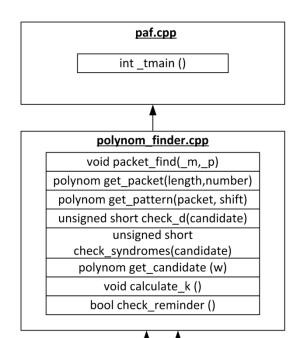
ПРИМЕРЫ РЕАЛИЗАЦИИ АЛГОРИТМА ПОИСКА ОБРАЗУЮЩИХ ПОЛИНОМОВ ДЛЯ ЦИКЛИЧЕСКИХ КОДОВ, ИСПРАВЛЯЮЩИХ ПАКЕТНЫЕ ОШИБКИ

Мыцко Е.А.

Hаучный руководитель: А.Н. Мальчуков Томский политехнический университет evgenvt@tpu.ru, 1man@tpu.ru

Ввеление

Реализация алгоритма поиска образующих полиномов для помехоустойчивых кодов [1], исправляющих независимые ошибки приведена в работе [2]. Основными параметрами, вводимыми пользователем, явяляются информационного блока - т и кратность исправляемых ошибок - p. Поиск осуществляется первого полинома, удовлетворящего необходимым и достаточным условиям [3]. Далее приведены примеры программной реализации алгоритма поиска образующих полиномов для построения полиномиальных помехоустойчивых кодов, исправляющих пакетные ошибки.


Описание программной реализации алгоритма

Для поиска образующего полинома, применяемого при построении помехоустойчивых кодов, исправляющих пакетные ошибки разработано программное обеспечение на языке С++ с применением объектно-ориентированного программирования. На рис. 1 представлена структура ПО поиска образующего полинома. Всего программа состоит из 3 классов для работы с полиномиальной арифметикой и основного файла программы:

- paf .cpp основная программа для ввода параметров поиска; Вызывает метод раскеt_find класса ploynom_finder для поиска;
- polynom_finder.cpp основной класс поиска полинома и вывода результатов, содержит объекты классов polynom и codeword; Класс включает следующие основные методы:
 - packet_find основной метод поиска образующего полинома для пакетных ошибок. В качестве параметров выступают _m длина информационного блока; _p кратность исправляемых ошибок;
 - *get_packet* метод получения пакета ошибок для заданной кратности (*p*) и длины пакета;
 - **get_pattern** метод получения шаблона ошибки со сдвигом **shift** для заданного пакета **packet**;
 - check_d метод проверки расстояния Хэмминга (проверка необходимого условие для образующего полинома [2]);
 - *check_syndromes* метод проверки уникальности остатков от деления шаблонов ошибок на образующий полином (проверка

- достаточного условия для образующего полинома [2]);
- *get_candidate* метод получения полинома веса *w*, который будет проверяться на выполнение необходимых и достаточных условий;
- *calculate_k* метод вычисления длины контрольного блока;
- *check_reminder* метод проверки остатка от деления полинома $x^n + 1$ на образующий полином (проверка второго достаточного условия).
- *polynom.cpp* класс, реализующий преобразование данных из нулей и единиц в строковом представлении в тип polynom, для выполнения арифметических операций; Класс включает следующие основные метолы:
 - polynom конструктор класса, преобразует массив символов из нулей и единиц в объект типа polynom;
 - *shift* метод, реализующий свдиг полинома на 1 бит вправо;
 - *increment* метод, увеличвающий значение полинома на единицу;
 - *print* –метод для вывода полинома на экран;
 - reminder метод получения остатка от деления;
 - *xored* метод сложения по модулю 2;
 - compare метод сравнения полиномов.
- *codeword.cpp* класс для создания кодового слова на основе образующего полинома и заданных параметров *m* и *p*. Класс включает следующие основные методы:
 - *codeword* конструктор класса, строит кодовое слово на основе информационного блока *data* и образующего полинома *generator*;
 - **get_distance** метод получения кодового расстояния слова;
 - *full_print* вывод полной информации о кодовом слове (информационный блок, образующий полином, вес, длина);
 - *check_length* метод проверки корректности длины кодового слова.

Далее приведён пример основной программы поиска образующего полинома. В бесконечном цикле вызываются методы check_d и check_syndromes до тех пор, пока не будет найден образующий полином.

polynom.cpp polynom polynom(_ind, length) void check_length() void shift() void increment() void print() void reminder(polynom) void xored(polynom) unsigned short compare(polynom)

codeword.cpp codeword codeword(data, generator) unsigned short get_distance () void increment() void full_print() void check_length()

Рис. 1. Структура программы поиска образующих полиномов

```
do {
         polynom candidate = get_candidate(w);
         do {
                   if( check_d(candidate)){
          if (check syndromes(candidate)) {
                   found = true;
                            candidate.print(); } }
         if( !found ) candidate.shift();
         } while(!candidate.shifted && !found);
         if(!found) {
         if (w == k)
             k ++;
             n ++;
             w = d;
                   else w++;
} while(!found);
```

На рис.2 приведен пример работы программы поиска образующего полинома. Для поиска необходимо ввести диапазон для m — длины информационного блока и для p — кратности исправляемых ошибок.

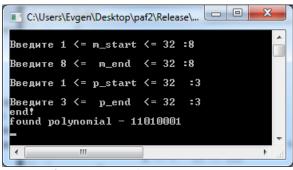


Рис. 2 Примеры работы программы поиска образующего полинома для m = 8, p = 3

Результаты поиска образующего полинома записываются в файл « m_p .txt», где m и p — параметры, введённые пользователем. Данные записываются в формате m_p ,k,polynom. Таким образом для параметровт m=8, p=3 в файл-отчёт запишется строка 8,3,7,11010001.

Заключение

В данной работе рассмотрены примеры программной реализации алгоритма поиска образующих полиномов ДЛЯ построения помехоустойчивых кодов, исправляющих пакетные ошибки. Рассмотрена структура программы, подробно описаны все классы и их методы для реализации поиска. Приведены примеры кода и работы программы поиска обрающуего полинома на примере блока данных длиной 8 бит и кратности исправляемых ошибок 3. Приведен пример выходного файла-отчёта с результатами поиска образующего полинома.

Список литературы

- 1. Морелос-Сарагоса Р. Искусство помехоустойчивого кодирования: методы, алгоритмы, применение: учебное пособие: пер. с англ. М.:Техносфера, 2006. 320 с.
- 2. Mytsko E. A., Malchukov A. N. Adaptation of technology MPI and OpenMP to search for the generators polynomials // 9th International Forum on Strategic Technology (IFOST-2014): Proceedings, Chittagong, October 21-23, 2014. Chittagong: CUET, 2014 p. 5-8.
- 3. Мальчуков А.Н. Алгоритмическое и программное обеспечение системы для разработки кодеков помехоустойчивых кодов : диссертация кандидата технических наук : 05.13.11 / Мальчуков Андрей Николаевич; [Место защиты: Том. политехн. ун-т].- Томск, 2008.- 151 с.: ил. РГБ ОД, 61 09-5/472.