

УДК 544.52

ВЛИЯНИЕ МЕТОДА СИНТЕЗА НА ФОТОЛИЗ АЗИДА СВИНЦА

Э.П. Суровой, Л.Н. Бугерко, С.В. Расматова

ГОУ ВПО «Кемеровский государственный университет» E-mail: epsur@kemsu.ru

Азид свинца независимо от метода синтеза проявляет общие кинетические закономерности. На кинетических кривых скорости фотолиза PbN₆(AG) были выделены характерные участки: начальный, стационарный, возрастания и насыщения. Время реализации участков, а также скорость фотолиза зависят от способа синтеза PbN₆. Предварительная световая обработка PbN₆(AG) при λ =380 нм и I=2·10⁵ квант см⁻²·C⁻¹ при давлении 1·10⁻⁵ Па наряду с увеличением скорости фотолиза и фототока в собственной области поглощения приводит к появлению новой длинноволновой области спектральной чувствительности. Определены квантовые выходы и константы скорости фотолиза PbN₆(AG). Установлено, что экспериментально наблюдаемые значения фототока в области длинноволнового порога фоточувствительности совпадают с рассчитанными значениями тока фотоэмиссии на границе PbN₆(AG)-Pb. Этот факт, а также результаты измерений вольт-амперных характеристик, фото-ЭДС, контактной разности потенциалов свидетельствуют о том, что при фотолиза азида свинца формируются микрогетерогенные системы PbN₆(AG) – Pb (продукт фотолиза). Лимитирующей стадией фотолиза PbN₆(AG) является диффузия анионных вакансий к нейтральному центру Pb₀^o.

Твердофазные продукты, выделяющиеся при разложении, оказывают существенное влияние на фотохимические и фотоэлектрические свойства неорганических азидов. Предварительное фотохимическое и термическое разложение азидов наряду с увеличением фототока приводят к появлению на кривых спектрального распределения V_{ϕ} и i_{ϕ} дополнительного максимума фоточувствительности в области 1,65 эВ [1, 2]. Присутствие в кристаллической решетке азида серебра высокодисперсного серебра, полученного в результате воздействия на соль излучения радиоактивного изотопа Ag^{110} , ускоряет фотолиз AgN_3 [3, 4]. Авторы [5] отмечают, что каталитическое действие оказывают только малые частицы металлов (продуктов разложения). Влияние продуктов фотораспада на фотолиз азидов авторы [6] связывают с фотоэмиссией электронов из малых металлических ядер в азид под действием света соответствующей длины волны с последующим образованием активной частицы (N₃°). В [7] ускорение фотолиза объяснили ионизацией отдельных атомов металла. Появление фотоэлектрической чувствительности AgN₃ в длинноволновой области спектра авторы [1] объясняют повышением концентрации электронов, фотоэммитированных из металла в азид серебра.

Систематические исследования автокаталитического и сенсибилизирующего влияния твердофазных продуктов на фотолиз неорганических азидов [8–11], а также параллельное изучение фотолиза и электрофизических свойств искусственно сформированных систем «азид – металл» [8, 12, 13] позволили существенно продвинуться в направлении понимания механизма фотолиза неорганических азидов при глубоких степенях превращения. Установлено, что физико-химические свойства (в частности термоэлектронная работа выхода [14]) и, как следствие, кинетические и спектральные закономерности фотолиза в значительной степени зависят от метода синтеза азида свинца [15]. В настоящем сообщении представлены результаты работы, направленной на исследование влияния метода синтеза на кинетические и спектральные закономерности фотолиза до, в процессе и после предварительного разложения образцов азида свинца, идентификацию твердофазного продукта фотолиза PbN₆(б), выяснение энергетической структуры контакта азид свинца - продукт фотолиза и причин, вызывающих изменение продуктом разложения фотохимической и фотоэлектрической чувствительности азида свинца.

