- Николис Г., Пригожин И. Познание сложного. М.: Мир, 1990. – 342 с.
- Пригожин И. От существующего к возникающему. Время и сложность в физических науках. – М.: Наука, 1985. – 327 с.
- Пригожин И., Стенгерс И. Порядок из хаоса. Новый диалог человека с природой. Пер. с англ. Ю.А. Данилова. 3-е изд. – М.: Эдиториал УРСС, 2001. – 312 с.
- Николис Г., Пригожин И. Самоорганизация в неравновесных системах. – М.: Мир, 1979. – 512 с.
- 11. Хакен Г. Синергетика. М.: Мир, 1980. 406 с.
- Вернадский В.И. История природных вод. М.: Наука, 2003. 751 с.
- Пиннекер Е.В., Писарский Б.И., Шварцев С.Л. и др. Основы гидрогеологии. Общая гидрогеология. – Новосибирск: Наука, 1980. – 231 с.
- Львович М.И. Мировые водные ресурсы и их будущее. М.: Мысль, 1974. – 448 с.
- Алексеев В.А., Рыженко Б.Н., Шварцев С.Л. и др. Геологическая эволюция и самоорганизация системы вода – порода. Т. 1. Система вода – порода в земной коре: взаимодействие, кинетика, равновесие, моделирование. – Новосибирск: Изд. СО РАН, 2005. – 244 с.
- Ковалевский В.С. Условия формирования и прогнозы естественного режима подземных вод. – М.: Недра, 1973. – 153 с.
- Шварцев С.Л. Гидрогеохимия зоны гипергенеза. Изд. 2-е испр. и доп. – М.: Недра, 1998. – 367 с.
- Алексеев В.А. Кинетика и механизмы реакций полевых шпатов с водными растворами. – М.: ГЕОС, 2002. – 256 с.
- Шварцев С.Л. Прогрессивная самоорганизация в системе вода – порода // Известия РАЕН. Секц. наук о Земле. – 2005. – Вып. 13. – С. 139–152.

- O'Neil J.R., Taylor H.P. The oxygen isotope and cation exchange chemistry of feldspars // Amer. Miner. – 1967. – V. 52. – № 9–10. – P. 1414–1437.
- Rubie D.C., Thompson A.B. Kinetics of metamorphic reactions at elevated temperatures and pressures: an appraisal of available experimental data // Advances in Physical Geoghemistry. V. 4. Metamorphic Reactions: kinetics, textures and deformation. – New York: Springer-Verlag, 1985. – P. 26–79.
- Kerrick D.M., Lasaga A.C., Raeburn S.P. Kinetics of heterogeneous reactions // Reviews in Mineralogy. V. 26. Contact Metamorphism. Washington: Miner. Soc. Amer. – 1991. – P. 583–671.
- Pilla G., Sacchi E., Zuppi G., Braga G., Ciancetti G. Hydrogeochemistry and isotopegeochemistry as tools for groundwater hydrodynamic investigation in multilayer aquifers: a case study from Lomellina, Po plain, South-Western Lombardy, Italy // Hydrogeol. J. 2006. V. 14. № 5. P. 795–808.
- Cloutier V., Lefebvre R., Savard M.M., Bourque E., Therrien R. Hydrogeochemistry and groundwater origin of the Basses-Laurentides sedimentary rock aquifer system, St. Lawrence Lowlands, Quebec, Canada // Hydrogeol. J. – 2006. – V. 14. – № 4. – P. 573–590.
- Gascoyne M., Davison C.C., Ross J.D., Pearson R. Saline groundwaters and brines in plutons in the Canadian Shield // Geol. Assoctat. of Canada Special Paper. – 1987. – № 33. – P. 53–68
- Gascoyne M. Hydrogeochemistry, groundwater ages and sources of salts in a granitic batholith on the Canadian Shield, southeastern Manitoba // Appl. Geochem. – 2004. – V. 19. – № 4. – P. 519–560.

Поступила 02.07.2007 г.

