

Международная научно-практическая конференция «Физико-технические проблемы в науке, промышленности и медицине» Секция 4. Физико-химические и изотопные технологии в науке, промышленности и медицине

ПОВЫШЕНИЕ СМАЧИВАНИЯ ПОВЕРХНОСТИ ЯДЕРНЫХ ТРЕКОВЫХ МЕМБРАН ДЛЯ СОЗДАНИЯ ДРЕНАЖНОЙ СИСТЕМЫ ПРИ ЛЕЧЕНИИ ГЛАУКОМЫ

М.Е. Кузнецова, В.В. Сохорева

Национальный исследовательский Томский политехнический университет,

Россия, г. Томск, пр. Ленина, 30, 634050

E-mail: mek4@tpu.ru

Глаукома – это тяжелое заболевание глаз, которое сопровождается повышенным внутриглазным давлением (ВГД). Важную роль в поддержании определенного уровня ВГД играет внутриглазная жидкость (ВГЖ), которая регулирует обмен веществ во внутриглазных структурах. Восстановить отток ВГЖ можно с помощью хирургической операции с внедрением эксплантодренажа изготовленной из ядерной трековой мембраны (ТМ). Поверхность мембран и пор в классических ТМ обладают гидрофобными свойствами, т.е. имеют плохую смачиваемость. Для использования ТМ в качестве дренажного устройства необходимо предать поверхности мембраны гидрофильные свойства. В настоящей работе была проведена модификация поверхности ТМ из полиэтилентерефталата (ПЭТФ) с помощью обработки в плазме объемного самостоятельного разряда и термоинициированной прививки водного раствора акриловой (АК) и полиакриловой (ПАК) кислоты.

Обработка ТМ с помощью плазмы объемного самостоятельного разряда проводилась на импульсном электронном ускорителе ТЭУ - 500 с параметрами: максимальное напряжение на плазме разряда 20-22 кВ. Плотность энергии в разряде $\sim 6\cdot 10^{-4}$ Дж/см 2 в импульсе. Частота следования импульсов - 10^3 с $^{-1}$ [1]. После обработки был измерен краевой угол смачивания поверхности модифицированной мембраны с помощью метода «растекающейся капли» на установке EasyDrop Standard. В результате модификации поверхности ТМ с помощью плазмы объемного самостоятельного разряда и последующем исследовании краевого угла смачивания было выявлено, что краевой угол смачивания поверхности уменьшился на 35 градусов по сравнению с исходной мембраной.

При проведении термоинициированной прививочной полимеризации ПАК водный раствор АК (100 г/л, рН=2) предварительно отчищался от ингибитора на колонке Al₂O₃, затем переливался в круглодонную колбу, в которую помещались образцы ПЭТФ ТМ. Реакционные системы барботировали аргоном в течение 5 минут и затем колбы помещали в термостат. Полимеризация проводилась при 70 °C в течение 3ч 30 мин. После окончания полимеризации образцы вынимались из колбы, промывались в деионизированной воде, высушивались и затем был измерен краевой угол смачивания поверхности. В результате модификации поверхности ТМ с помощью термоинициированной прививки водного раствора АК и ПАК, и последующем исследовании краевого угла смачивания было выявлено, что краевой угол смачивания поверхности после прививки уменьшился на 46,9 градусов. Так же было установлено, что угол смачивания с прививкой АК на 17 градусов больше, чем с прививкой ПАК.

В ходе исследования зависимости краевого угла смачивания поверхности ТМ после термоинициированной прививки ПАК от температуры полимеризации было выявлено, что чем выше температура полимеризации, тем меньше угол смачивания поверхности ТМ.

СПИСОК ЛИТЕРАТУРЫ

1. Кузнецова М. Е., Сохорева В. В. Исследование характеристик ядерных трековых мембран для создания дренажной системы в лечении глаукомы [Электронный ресурс] // Перспективы развития фундаментальных

Международная научно-практическая конференция «Физико-технические проблемы в науке, промышленности и медицине» Секция 4. Физико-химические и изотопные технологии в науке, промышленности и медицине

наук: сборник научных трудов XI Международной конференция студентов и молодых ученых, Томск, 22-25 Апреля 2014. - Томск: ТПУ, 2014 - С. 117-119.

ДИНАМИЧЕСКАЯ ВЯЗКОСТЬ СПЛАВА ГАЛЛИЯ С ЛИТИЕМ

А.А. Орлов, Д.Г. Видяев, А.Э. Лемякин

Национальный исследовательский Томский политехнический университет,

Россия, г.Томск, пр. Ленина, 30, 634050

E-mail: vidyaevdg@tpu.ru

Для описания и контроля протекания процесса разделения в обменных колоннах существенное значение имеет вязкость взаимодействующих фаз, так как она определяет скорость течения фаз при их движении через контактные устройства в колонне, через различную арматуру и трубы. Поэтому, при разработке нами нового галламно-обменного метода разделения и очистки щелочных металлов [1], основанного на элементный обмен между двумя несмешивающимися фазами: раствором гидроксида щелочного металла и галламой - сплавом галлия со щелочным металлом, были проведены исследования влияние различных факторов на вязкость галламы.

Данная работа посвящена изучению зависимости динамической вязкости сплава галлия с литием от температуры и концентрации в нем лития. Измерения вязкости проводили с помощью амплитудно-амплитудного варианта низкочастотного вибрационного метода [2], в интервале температур 40–80°С при различной концентрации лития в сплаве (0; 0,6; 0,8; 1,0 моль/л). Ошибка измерений не превышала 1,5 %.

На основании полученных данных установлено, что вязкость галламы лития отличается от вязкости жидкого галлия. С ростом температуры значение вязкости сплава уменьшается и чем выше содержание в сплаве лития, тем в большей степени его вязкость зависит от температуры.

Кроме того, была исследована зависимости вязкости сплава от концентрации в нем лития при постоянной температуре. Показано, что до концентрации 0,6 моль/л вязкость сплава практически линейно растет с увеличением концентрации в нем лития. В дальнейшем, кривые вязкости более круто отклоняются вверх, что связано с началом образования твердой фазы. При концентрациях выше 1,5 моль/л сплав переходит в твердое состояние.

В результате проведенных экспериментов установлено, что в исследованном интервале температур вязкость сплава галлия с литием подчиняется уравнению Френкеля-Эйринга [3], для которого найдены значения энергии активации вязкого течения и предэкспоненциального множителя. Так, при концентрации лития в сплаве с галлием 0.6 моль/л величины энергии активации и предэкспоненциального множителя составили $1.05 \cdot 10^{-20}$ Дж и $3.46 \cdot 10^{-4}$ Па·с, соответственно.

Таким образом, показано, что с увеличением содержания лития в сплаве с галлием происходит увеличение вязкости сплава, а с увеличением температуры, наоборот, вязкость сплава уменьшается.

СПИСОК ЛИТЕРАТУРЫ

- 1. Тихомиров И.А., Орлов А.А., Видяев Д.Г. Галламно-обменный метод разделения щелочных металлов // Журн. физ. химии. -2003. -T.77. -№ 5. -C. 939-942.
- 2. Богословский А.В., Алтунина Л.К. Низкочастотный вибрационный метод исследования несмешивающихся жидкостей и границы их раздела // Межмолекулярные взаимодействия и электродные процессы в растворах. Новосибирск: Наука, 1987. С. 55-59.
- 3. Френкель Я.И. Кинетическая теория жидкостей. Л.: Наука, 1975. 592 с.