Объекты и методы исследования

Азид свинца марки Аб (PbN₆(Aб)) (в отличие от PbN₆(Am) [11]) синтезировали методом двухструйной кристаллизации, одновременно сливая водные 0,2 н растворы дважды перекристаллизованного технического азида натрия и нитрата свинца (марки x.ч.) при pH 3 и T=293 К в течение 1...2 с. Образцы для исследований готовили прессованием таблеток $PbN_6(A6)$ массой 150 мг при давлении $1 \cdot 10^{-3}$ кг·см⁻², либо путем нанесения 150 мг навесок PbN₆(Аб) на кварцевую пластинку в виде спиртовой суспензии с последующей отгонкой спирта в вакууме. Измерения кинетических кривых скорости фотолиза (V_{ϕ}), фототока (i_{ϕ}) и фото-ЭДС (U_{ϕ}) образцов PbN₆ проводили при давлении ~1.10-5 Па. В качестве датчика при измерении V_ф использовали лампу РМО-4С омегатронного масс-спектрометра ИПДО-1, настроенного на частоту регистрации азота [11]. Измерения i_{d} и U_{d} проводили на установке, включающей электрометрический вольтметр В7-30, либо электрометр TR-1501 [15]. Спектры диффузного отражения (ДО) до и после облучения образцов измеряли при давлении ~10⁻⁴ Па, используя устройство [16], на спектрофотометре СФ-4А с приставкой ПДО-1 [17] и при давлении 101,3 кПа на спектрофотометре Specord-M40 с приставкой на отражение 8*d*. В качестве источников света применяли ртутную (ДРТ-250) и ксеноновую (ДКСШ-1000) лампы. Для выделения требуемого спектрального диапазона излучения использовали монохроматоры МДР-2 и SPM-2, набор светофильтров. Для актинометрии источников света использовали радиационный термоэлемент РТ-0589. Контактную разность потенциалов (КРП) между PbN₆(Аб) и относительным электродом из платины измеряли, используя модифицированный метод Кельвина [14]. Топографию твердофазных продуктов фотолиза азида свинца изучали методом угольных реплик на электронном микроскопе УЭМВ-1000.

Результаты и обсуждение

В результате сопоставления кинетических закономерностей фотолиза и фототока азида свинца разных методов синтеза в зависимости от интенсивности ($I=10^{13}...10^{16}$ квант см⁻²·с⁻¹) и спектрального состава (250...1000 нм) падающего света было установлено, что азид свинца независимо от метода его приготовления проявляет общие кинетические закономерности. Кинетические кривые V_{d} измеренные при освещении образцов PbN₆(Аб) λ =380 нм при 293 К, представлены на рис. 1. Из рисунка следует, что на кинетических кривых V_{ϕ} PbN₆(Аб) (как и для PbN₆(Ам) [11]) можно выделить несколько участков: начальный нестационарный (I), стационарный (II), возрастания V_{ϕ} (III) и насыщения (IV). Время реализации разных участков кинетических кривых V_{ϕ} , а также значения V_{ϕ} зависят от способа синтеза PbN₆. В табл. 1 приведены значения квантового выхода фотолиза $PbN_6(A6)$ в зависимости от интенсивности падающего света.

Таблица 1. Квантовый выход фотолиза PbN₆(Аб)

Интенсивность, квант см ⁻² с ⁻¹	Квантовый выход. 10-3
7 95.10 ¹⁴	1 23
1 27 1015	1,25
2,00,105	1,50
2,00.10	1,90
3,17.10	3,10
5,56⋅10¹⁵	5,47

Рис. 1. Кинетические кривые скорости фотолиза (V_{ϕ}) PbN₆(AG) при λ =380 нм и интенсивности падающего света 2·10¹⁵ квант·см⁻²·C⁻¹ до (1) и после прерывания света на I (2), II (3), IV (4) участках кинетических кривых V_{\u03e9}. Стрелками обозначены моменты выключения света