УДК 550.42:577.4(571.1)

ФОРМЫ МИГРАЦИИ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ В ПОДЗЕМНЫХ ВОДАХ БАССЕЙНА р. КАТУНЬ В ЕЕ СРЕДНЕМ ТЕЧЕНИИ

Ю.Ю. Лоханова, Н.М. Рассказов

Томский политехнический университет E-mail: Julia-tomsk2004@rambler.ru

Приведена характеристика состояния химических элементов состава подземных вод бассейна р. Катунь (Горный Алтай), выделены основные формы миграции макро- и микроэлементов: Na⁺, Mg²⁺, Ca²⁺, Mn²⁺, Fe²⁺, Pb²⁺, Cu²⁺, Zn²⁺. Проведены статистические расчеты, целью которых являлось подтверждение результатов моделирования процессов комплексообразования.

Введение

Исследованием форм миграции элементов в природных водах занимались в разные годы зарубежные и отечественные исследователи: Р.М. Гаррелс, Ч.Л. Крайст, С.Л. Шварцев, С.Р. Крайнов, В.М. Швец, Г.Б. Наумов, Б.Н. Рыженко, П.Н. Линник, Б.И. Набиванец и многие другие. Достижения этих исследователей позволяют нам решать задачи моделирования процессов формирования состава подземных вод.

Целью данной работы является выделение главных форм миграции ряда компонентов в подземных водах бассейна р. Катунь (Горный Алтай) в среднем течении.

Растворенное состояние химических элементов в природных водах чрезвычайно разнообразно. Некоторые элементы склонны образовывать только сравнительно простые соединения, другие – сложные ассоциаты, в том числе с органическими лигандами. Основные формы миграции элементов зависят не только от свойств самого элемента (катионы или анионы), но и от внешних факторов миграции (pH, Eh среды, активные концентрации ионов-комплексообразователей и др.).

С.Р. Крайнов и В.М. Швец считают, что «миграция элементов в подземных водах в виде сложных ионных и молекулярных ассоциатов имеет очень важные последствия. Разные соединения одного и того же элемента имеют различные термодинамические параметры (свободные энергии, коэффициенты ионной и молекулярной диффузии). Поэтому процессы массопереноса, растворения-кристаллизации, ионного обмена и прочие, составляющие основу процесса формирования химического состава подземных вод, невозможно правильно интерпретировать и прогнозировать без знания форм переноса элементов. Именно эти формы определяют возможность и геологическую значимость процессов, а также их кинетику. При образовании устойчивых комплексных соединений происходит смещение равновесий в геохимических процессах (в растворении, выщелачивании, осаждении и соосаждении, сорбции, ионном обмене, окислении-восстановлении) в сторону водной фазы» [1. С. 33].

Физико-химические расчеты играют роль ориентира при гидрогеохимических исследованиях, их результаты могут быть использованы для приблизительной оценки и вероятностного прогнозирования реальных геохимических процессов. Однако, эти расчеты зачастую базируются на *аналитических* данных о составе вод, суммирующих свободные и связанные формы элементов, что не вполне правомерно при попытке воссоздать процессы, идущие в реальной системе.

Материалом для исследований явились данные, полученные в результате опробования водных объектов в регионе, которые проводились сотрудниками Томского филиала института нефтегазовой геологии и геофизики СО РАН и сотрудниками Томского политехнического университета с участием авторов (2005 г.).

Методика физико-химических исследований комплексообразования достаточно подробно изложена в [1–3]. Базовые положения теории заключаются в следующем.

Так называемые комплексные соединения образуются при взаимодействии иона-комплексообразователя (Ме) и лигандов (А) органического или неорганического происхождения:

$MeA_m^{mk+n}=Me^{n+}+mA^{k-}$.

Характеристикой комплексного соединения служит константа устойчивости *K*_v –

$$K_{y(T,P)} = \frac{[MeA_m^{mk+n}]}{[Me^{n+1}][A^{k-1}]^m}$$

где $[Me^{n+}]$ — молярная концентрация элемента с зарядом n+ в незакомплексованной форме; $[A^{k-}]$ молярная концентрация адденда A с зарядом k^- ; $[MeA_m^{mk+n}]$ — молярная концентрация комплексного соединения, имеющего суммарный заряд mk+n.

