исследованные КПМ обладают аномально высокими значениями мнимой и действительной частей комплексной диэлектрической проницаемости при частотах F<10 Гц, поэтому могут найти применение в устройствах, использующих пиро- и пьезоэлектрический эффект.
- 4. КПМ на основе ПВДФ являются перспективными полимерными матрицами для создания материалов с высокими значениями удельной запасаемой энергии в диапазоне частот от 10³ до 10⁶ Гц в температурном диапазоне от 293 до 373 К, причем оптимальная концентрация Ni должна находиться в пределах от 0,1 до 0,5 вес. %.
- Solartron Analytical. Impedance/Gain-Phase Analyzer 1260 and Dielectric Interface 1296, Operating manual. – 2001; http://www.solartronanalytical.com
- Ткаченко С.Н., Храмцов С.Е. Измерение электрофизических характеристик диэлектриков методом диэлектрической спектроскопии // Современные техника и технологии: Труды 12 Междунар. научно-практ. конф. студентов и молодых ученых. – Томск, 2006. – Т. 1. – С. 62–63.
- Физика полимеров / Под ред. М.В. Волькенштейна. М.: Иностр. лит-ра, 1960. – 552 с.
- Sinha D., Muralidhar C., Pillai P.K.C. Dielectric behaviour in lead zirconate titanate (PZT) polyvinylidene fluoride (PVDF) composite // Proc. 2 Int. Conf. Dielec. – Erlangen, 1986. – P. 227–231.
- Соломко В.П. Наполненные кристаллизующиеся полимеры. Киев: Наукова думка, 1980. – 264 с.

Поступила 23.11.2006 г.