На рис. 2 приведены кривые спектрального распределения V_{ϕ} и i_{ϕ} PbN₆(Аб), построенные по стационарным значениям V_{ϕ} и i_{ϕ} (участок II кинетических кривых V_{ϕ} и i_{ϕ}). Видно, что длинноволновый край V_{ϕ} и i_{ϕ} PbN₆(AG) также, как и для PbN₆(AM) [11], находится при $\lambda < 410$ нм. Для выяснения причин, вызывающих наблюдаемые изменения V_{ϕ} и i_{ϕ} в процессе освещения, были выполнены эксперименты по влиянию предварительной световой обработки на кинетические и спектральные зависимости V_{ϕ} и i_{ϕ} . Повторное (после прерывания света на I и II участках) освещение образцов не приводит к заметному изменению значений V_{ϕ} на II, III, IV участках кинетических кривых и кривых спектрального распределения V_{ϕ} и i_{ϕ} . При этом значения V_{ϕ} на участке I уменьшаются (рис. 1 кривые 2 и 3). После предварительного освещения образцов PbN₆(Аб) в течение 60 мин (PbN₆(Aм) в течение 5 мин [11]) вид кинетических кривых (рис. 1 кривая 4) V_{ϕ} и кривых спектрального распределения PbN₆(Ab) V_{ϕ} и i_{ϕ} (рис. 2) существенно изменяется. Наряду с увеличением V_{ϕ} и i_{ϕ} в собственной области поглощения PbN₆(Аб) на кривых спектрального распределения V_{ϕ} и i_{ϕ} появляются новые области фоточувствительности, длинноволновые пороги которых простираются до 600 и 850 нм для PbN₆(Ам) [11] и PbN₆(Аб) соответственно. Более продолжительное (в течение 3 ч) воздействие света $\lambda = 380$ нм и интенсивности $2 \cdot 10^{15}$ квант см⁻²·с⁻¹ на образцы PbN₆(Аб), а на образцы $PbN_6(Am)$ в течение 40 мин [11] приводит к снижению V_{ϕ} и i_{ϕ} . В результате электронно-микроскопических и спектрофотометрических исследований было установлено, что наблюдаемое понижение фоточувствительности азида свинца связано с затемнением поверхности образца твердофазным продуктом фотолиза и, как следствие, с уменьшением числа поглощенных азидом свинца квантов света.

После прекращения освещения на разных участках кинетических кривых V_{ϕ} наблюдается уча-

сток постгазовыделения. Установлено, что независимо от времени предварительного экспонирования кривые постгазовыделения спрямляются в координатах $\ln C_{N_2} = f(t)$. По тангенсу угла наклона зависимости $\ln C_{N_2} = f(t)$ оценили значения констант скорости (k) после прерывания освещения на разных участках кинетических кривых V_{ϕ} (табл. 1).

Рис. 2. Спектральное распределение V_{Φ} (1,5), i_{Φ} (2, 3) и U_{Φ} (4) до (1, 2) и после (3–5) облучения $PbN_{6}(AG)$ светом λ =380 нм и I=2·10¹⁵ квант см⁻²·C⁻¹

Таблица 2. Константы скорости процесса, ответственного за постгазовыделение (участок V), после прерывания света на I, II и IV участках кинетической кривой V₀

Οδηγγου	Константа скорости, <i>k</i> , с ⁻¹			
Ооразец	Участок I	Участок II	Участок IV	
PbN ₆ (A6)	(2,2±0,11)·10 ⁻²	(3,7±0,12)·10 ⁻²	(3,0±0,15)·10 ⁻³	

Полученные в настоящей работе и ранее [1–14] результаты исследований фотолиза азидов тяжелых металлов свидетельствуют о том, что основной причиной наблюдаемых (в результате световых обработок) изменений кинетических и спектральных кривых V_{ϕ} и i_{ϕ} является формирование на освещаемой поверхности образцов твердофазного продукта фотолиза азида свинца.