Диссоциация комплексного соединения, как правило, происходит ступенчато по типовой схеме: Me(A)₂ ↔ MeA⁺+A⁻ ↔ Me²⁺+2A⁻, поэтому использу-

ют как полные константы устойчивости, так и ступенчатые. В равновесных стандартных условиях (при 25 °С и 0,1 Па) константа устойчивости комплексного соединения K_y связана со свободной энергией Гиббса выражением $\Delta G^0 = -1,364 \cdot \lg K_y$, где $\Delta G^0 = \Sigma \Delta G^0_{\text{прод}} - \Sigma \Delta G^0_{\text{нсх}}$.

Энергия Гиббса, рассчитанная такими исследователями как И.Л. Шок, Х.К. Хэлгесон, П.Н. Линник, Б.И. Набиванец, И.И. Волков, Г.А. Соломин, И.К. Карпов и др. для различных соединений, включается в базу данных. На основании энергий Гиббса и данных о физических условиях реакции, вычисляются константы устойчивости комплекса элемента. Но количественные соотношения между состояниями какого-либо присутствующего в воде элемента-комплексообразователя зависят не только от констант устойчивости его соединений, но и от концентраций аддендов. Особое значение для комплексообразования имеют фульвокислоты, т. к. способность к комплексообразованию гуминовых и прочих органических кислот намного слабее.

Расчет концентраций различных форм миграции элементов в подземных водах производился с помощью программного модуля для ПК HydrGeo (автор – М.Б. Букаты, ТФ ИНГГ СО РАН) [4].

Описание объекта исследований

Бассейн среднего течения р. Катунь (Горный Алтай) занимает площадь от устья реки Коксы до устья р. Смульта. Гидрогеологические условия определяются значительной расчлененностью рельефа, активным водообменном и наличием двух водоносных комплексов пород — аллювиальных образований, приуроченных к долинам рек, и трещиноватых коренных, в основном палеозойских, пород, разбитых дизьюнктивными тектоническими разрушениями, которые активно влияет на движение подземных вод. Воды зон этих нарушений выявлены и изучены слабо. Основное значение имеет воды трещиноватости коренных пород и аллювиальных отложений.

В связи с этим процесс формирования их химического состава протекает в различных условиях. Модуль подземного стока составляет в регионе 3,2...4,0 л/с·км². Приточность находится в пределах 0,1...0,4 км³/год [5]. Интервал опробования в скважинах в основном составляет до 100 м от дневной поверхности (максимальная глубина скважин 160 м).

Подземные воды рассматриваемой территории повсеместно пресные с минерализацией 70...700 мг/л, как правило, нейтральные или слабощелочные (pH 7,0...8,8); по составу гидрокарбонатные кальциевые. Более детальная характеристика геолого-гидрогеологических условий и геохимии подземных вод бассейна среднего течения р. Катунь дана в публикациях [6–9].

В данной работе изложены результаты исследований форм миграции основных макро- и микрокомпонентов, особенно тщательно нормируемых, без учета элемент-органических форм. Схема расположения точек опробования приведена на рис. 1, исходные данные для расчетов – в табл. 1, результаты расчетов представлены в табл. 2.

Рис. 1. Схема расположения точек наблюдений: 1) наблюдательные (режимные) гидрогеологические скважины; 2) родники и их номера

Результаты физико-химических расчетов

В табл. 2 показаны результаты расчетов комплексообразования в водах опробованных режимных родников, которые позволяют сделать следующие выводы.

Без учета соединений с органическими радикалами, преимущественно в ионной форме, мигрируют ионы Na, K, Ca, Mg, Cl, HCO₃, F, NO₂, NO₃, HCO₃, Fe и Mn. Доля их составляет, как правило, более 90 %, что вполне закономерно, учитывая околонейтральные значения pH вод, окислительную геохимическую обстановку, низкую минерализацию растворов и невысокие значения их ионной силы (0,01...0,02).

Среди форм миграции макроэлементов (табл. 2) преобладают комплексы-ассоциаты с участием доминирующих анионов HCO₃⁻, CO₃²⁻ изредка встречаются соединения с Cl⁻ и F⁻. Гидроокисные формы миграции более характерны для элементов-гидролизатов: основной формами миграции Si⁴⁺ (более 50 %) является H₄SiO₄.

