

Международная научно-практическая конференция «Физико-технические проблемы в науке, промышленности и медицине» Секция 5. Радиационные и пучково-плазменные технологии в науке, технике и медицине

В данной работе рассмотрены особенности получения ¹¹¹In с использованием классического циклотрона Томского политехнического университета типа Р7М, с целью обеспечения медицинских учреждений Восточной части России РФП на его основе.

С учетом, того что энергия пучка протонов в циклотроне равна 11 МэВ для производства 111 In была выбрана реакция 111 Cd(p, n) 111 In. Приемлемая наработка активности 111 In может быть получена только на обогащенном по изотопу 111 Cd (95,92 \pm 0,06)% металлическом кадмии.

Облучение мишени проводили в ускорительной камере, используя внутреннюю охлаждаемую мишень. В качестве мишени использовали медную пластину, покрытую 10 мкм слоем золота в качестве подложки, на которую наносили металлический кадмий. Внутренняя мишень крепилась на отдельном штоке источника ионов. Ток пучка протонов в камере, по крайней мере, в 2 раза больше, чем в выведенном пучке и достигает 60-80 мкА.

Для уменьшения тепловой нагрузки мишень ориентировали под углом 6° к пучку. Это позволило увеличить поверхность мишени и уменьшить физическую толщину мишенного материала без изменения пробега протонов в нём.

После облучения кадмий растворяли в 6N HBr, ¹¹¹In экстрагировали в диизопропиловый эфир, затем экстрагировали в 8М HCl, высушивали до сухого осадка. Осадок содержащий ¹¹¹In, растворяли в 0.05М HCl и получали готовый препарат, который по качественным показателям, соответствует требованиям к препарату «Индия хлорид, [¹¹¹In]», субстанция-раствор для приготовления радиофармацевтических препаратов

СПИСОК ЛИТЕРАТУРЫ

- 1. Lahiri S., Maiti M., Ghosh K. Production and separation of 111In: an important radionuclide in life sciences: a mini review // J. Radioanal. Nucl. Chem. -2013.-V.297.-P.309-318.
- 2. Jalilian A.R., Garousi J., Akhlaghi M., Rowshanfarzad P. Development ¹¹¹In labeled insulin for receptor imaging/therapy // J. Radioanal Nucl Chem. 2009. V.279. P. 791–400.
- 3. Tolmachev V., Feldwisch J., Lindborg M., A influence of an aliphatic linker between DOTA and synthetic ZHER2:342 affibody molecule on targeting properties of the 111 In-labeled conjugate // Nucl Med Biol. $-2011.-V.38.-N_{2}11.-P.697-706.$

РАДИАЦИОННО-СТИМУЛИРОВАННЫЙ ПЕРЕНОС ВОДОРОДА В МЕТАЛЛАХ

А.С. Долгов, Ю.И. Тюрин, Н.Н. Никитенков

Национальный исследовательский Томский политехнический университет,

Россия, Томская область, г. Томск, пр. Ленина, 30, 634034

E-mail: ellsworth@tpu.ru

Поведение водорода в металлах является актуальной научно-технической проблемой для широкого круга задач фундаментального и прикладного характера. Интерес к вопросам водородопроницаемости и накопления водорода постоянно растет в связи с необходимостью выбора новых конструкционных материалов для ядерной, термоядерной и водородной энергетики и решения широкого спектра материаловедческих задач [1-6]. Установлено, что посредством радиационного облучения, управляя концентрацией водорода в объеме твердых тел можно создавать неравновесные термодинамические системы, синтез которых традиционными методами невозможен [7–9].

В работе рассмотрены процессы диффузии и выхода водорода (дейтерия) из металлов в атомарном, молекулярном и ионизированном состояниях, при воздействии электронного пучка и рентгеновского излучения в допороговой области энергий. Изучена зависимость интенсивности выхода изотопов водорода от плотности

Международная научно-практическая конференция «Физико-технические проблемы в науке, промышленности и медицине» Секция 5. Радиационные и пучково-плазменные технологии в науке, технике и медицине

тока и энергии электронного пучка, концентрации водорода в объем материалов и времени радиационного воздействия на образец. Исследованы энергетические распределения испускаемых положительных ионов изотопов водорода. Рассмотрены модели механизмов радиационно-стимулированного переноса водорода в металлах.

Исследования поведения водорода в металлах при воздействии ионизирующего излучения показывают:

- водород в металлах образует собственную водородную подсистему;
- водородная подсистема в металлах в процессе воздействия ионизирующего излучения переходит в возбуждённое состояние;
- мигрирующий водород стимулирует диффузию дефектов и примесных атомов и упорядочивает структуру металлов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Тюрин Ю.И., Чернов И.П. Аккумулирующие свойства водорода в твердом теле. –М.: Энергоатомиздат, 2000, 258 с.
- 2. Крачино Т.В., Кузьмин М.В., Логинов М.В., Митцев М.А. // ФТТ. 1998. Т. 40. –С. 371–378.
- 3. Овчинников В.В. // УФН, 2008. Т. 178, С.991–1001.
- 4. Prognimak A.M. // J. Hydrogen Energy. 1995. V. 20. P. 449-453.
- 5. Evard E.A., Gabis I.E., Voyt A.P. // J. Alloys Compounds. 2005. V.404–406. P. 335–338.
- 6. Нечаев Ю.С. // УФН, -2008, -T.178, -C.709-726.
- 7. Спивак Л.В. // УФН, -2008, -T.178, -C.897-922
- 8. Гапонцев А.В., Кондратьев В.В. // УФН, 2003, -Т.173, -С.1108-1129.
- 9. Максимов Е.Г., Панкратов О.А. Водород в металлах // УФН, -1975. -T.116. C.385-400.

СОЗДАНИЕ ПРОТОНОПРОВОДЯЩЕЙ МЕМБРАНЫ РАДИАЦИОННО-ХИМИЧЕСКОЙ МОДИФИКАЦИЕЙ ПЛЕНКИ ПВДФ

А.А. Дюсембекова, В.В. Сохорева, Н.А. Дуброва

Национальный исследовательский Томский политехнический университет,

Россия, г. Томск, пр. Ленина, 30, 634050

E-mail: aad38@tpu.ru

В настоящее время методы радиационно-химической прививки мономеров к полимерной матрице с помощью γ-излучения и электронных пучков хорошо известны и представляют большой интерес для модификации различных функциональных материалов и ионообменных мембран.

В представленной работе приведены результаты радиационно-химической модификации тонких пленок ПВДФ с помощью ионов ⁴Не с целью создания протонопроводящей мембраны для низкотемпературных топливных элементов. Прививка проводилась облучением образцов тонкой пленки ПВДФ, помещенных в раствор мономер стирола-толуол, в соотношении 1:1, с последующей термической выдержкой при температуре 60°C. Источником излучения служили ионы ⁴Не с энергией 27 МэВ, полученные с помощью циклотрона R-7М ФТИ ТПУ. Интегральная степень прививки определялась гравиметрически.

Результаты исследования показали, что степень прививки мономера стирола зависит от количества свободных радикалов, образующихся в образцах из-за разрыва ковалентных связей в следствии высокой ионизации ионов гелия. Увеличение дозы приводит к резкому увеличению свободных радикалов в матрице полимера, что было подтверждено результатами ИК-спектроскопии. Степень прививки образцов с поглощенными дозами свыше 4 МГр достигала 300 %, что приводило к их разрушению. Исследования