Для идентификации твердофазного продукта фотолиза $PbN_6(A6)$ воспользовались подходом, предложенным в [18–20]. Для обнаружения частиц металла в диэлектриках авторы [18–20] предложили сопоставить экспериментально наблюдаемую зависимость фототока от частоты излучения с током фотоэмиссии на границе раздела «металл-диэлектрик». На примере бромида и хлорида серебра авторами [18–20] было получено полное согласие теории и эксперимента.

Ток фотоэмиссии на границе $PbN_6(Ab) - Pb$, вызываемый монохроматическим светом частоты $\omega > \omega_0$, где ω_0 – красная граница фотоэффекта, рассчитывали по [18–20]:

$$I = A(\omega - \omega_0)^2 f(\gamma),$$

$$f(\gamma) = \int_0^1 \frac{2(1-x)dx}{1 - \exp[-(\gamma x)^{-\frac{1}{2}}]} =$$

$$= \left\{ \frac{1 + 8\gamma \exp(-\gamma^{-\frac{1}{2}}) + \dots, \ \gamma << 1,}{\frac{8}{15}\gamma^{\frac{1}{2}} + \frac{1}{2} + \frac{2}{9}\gamma^{-\frac{1}{2}} + \dots, \ \gamma >> 1} \right\}$$

где A — константа, определяемая свойствами металла и границы раздела; x — переменная интегрирования; $\gamma = h(\omega - \omega_0)/E_A$ — характеристический параметр; h — постоянная Планка; $E_A=33,5\varepsilon^{-2}m/m_0$ характеристическая энергия; m_0 — масса электрона, m — эффективная масса; ε — диэлектрическая проницаемость среды.

На рис. 3 сопоставлены расчетные значения тока фотоэмиссии на границе PbN₆(Аб) – Pb и зависимость і_ф от энергии кванта падающего света, измеренного для образцов PbN₆(Аб), подвергнутых предварительному освещению $\lambda = 380$ нм и $I = 2 \cdot 10^{15}$ квант см⁻²·с⁻¹ в течение 60 мин. Из рис. 4 следует, что расчетные значения тока фотоэмиссии на границе $PbN_6(A6) - Pb$ и экспериментально наблюдаемые значения фототока практически совпадают. В результате измерений КРП между относительным электродом из платины и PbN₆(Аб) и свинцом, искусственно нанесенным на поверхность таблеток азида свинца, было установлено, что фотохимическое разложение при воздействии света (λ =380 нм, *I*=2·10¹⁵ квант см⁻²·с⁻¹) до IV участка кинетических кривых V_{ϕ} и i_{ϕ} в условиях высокого вакуума приводит к увеличению значений КРП для PbN₆(Аб) (табл. 3), причем значения КРП для образцов, подвергнутых фотолизу, удовлетворительно совпадают с измеренными для искусственно нанесенного свинца ([14], табл. 3).

Рис. 3. Сопоставление расчетных (×) значений тока фотоэмиссии и экспериментальных значений фототока (∘) на границе PbN₆(Aб)−Pb

Таблица 3.	Контактная	разность	потенци	алов	(B)	межд
	PbN₀(Аб), Pb	и относит	гельным і	платин	овыл	л элек
	тродом при .	293 K				

Образоц	Давление, Па			
ооразец	1.10⁵	1.10-5	1.10-5*	1.10-5**
PbN₀(Aб)	-0,34	-0,21	+0,58	+0,59
Pb	+0,58	+0,59	+0,59	

*После предварительной тепловой обработки при 550 К в течение 180 мин.

**После предварительного фотолиза при λ =380 нм,

I=2·10¹⁵ квант см⁻² с⁻¹ в течение 90 мин.

При исследовании топографии твердофазного продукта фотолиза азида свинца, установлено, что при интенсивностях падающего света $I=4\cdot10^{14}...8\cdot10^{15}$ квант см⁻²·с⁻¹ и временах облучения образцов, соответствующих достижению участков I и II кинетической кривой V_{ϕ} , формируются частицы преимущественно размером 30...50 Å и 90...110 Å сферической формы. Количество частиц и их размер увеличиваются по мере роста интенсивности падающего света и времени экспонирования, соответственно.