В то же время, для Al практически единственной миграционной формой является продукты диссоциации Al (AlO_2^- и $AlO(OH)_2^-$), т. к. концентрации Al столь малы, что недостаточны для образования слаборастворимых гидроокислов Al³⁺, AlOH²⁺ или AlO(OH)₃. Si, содержащийся в водах Катунского полигона в количествах, близких к предельно допустимому, находится в виде двух основных форм миграции – доминирующей – H_4SiO_4 и подчиненной – SiO₂, в количестве 52 и 48 % соответственно.

Таблица 1.	Использованные в расчетах данные по составу
	подземных вод бассейна среднего течения р. Ка-
	тунь (по результатам анализов ТФ ИНГГ и ТПУ,
	2005 г., кроме CO ₃ ²⁻ – 1999 г.; Нд ²⁺ – 2003 г.)

	Ед. изм.	Пункты отбора проб - родники						
Показатель		Толго- ек	До- рож- ный	Скаль ный	Каин- заир- ский	Пи- тье- вой	Куюс- ский	
		1	2	3	4	5	6	
рН		7,9	7,8	7,7	7,7	7,6	8	
Ионная сила	моль/л	0,01	0,01	0,01	0,01	0,01	0,01	
Минерали- зация		360,0	350,0	390,0	290,0	370,0	290,0	
Na ⁺		3,50	4,00	7,00	0,80	8,00	5,00	
Ca ²⁺		44,0	56,0	60,0	60,0	72,0	52,0	
Mg ²⁺		9,80	20,70	25,60	12,20	9,80	10,50	
K+		1,50	1,10	1,20	1,50	0,80	0,90	
Fe ²⁺		0,8	0,01	0,05	0,08	0,07	0,03	
Fe ³⁺		2	0,1	0,02	0,02	0,02	0,02	
Mn ²⁺		68,70	18,60	20,40	12,00	10,40	12,70	
NH4 ⁺	мі/л	0,10	0,08	0,10	0,10	0,07	0,06	
Al ³⁺		0,25	0,25	0,25	0,25	0,25	0,25	
Cl⁻		1,56	1,42	1,42	3,55	2,84	1,28	
HCO3 ⁻		268,4	292,8	366,0	268,4	329,4	244,0	
F⁻		0,15	0,12	0,56	0,10	0,22	0,18	
NO ₂ ⁻		0,39	0,01	0,01	0,01	0,01	0,01	
NO ₃ ⁻		4,03	3,33	5,90	17,24	16,91	3,25	
SiO ₂ -		3,70	3,70	3,35	4,15	4,15	4,80	
CO32-		0,4	1,2	0,4	0,6	0,4	0,4	
Pb ²⁺		2,73	1,25	1,09	0,46	-	0,17	
Cu ²⁺		10,6	1,98	3,28	0,75	-	0,03	
Cd ²⁺		0,11	0,1	0,09	0,03	-	0,07	
Li+	IVIKI / JI	9,00	7,00	9,00	8,00	-	9,00	
Zn ²⁺		29,2	49,3	26,7	0,7	-	1,93	
Hg ²⁺		0,002	0,002	0,001	0,003	-	0,001	

По результатам расчетов, основными миграционными формами для Mn оказались Mn^{2+} (более 70 %), а так же MnHCO₃⁺, MnCO₃⁰ и Mn(HCO₃)₂.

Несколько иные формы миграции характерны для Fe. В данной геохимической обстановке основной формой миграции Fe является $Fe(OH)_2^+$ (более 68 %), а второстепенными – $Fe(OH)_3^0$, $Fe(OH)_2^+$, $Fe(OH)_4^-$. Из соединений Fe двухвалентного преобладает ион Fe^{2+} , второстепенными его формами являются $FeHCO_3^+$, $FeCO_3^0$, $Fe(HCO_3)_2$.

Приведенные на рис. 2 результаты расчета основных форм миграции *микрокомпонентов* в водах бассейна р. Катунь показывают, что доминирующими в растворе являются гидрокарбонат- и карбонат-комплексы с ионами Li, Cu, Zn, Cd и Pb.

Формы ми-	Пункты отбора проб						
грации	1	2	3	4	5	6	
NH4 ⁺	<u>0,09</u> 95,05	<u>0,07</u> 90,19	<u>0,09</u> 93,76	<u>0,09</u> 95,10	<u>0,06</u> 89,89	<u>0,05</u> 91,38	
NH ₄ HCO ₃	0,00	0,00	0,26	0,19	0,24	0,19	
NH ₄ CO ₃ ⁻	0,00	0,00	0,00	0,00	0,00	0,00	
NH₄Cl	0,00	0,00	0,00	0,00	0,00	0,00	
NH₄ OH	0,00	-	0,39	0,41	0,38	0,39	
(NH ₄) ₂ CO ₃	0,01	0,00	5,19	3,89	9,10	7,64	
NH ₃ °	0,00	-	0,39	0,41	0,38	0,39	
NO -	039	0,009	0,009	0,009	0,009	0,009	
NO ₂	99,86	99,86	99,87	99,86	99,87	99,86	
HNO ₂	0,00	0,13	-	-	-	-	
Mg ²⁺	<u>9,11</u> 92,97	<u>20,07</u> 96,96	<u>24,75</u> 96,68	<u>11,9</u> 97,56	<u>9,49</u> 96,92	<u>10,23</u> 97,41	
MgHCO ₃ ⁺	1,33	0,56	3,07	2,27	2,87	2,42	
MgCO ₃	0,05	0,02	0,10	0,08	0,09	0,08	
MgC +	0,00	0,00	0,00	0,00	0,00	0,00	
$Mg(HCO_3)_2$	0,06	0,03	0,09	0,05	0,09	0,06	
MgCl ₂	0,00	0,00	0,00	0,00	0,00	0,00	
MgF ⁺	0,00	1,15	0,04	0,03	0,02	0,01	
MgOH+	0,00	-	0,00	0,00	0,00	0,00	
Na⁺	<u>3,45</u> 98,58	<u>3,98</u> 99,43	<u>6,96</u> 99,37	<u>0,79</u> 99,54	<u>7,95</u> 99,40	<u>4,98</u> 99,52	
NaHCO ₃	0,37	0,07	0,61	0,44	0,59	0,47	
NaCl	0,00	0,01	0,00	0,00	0,00	0,00	
NaH ₃ SiO ₄	0,00	0,00	0,00	0,00	0,00	0,00	
NaHSiO ₃	0,00	0,01	0,00	0,00	0,00	0,00	
Al³⁺	0,00	0,00	0,00	0,00	0,00	0,00	
(AI O ₂) ⁻	<u>0,24</u> 96,64	<u>0,25</u> 100,00	<u>0,23</u> 92,89	<u>0,23</u> 92,82	<u>0,23</u> 92,88	<u>0,23</u> 92,82	
AI (OH) ₃	0,00	0,00	0,00	0,00	0,00	0,00	
(AI O(OH) ₂) ⁻	3,6	0,00	7,11	7,18	7,12	7,17	
SiO	<u>1,81</u>	<u>1,81</u>	<u>1,64</u>	<u>2,03</u>	<u>2,03</u>	<u>2,35</u>	
	48,91	48,91	48,91	48,91	48,91	48,91	
(H ₃ Si O ₄) ⁻	0,11	0,11	0,11	0,11	0,11	0,11	
H_4 SiO ₄	50,84	50,84	50,84	50,84	50,84	50,84	
(H Si O ₃) [−]	0,13	0,12	0,13	0,13	0,13	0,13	
K⁺	<u>1,37</u>	<u>1,09</u>	<u>1,19</u>	<u>1,49</u>	<u>0,79</u>	<u>0,89</u>	
	91,/1	99,41	99,30	99,54	33,39	33,51	
	0,03	0,00	0,63	0,46	0,60	0,48	
	0,00	0,00	0,00	0,00	0,01	0,00	
KCI	0,00	0,00	0,00	0,00	0,00	0,00	
R 2CU3	12.40	U,UU	0,00 57.73	0,00	0,00	0,00	
Ca ²⁺	<u>42,49</u> 96 56	96.62	96 77	97 74	<u>09,41</u> 96 39	97 04	
	2 98	0.85	3 78	2 45	3 20	2 61	
Ca (0,	0.27	0.06	0.74	0.18	0.23	0.19	
	0,22	0,00	0,24	0,10	0,25	0,15	
$Ca((\Omega_{2}))^{2^{-}}$	0,15	0,00	0,10	0,09	0.00	0.00	
	0.00	0,00 -	0.07	0.02	0,00 -	0,00	
	0,00	0.04	0.00	0.00	0.00	0,00	
				0,00	0,00	0,00	
	0,01	0,04	0.00	0.00	0 00	0 00	
CaCl+ CaCl2	0,01	0,04	0,00	0,00	0,00	0,00	
CaCl ⁺ CaCl ₂ CaCl ₂ CaF ⁺ Mn ²⁺	0,01 0,00 0,01 <u>48,11</u> 70 03	0,04 0,00 0,36 <u>14,45</u> 77 67	0,00 0,01 <u>15,53</u> 76 33	0,00 0,01 <u>9,74</u> 81 19	0,00 0,00 <u>8,03</u> 77 17	0,00 0,00 <u>10,18</u> 80 19	
Ca(VU ₃ CaCl ⁺ CaCl ₂ CaF ⁺ Mn ²⁺	0,01 0,00 0,01 <u>48,11</u> 70,03 0 01	0,04 0,00 0,36 <u>14,45</u> 77,67	0,00 0,01 <u>15,53</u> 76,33 11 89	0,00 0,01 <u>9,74</u> 81,19 9,50	0,00 0,00 <u>8,03</u> 77,17 11 49	0,00 0,00 <u>10,18</u> 80,19 9 99	
Ca(VO ₃ CaCl ⁺ CaCl ₂ CaF ⁺ (MnHCO ₃) ⁺ MnCO ₅	0,01 0,00 <u>48,11</u> 70,03 0,01 0 01	0,04 0,00 0,36 <u>14,45</u> 77,67 0,00 0,00	0,00 0,01 <u>15,53</u> 76,33 11,89 10 74	0,00 0,01 <u>9,74</u> 81,19 9,50 8 69	0,00 0,00 <u>8,03</u> 77,17 11,49 10 39	0,00 0,00 <u>10,18</u> 80,19 9,99 9 15	