Длинноволновый край ДО PbN₆(Аб) (также как и PbN₆(Ам) [11]) находится при λ =410 нм. Обработка образцов светом λ =380 нм в интервале интенсивностей $I=4.10^{14}...8.10^{15}$ квант см⁻²·с⁻¹, наряду с отсутствием заметных эффектов в собственной области поглощения PbN₆(Аб), приводит к существенному изменению вида спектральных кривых ДО в области $\lambda \ge 410$ нм. При временах облучения, соответствующих реализации I и II участков на кинетических кривых V_{ϕ} , наряду с уменьшением ДО в диапазоне 400...800 нм на спектральных кривых ДО, проявляются максимумы при 2≈440 нм и λ≈600 нм. Дальнейшее увеличение времени световой обработки до участка (III) приводит к уширению полос и смещению максимумов в длинноволновую область спектра. На рис. 4 представлены результаты сопоставления зависимости площадей (S), соответствующих изменению отражательной способности образцов, рассчитанных по спектрам ДО при различных временах и интенсивностях падающего света, с числом атомов фотолитического металла (N), рассчитанного по кинетическим кривым V_{ϕ} . Значения констант скорости фотолиза PbN₆(Аб) приведены в табл. 4.

Таблица 4. Константы скорости фотолиза PbN₆(AG) рассчитанные по кинетическим кривым скорости фотолиза (k_{1Φ}) и спектрам диффузного отражения (k_{1д0})

Интенсивность, квант-см ⁻² -с ⁻¹	$k_{1\Phi} \cdot 10^2$	<i>k</i> _{1Д0} ·10 ²
7,95.1014	4,15·0,24	4,22·0,32
1,27·10 ¹⁵	4,75.0,48	4,52.0,61
2,00.1015	4,87.0,27	4,67.0,44
3,17.1015	5,93.0,56	5,69.0,61
5,56·10 ¹⁵	3,50.0,23	3,66.0,17

Из представленной таблицы видно, что константы скорости фотолиза PbN₆(Аб), рассчитанные по кинетическим кривым скорости фотолиза $(k_{1\Phi})$ и спектрам ДО (k_{1DO}) , удовлетворительно совпадают. Приведенные в настоящей работе и ранее экспериментальные факты свидетельствуют о том, что твердофазным продуктом фотолиза $PbN_6(AG)$ (также как и $PbN_6(AM)$ [11]) является металлический свинец.

Для выяснения механизма влияния свинца (продукта фотолиза) на процесс фотолиза $PbN_6(AG)$ и, как следствие, на изменение кинетических кривых и кривых спектрального распределения V_{ϕ} и i_{ϕ} (в результате предварительной обработки образцов $\lambda=380$ нм, $I=2\cdot10^{15}$ квант см⁻²·c⁻¹) были измерены вольтамперные характеристики (BAX) и характеристики U_{ϕ} систем $PbN_6(AG) - Pb$ (продукт фотолиза).

Из анализа ВАХ и результатов измерений КРП (табл. 2, [14]) было установлено, что в области контакта PbN₆(Аб) – Pb (из-за несоответствия между работами выхода электронов из контактирующих партнеров) возникает двойной электрический слой. Контакт PbN₆(Аб) – Pb проявляет выпрямляющие свойства (прямому направлению соответствует внешнее напряжение, приложенное в направлении, противоположном КРП, т. е. плюс источника подан на PbN₆(Аб)). Контакт PbN₆(Ам) – Pb не проявляет выпрямляющих свойств [11]. Из рис. 2 видно, что полярность U_{ϕ} , оставаясь неизменной по всему спектру, соответствует положительному знаку со стороны азида свинца, а кривые спектрального распределения U_{ϕ} , V_{ϕ} , i_{ϕ} коррелируют друг с другом.