Таблица 2.	Результаты	расчета	ОСНОВНЫХ	форм	миграции
	макрокомпо	нентов в	подземных	водах,	%

$Mn(HCO_3)_2$	0,00	0,00	0,99	0,57	0,92	0,64
(Mn Cl)+	0,00	0,00	0,00	0,00	0,00	0,00
MnCl ₂	0,00	0,00	0,00	0,00	0,00	0,00
MnOH+	0,00	-	0,03	0,03	0,03	0,03
Fe ²⁺	<u>0,72</u> 90,56	<u>0,009</u> 94,66	<u>0,05</u> 94,26	<u>0,076</u> 95,63	<u>0,066</u> 94,51	<u>0,029</u> 95,37
(Fe HCO ₃) ⁺	0,04	0,00	2,89	2,21	2,77	2,34
FeCO ₃	0,03	0,00	2,09	1,62	2,09	1,72
Fe (HCO ₃) ₂	0,01	0,00	0,49	0,27	0,44	0,30
FeCl ⁺	0,00	0,00	0,00	0,00	0,00	0,00
Fe OH⁺	0,00	-	0,25	0,27	0,25	0,27
Fe³⁺	0,00	0,00	0,00	0,00	0,00	0,00
(Fe OH) ²⁺	6,23	4,79	3,26	2,80	2,82	3,06
(Fe (OH) ₂) ⁺	<u>1,41</u> 70,41	<u>0,068</u> 68,21	<u>0,014</u> 71,23	<u>0,018</u> 88,86	<u>0,016</u> 78,91	<u>0,002</u> 80,30
Fe (OH) ₃	23,32	26,90	25,26	8,02	17,96	16,48
(Fe (OH) ₄) ⁻	0,10	0,19	0,35	0,43	0,43	0,29
Тримечание: мг/л – содержание формы компонента в воде, чи						

г примечание: мг/л – содержание формы компонента в воде, число в знаменателе (%), приходящийся на это содержание в воде

Группа ОН дает второстепенные комплексы Pb, Zn, Cu и Cd в порядке уменьшения роли данного комплекса с названными элементами, но в среднем роль этих комплексов не превышает 1...2 % в случае Zn, и 20...40 % в случае Pb.

Комплексы миграции Hg, рассчитанные нами, указывают на преобладающую роль метилированной ртути $(Hg(NH_3)_2)^{2+}$. Очевидно, что на долю $Hg(NH_3)^{2+}$ приходиться не более 1 % от суммарного количества ртути в растворе.