Полученные в настоящей работе и ранее [8, 9, 11, 13, 14] данные свидетельствуют, прежде всего, о том, что основными продуктами фотолиза PbN₆(Аб) при 293 К в условиях высокого вакуума (P=1·10⁻⁵ Па) являются металлический свинец и газообразный азот. Генерация U_{ϕ} , а также эффекты выпрямления на ВАХ — прямо свидетельствуют о формировании в процессе фотолиза азида свинца

микрогетерогенных систем $PbN_6(A\delta) - Pb$, темновые и фотопроцессы на границе раздела которых, по-видимому, обеспечивают изменение V_{ϕ} и i_{ϕ} в собственной области поглощения азида свинца, а также появление новых длинноволновых областей фоточувствительности (рис. 1, 2). Фотохимические проявления фотоэлектрических процессов в таких системах могут быть вызваны перераспределением под действием контактного поля генерированных светом носителей заряда [21]. Эти процессы приведут к существенным изменениям условий протекания фотолиза у предварительно фоторазложенных препаратов азида свинца. На рис. 5 приведена диаграмма энергетических зон гетеросистем PbN₆(Аб) – Pb, при построении которой использованы результаты измерений КРП, ВАХ, данные по спектральному распределению U_{ϕ} , V_{ϕ} , i_{ϕ} , а также результаты измерений внешнего фотоэффекта.

Рис. 5. Диаграмма энергетических зон систем $PbN_6(A6)$ -Pb. E_V – уровень потолка валентной зоны, E_C – уровень дна зоны проводимости, E_f – уровень Ферми, E_0 – уровень вакуума, R^+ – центр рекомбинации

При воздействии света из области собственного поглощения азида свинца имеет место интенсивная генерация электрон-дырочных пар в азиде свинца (рис. 5, переход 1)

$$N_3 \rightarrow N_3^0 + e$$

Так как квантовый выход фотолиза, оцененный по начальному участку кинетической кривой V_{ϕ} , составляет 0,002...0,01, то часть фотоиндуцируемых носителей заряда рекомбинирует (рис. 5, переходы 3)

$$R^++e \rightarrow R^0+p \rightarrow R^+$$

где R⁺ — центр рекомбинации, а также перераспределяются в контактном поле с переходом неравновесных электронов из зоны проводимости азида свинца в свинец

$$Pb_n^+ + e \rightarrow Pb_n^0$$

При этом формируется U_{ϕ} положительного знака со стороны азида свинца (рис. 3), что может способствовать дальнейшему увеличению размеров частиц

 $Pb_n^0+V_a \rightarrow [Pb_n^0V_a]+e \rightarrow [Pb_n^0V_ae]+V_a \rightarrow [Pb_n^02V_ae]+e \rightarrow Pb_{n+1}^0$, где V_a – анионная вакансия (азид свинца разупорядочен по Шоттки [23]).

По мере увеличения размера частиц фотолитического свинца будет возрастать число дырок в области пространственного заряда азида свинца. Результирующее увеличение концентрации дырок приведет к возрастанию i_{ϕ} , а также V_{ϕ} по принимаемым для фотолиза азида свинца реакциям — участок III (рис. 1)

$$p + V_{\kappa}^{-} \rightarrow V_{\kappa}^{0} + p \rightarrow V_{\kappa}^{+} \rightarrow 3 N_{2} + 2V_{a}^{+} + V_{\kappa}^{-},$$

где $V_a^{\, +}$ и $V_{\kappa}^{\, -}$ – анионная и катионная вакансии соответственно.

При воздействии на гетеросистемы PbN₆(Аб) – Рb света из длинноволновой области спектра имеет место фотоэмиссия дырок из свинца в валентную зону азида свинца (рис. 5, переход 2), что приводит к появлению U_{ϕ} , V_{ϕ} и i_{ϕ} у предварительно фоторазложенных препаратов в длинноволновой области спектра. Обнаруженные закономерности изменения фотолитическим свинцом фоточувствительности азида свинца в длинноволновой области спектра согласуются с изложенным. Действительно, формируется U_{ϕ} положительного знака со стороны азида свинца (рис. 2), энергетическое положение длинноволнового порога U_{ϕ} , V_{ϕ} и i_{ϕ} для систем PbN₆(Аб) – Pb удовлетворительно совпадает с величиной энергетического барьера для перехода дырок из металла в валентную зону азида свинца (рис. 5, переход 2), а энергия активации фотолиза систем PbN₆(Аб) – Pb в длинноволновой области спектра (*E*_a=0,51 эВ) удовлетворительно совпадает со значением энергии активации фотолиза в собственной области поглощения PbN₆(Аб) ($E_a=0,48$ эВ), а для систем PbN₆(Ам) – Рь отличается на величину энергетического порога для перехода электрона из валентной зоны PbN₆(Ам) в металл ($E_a=0,65$ эВ) и составляет $E_a=1,2$ эВ [11].

Для определения лимитирующей стадии процесса роста частиц фотолитического свинца оценили время, в течение которого подвижная анионная вакансия нейтрализует электрон или диффундирует к нейтральному центру. Время релаксации по механизму дрейфа анионных вакансий в кулоновском поле к локализованному электрону равно максвелловскому времени релаксации [24]

$$\tau_i = \varepsilon/4n\sigma_i$$

где ε – диэлектрическая проницаемость ($\varepsilon_{\rm PbN_6}$ =6), σ – удельная проводимость при 293 К ($\sigma_{\rm PbN_6}$ ≈1·10⁻¹² Ом⁻¹·см⁻¹), τ_i =0,4 с. Константа скорости фотолиза составит k!=2,5 с⁻¹.

Среднее время релаксации при диффузионном протекании процесса может быть оценено как [24]

$$\tau_{\partial} = e^2 / \sigma k_b a T$$

где e – заряд электрона; a – постоянная решетки ($a_{PbN_6} = 8 \cdot 10^{-10}$ см); T = 293 К, k_b – постоянная Больцмана. При T = 293 К $\tau_d = 80$ с. Константа скорости фотолиза (k^{II}) при этом составляет $k^{II} \approx 1,25 \cdot 10^{-2}$ с⁻¹.

Удовлетворительное совпадение констант скорости фотолиза (табл. 4) и констант скорости процесса, ответственного за постгазовыделение (табл. 2), с k^{II} дает основание полагать, что лимитирующей стадией процесса фотолиза PbN₆(Аб) является диффузия анионных вакансий к нейтральному центру.

Работа поддержана грантом Президента РФ для поддержки ведущих научных школ НШ – 20.2003.3.