Следует отметить, что неучтенные нами взаимодействия ионов раствора с органическими соединениями также могут влиять как на образование форм миграции элементов, так и на процессы минералообразования. Еще одним следствием присутствия в растворе органических веществ является преимущественное связывание ими микроэлементов, в то время как Ca²⁺ и Mg²⁺ образуют очень слабые по прочности соединения.

Фульвокислоты связывают в прочные органокомплексы от 0,0n до 50 % содержаний микроэлементов (особенно, Cd²⁺). Минимальная степень связывания ионов характерна для Li⁺ и Zn²⁺ (0,0n %, рис. 2, *г*, *д*), в то время как фульво-комплексы способны связывать от 0,0 до 16 % первоначального количества катионов Pb²⁺ и Cu²⁺ (рис. 2, *a*, *б*). И, наконец, максимальная степень связи характерна для Cd²⁺, достигая от 3 до 60 % (рис. 2, *в*).

Основные выводы

Компоненты Ca, Na, K, Mg, Fe, Cl и F мигрируют преимущественно в ионной форме, составляющей 95...99 % от их общего количества. Среди разнообразных форм миграции таких элементов или соединений как Mn и NH₄, ионная форма занимает только до 80...95 %; для Cd, Pb – всего 5...40 %, а для Cu, Zn и Li она составляет от 99...76 %. Максимальные значения связанности с фульвокислотами характерны для Cd (3...60 %). При гидрогеохимиче-

Рис. 2. Результаты расчета основных форм миграции микрокомпонентов

ских исследованиях необходимо обязательно учитывать степень связанности элементов в прочные комплексные соединения, т. к. степень их связан-

СПИСОК ЛИТЕРАТУРЫ

- Крайнов С.Р., Швец В.М. Геохимия подземных вод хозяйственно-питьевого назначения. – М.: Недра, 1987. – 237 с.
- Гаррелс Р.М., Крайст Ч.Л. Растворы, минералы, равновесия. М.: Мир, 1968. – 368 с.
- Линник П.Н., Набиванец Б.И. Формы миграции металлов в пресных поверхностных водах. – Л.: Гидрометеоиздат, 1986. – 272 с.
- Букаты М.Б. Геоинформационные системы и математическое моделирование. – Томск: Изд-во ТПУ, 2002. – 75 с.
- Шварцев С.Л., Воротников Б.А., Кусковский В.С. и др. Гидрогеохимические условия бассейна р. Катуни в зоне влияния проектируемого водохранилища // Катунский проект: проблемы экспертизы: Матер. к общ.-научн. конф. 13–14 апреля 1990 г. – Новосибирск, 1990. – Т. 1. – С. 62–63.
- Шварцев С.Л., Кусковский В.С., Савичев О.Г., Копылова Ю.Г., Лукин А.А., Домрочева Е.В. Эколого-геохимическое состояние подземных вод бассейна Катуни, используемых для хозяйственно-питьевых целей // Тенденции и перспективы развития

ности заметно сказывается на процессах миграции, сорбции, окисления-восстановления элементов или осаждения-растворения их соединений.

гидрогеологии и инженерной геологии в условиях рыночной экономики России. VI Толстихинские чтения: Тез. докл. научно-методич. конф. / СПбГИ(ТУ). – СПб., 1999. – С. 135–140.

- Катунь: экогеохимия ртути / Под ред. Н.А. Рослякова, В.С. Кусковского, Г.В. Нестеренко, С.Л. Шварцева и др. – Новосибирск: Изд-во СО РАН, 1992. – 180 с.
- Лоханова Ю.Ю., Рассказов Н.М. Геохимия природных вод бассейна р. Катунь в ее среднем течении // Известия Томского политехнического университета. – 2006. – Т. 309. – № 6. – С. 32–37.
- Шварцев С.Л. Гидрогеохимия зоны гипергенеза. 2-е изд., исправл. и доп. М.: Недра, 1998. 366 с.
- Копылова Ю.Г. Органическое вещество в подземных водах горных областей юго-востока Западной Сибири и изучение влияния органических кислот на миграцию химических элементов в водах. – Томск: Изд-во ТПИ, 1984. – 49 с.

Поступила 20.12.2006 г.