СПИСОК ЛИТЕРАТУРЫ

- Янг Д. Кинетика разложения твердых веществ. М.: Мир, 1969. – 263 с.
- Савельев Г.Г., Гаврищенко Ю.В., Захаров Ю.А. Фото-ЭДС в азидах свинца и серебра // Известия вузов. Физика. – 1968. – Т. 71. – № 7. – С. 2–4.
- Deb S.K. Optical absorption spectra of azides // Trans. Farad. Soc. - 1969. - V. 65. - P. 3187-3194.
- Evans B.L., Yoffe A.D. Structure and stability of inorganic azides. II. Some physical and optical properties and the fast decomposition of solid monovalent inorganic azides // Proc. Roy. Soc. – 1959. – V. A 250. – P. 364–366.
- Verneker V.R.P., Forsylg A.C. // J. Phys. Chem. 1967. V. 72. № 12. – P. 3736.
- Jacnhs R.W.M., Tompkings F.C., Verneker V.R.P. // J. Phys. Chem. – 1962. – V. 66. – P. 1113.
- Verneker V.R.P. Photodecomposition of Solid Metal Azides // J. Phys. Chem. – 1968. – V. 72. – № 5. – P. 1733–1736.
- Суровой Э.П., Сирик С.М., Бугерко Л.Н. Катализ фоторазложения азида серебра продуктами реакции // Химическая физика. – 1999. – Т. 18. – № 2. – С. 44–46.
- Суровой Э.П., Захаров Ю.А., Бугерко Л.Н., Шурыгина Л.И. Автокатализ фотолиза азида таллия // Химия высоких энергий. – 1999. – Т. 33. – № 5. – С. 387–390.
- Суровой Э.П., Шурыгина Л.И., Бугерко Л.Н. Закономерности формирования микрогетерогенных систем при фотолизе азида таллия // Химическая физика. – 2003. – Т. 22. – № 9. – С. 24–28.
- Суровой Э.П., Бугерко Л.Н., Расматова С.В. Исследование кинетических закономерностей образования продуктов в процессе фотолиза азида свинца // Известия Томского политехнического университета. – 2005. – Т. 308. – № 1. – С. 93–97.
- Суровой Э.П., Шурыгина Л.И., Бугерко Л.Н. Фотолиз гетеросистем азид таллия – металл // Химическая физика. – 2001. – Т. 20. – № 12. – С. 15–22.
- Суровой Э.П., Бугерко Л.Н., Расматова С.В. Фотолиз гетеросистем «азид свинца – кадмий» // Известия Томского политехнического университета. – 2004. – Т. 307. – № 2. – С. 95–99.

- Суровой Э.П., Титов И.В., Бугерко Л.Н. Контактная разность потенциалов для азидов свинца, серебра и таллия // Известия Томского политехнического университета. – 2005. – Т. 308. – № 2. – С. 79–83.
- Суровой Э.П., Бугерко Л.Н., Захаров Ю.А., Расматова С.В. Закономерности формирования твердофазного продукта фотолиза гетеросистем азид свинца – металл // Материаловедение. – 2002. – № 9. – С. 27–33.
- А.с. 1325332 СССР. МКИ G01N 21/55. Устройство для измерения спектров отражения в вакууме / А.И. Турова, Г.П. Адушев, Э.П. Суровой и др. Заявлено 10.11.1985; Опубл. 24.07.1987, Бюл. № 27. – 5 с.: ил.
- Суровой Э.П., Сирик С.М., Захаров Ю.А., Бугерко Л.Н. Фотолиз гетеросистем азид серебра – оксид меди (I) // Журн. науч. и прикл. фотографии. – 2002. – Т. 47. – № 5. – С. 19–27.
- Барщевский Б.У., Гуревич Ю.Я. Частицы металла в диэлектриках // Физика твердого тела. – 1970. – Т. 12. – № 11. – С. 3380–3382.
- Баршевский Б.У., Гуревич Ю.Я. Связь эффекта Гершеля с электронной фотоэмиссией // Доклады АН СССР. – 1970. – Т. 191. – № 1. – С. 115–118.
- Бродский А.М., Гуревич Ю.Я. Теория электронной эмиссии из металлов. – М.: Наука, 1973. – 256 с.
- Милнс А., Фойхт Д. Гетеропереходы и переходы металл полупроводник. – М.: Мир, 1975. – 432 с.
- Колесников Л.В. Спектры энергетических состояний и некоторые особенности реакции разложения азидов тяжелых металлов: Автореф. дис. ... канд. хим. наук. – Минск, 1978. – 21 с.
- 23. Захаров Ю.А., Савельев Г.Г., Шечков Г.Т. Влияние добавок Си²⁺ и Аg⁺ на термическое разложение, электропроводность и фотопроводимость азида свинца // Известия вузов. Химия и хим. технология. – 1967. – № 11. – С. 1191–1194.
- Мейкляр П.В. Физические процессы при образовании скрытого фотографического изображения. – М.: Наука, 1972. – 399 с.

Поступила 08.12.2006 г.